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Abstract
Purpose: Myocardial uptake can hamper visualization of lung tumors, atherosclerotic plaques,
and inflammatory diseases in 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) studies because it
leads to spillover in adjacent structures. Several preparatory pre-imaging protocols (including
dietary restrictions and drugs) have been proposed to decrease physiological [18F]FDG uptake
by the heart, although their effect on tumor glucose metabolism remains largely unknown. The
objective of this study was to assess the effects of a ketogenic diet (as an alternative protocol to
fasting) on tumor glucose metabolism assessed by [18F]FDG positron emission tomography
(PET) in a mouse model of lung cancer.
Procedures: PET scans were performed 60 min after injection of 18.5 MBq of [18F]FDG. PET
data were collected for 45 min, and an x-ray computed tomograph (CT) image was acquired
after the PET scan. A PET/CT study was obtained for each mouse after fasting and after the
ketogenic diet. Quantitative data were obtained from regions of interest in the left ventricular
myocardium and lung tumor.
Results: Three days on a ketogenic diet decreased mean standard uptake value (SUVmean) in
the myocardium (SUVmean 0.95 ± 0.36) more than one night of fasting (SUVmean 1.64 ± 0.93).
Tumor uptake did not change under either dietary condition.
Conclusions: These results show that 3 days on high-fat diets prior to [18F]FDG-PET imaging
does not change tumor glucose metabolism compared with one night of fasting, although high-
fat diets suppress myocardial [18F]FDG uptake better than fasting.
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Introduction
Positron emission tomography (PET) with 2-deoxy-2-
[18F]fluoro-D-glucose ([18F]FDG) is a highly sensitive and
quantitative technique that has many clinical applications in the

field of molecular imaging, most notably in oncology [1].
Tumor cells, in the same way as many other cells (macro-
phages, lymphocytes, granulocytes, and activated fibroblasts),
avidly take up [18F]FDG, thus enabling PET imaging to detect
cancer and inflammatory and infectious processes [2, 3].
However, regular uptake of [18F]FDG results in well-known
problems of detectability in several applications [4, 5], mostly
where the target is close to an area of high uptake. The highCorrespondence to: Lorena Cussó; e-mail: lcusso@hggm.es
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[18F]FDG uptake in the absence of disease observed in some
organs, such as the brain and heart, hampers visualization and
diagnosis of neighboring lesions.

Several preparatory pre-imaging protocols (including die-
tary restrictions and drugs) have been proposed to decrease
physiological [18F]FDG uptake by the heart [6–10], thus may
improve the detectability of lung and myocardial lesions and
reducing the number of false-positive readings. We previously
compared two methods for reducing myocardial uptake of
[18F]FDG in healthy animals [11] by demonstrating that a
ketogenic diet prior to [18F]FDG-PET imaging suppresses
myocardial uptake in mice better than blocking glucose
transport into cardiomyocytes with verapamil [8]. Our findings
were in agreement with those of previous studies, which
proposed diets as a powerful alternative to fasting to reduce
myocardial uptake of [18F]FDG in both clinical scenarios [10,
12, 13] and preclinical scenarios [9]. We also validated a
ketogenic diet in a murine lung inflammation model (tracheal
Escherichia coli lipopolysaccharide challenge), although,
given the severe pulmonary distress induced, the efficiency of
the ketogenic diet was slightly poorer than in healthy mice [11].

Nebeling, et al. [14] reported reduced tumor [18F]FDG
uptake in two pediatric cancer patients after a long period on a
high-fat diet. Furthermore, in vitro experiments showed a
reduction in tumor viability due to the inability of cancer cells
(gliomas, astrocytomas, and neuroblastomas) to metabolize
ketogenic bodies [15]. These findings are supported by several
preclinical studies [16–19] that suggest a potential anticancer
effect of long periods on a ketogenic diet (from 13 days [16] to
104 days [17]). Although the effect of dietary preparation (diets
or fasting) before administration of [18F]FDG lasts only a few
hours [10, 11, 20, 21], this brief application is enough to
enhance [18F]FDG uptake by carotid plaques, lung tumors, and
pulmonary or cardiac inflammation/infection [11, 22].

Even though fasting remains the most common preparatory
protocol for [18F]FDG-PET studies, in the last decade, diets
have been proposed as a better and more powerful alternative
for suppressing uptake of [18F]FDG by the heart [10, 13, 21],
both in research applications and clinical applications related to
various heart conditions (e.g., endocarditis [22], coronary
plaque [21]). To our knowledge, no attempt has been made to
study the effect of high-fat diets on tumor uptake. Therefore,
we hypothesized that high-fat diets can also be a suitable
protocol for improving the diagnosis of lung tumors with no
negative effects on tumor [18F]FDG uptake. We performed a
longitudinal [18F]FDG-PET study to compare the effects of a
ketogenic diet on tumor glucose metabolism with those of a
conventional fasting protocol in a mouse model of lung cancer.

Material and Methods

Experimental Procedures

The study was performed on 14 lung tumor–bearing K-
RasLSLG12Vgeo; p53lox/lox compound mice in a pure C57/

BL6J background. The adenocarcinomas were induced in
anesthetized 8- to 10-week-old mice (intraperitoneal injec-
tion of ketamine 75 mg/kg, xylazine 12 mg/kg) by intranasal
instillation of a single dose of 106 pfu of Adeno-Cre virus
(Gene Transfer Vector Core, University of Iowa). The
animals were included in the study when the tumors could
be detected by computed tomography (mean latency of
5 months). Mice were housed in cages under standard
conditions and allowed food and water ad libitum. Each
animal underwent [18F]FDG PET/CT under two different
conditions (3 days were left between PET scans): after one
night of fasting (mice were deprived of food for 15–18 h
before [18F]FDG injection) and after 3 days on a ketogenic
diet (TD 96355, Harlan).

Blood glucose levels (BGLs) were measured before
administration of [18F]FDG using a glucose meter
(Glucocard TM G+ meter, A. Menarini, Spain) on conscious
animals. BGL was measured to guarantee that the animals
reach [18F]FDG administration under similar glucose condi-
tions. The control group comprised ten additional C57/BL6J
healthy animals that received a regular diet (A04, SAFE).

Image Acquisition

All the studies were performed with a small-animal PET/CT
scanner (Argus, SEDECAL, Spain [23, 24]). PET studies
were acquired 60 min after intraperitoneal administration of
19.4 ± 1.02 MBq of [18F]FDG. During uptake, the animals
were kept awake and warm under infrared light to prevent
brown fat uptake. PET data were collected for 45 min with
the mice anesthetized using 1.5 % sevoflurane in oxygen at
3 l/min and reconstructed using OSEM-2D with 50 subsets
and 3 iterations. The voxel size of the reconstructed images
was 0.388 mm in the transaxial plane and 0.775 mm in the
axial plane. After the PET scan, a CT study was acquired
using an X-ray beam current of 240 μA and a tube voltage
of 40 kVp and reconstructed using an FDK algorithm [23].
These CT scans were used as anatomical templates.

Standardized Uptake Value

PET/CT images were analyzed using Multimodality Work-
station software [25] (MMWKS, Spain). On each CT image,
regions of interest (ROIs) were delimited over all identifiable
tumor lesions, brown fat, skeletal muscle (triceps), and the
heart (20 circular ROIs measuring 2.5 mm in diameter).
These ROIs were applied to the automatically coregistered
PET images to measure their corresponding standard uptake
value (SUV, mean, and maximum).

Histopathology

The lungs of nine animals (fasting n = 3 and ketogenic diet =
6) were harvested after the last PET/CT image to study the
possible influence of dietary conditions on tumor histology.
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The histology protocol consisted of fixation of the lung
lobes in 10 % buffered formalin (Sigma) and embedding in
paraffin, followed by staining with hematoxylin-eosin and
immunostaining against glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH, Millipore, MAB374). Microscopic
images were scanned and photos exported into the software
application Zen 2012 (ZEISS, Germany) for quantification.
GAPDH was assessed by scoring the intensity of staining of
the tumor cells as Blow,^ Bmild,^ and Bintense^ expression
[26]. Tumors were also graded as adenoma or adenocarci-
noma by an expert pathologist based on hematoxylin-eosin
staining.

Statistical Analysis

The Wilcoxon test was used for paired comparisons
(differences in tumor uptake, tumor size, weight, heart
uptake, brown fat uptake, skeletal muscle uptake, and
BGL), and the Mann-Whitney U test was used for nonpaired
data (histopathology, tumor uptake) and also to compare
myocardial uptake and BGL with the control group. Finally,
relationships between BGL, histopathology (intensity of
GAPDH staining), and tumor [18F]FDG uptake were
assessed using the Spearman’s correlation analysis. Non-
parametric tests were selected because of the reduced sample
size. Data are reported as mean (± standard deviation), and
statistical significance was set at p G 0.05.

Ethics Statement

All animal procedures were approved by the Animal Experi-
mentation Ethics Committee of Hospital General Universitario
Gregorio Marañón (ES280790000087) and the Ethics Com-
mittees of CNIO and the Carlos III Health Institute, Madrid,
and performed according to European regulations (2010/63/
UE) and National regulations (RD 53/2013).

Results
Quantification of myocardial SUVmean showed that, com-
pared with control group (SUVmean 2.03 ± 1.21), the greatest
reduction in [18F]FDG uptake was achieved with the ketogenic
diet (SUVmean 0.95 ± 0.36; p = 0.004), whereas fasting
produced no significant reduction in myocardial uptake
(SUVmean 1.64 ± 0.93; p = NS). Besides, a longitudinal
comparison between the same animals in both diet conditions
shows that 3 days on ketogenic diet decrease [18F]FDG
myocardium uptake better than one night on fasting (p =
0.013). Fig. 1 shows an example of [18F]FDG-PET images
from three different animals after both dietary conditions. The
myocardium is completely suppressed after ketogenic feeding
in most cases improving tumor visualization, whereas one
night of fasting induced heterogenic suppression, from
complete to non-suppression. Brown fat uptake (ketogenic diet
0.83 ± 0.15, fasting 2.17 ± 2.83, p = 0.167) and skeletal muscle

uptake (ketogenic diet 0.57 ± 0.25, fasting 0.57 ± 0.28, p =
0.660) did not showed statistically significant differences
between both dietary conditions.

Figure 2 shows tumor tissue and myocardial uptake
values after each dietary condition. Tumor SUVmax did not
showed significant differences after both dietary conditions
(ketogenic diet 4.04 ± 1.46, and fasting 3.37 ± 1.48, p =
0.074). No significant differences were observed on tumor
size between scans (fasting 0.112 ± 0.121 cm3 and ketogenic
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Fig. 1 Axial PET (color scale) and CT (gray scale) views of
three different animals after a fasting and b ketogenic diet.
Heart (arrow) and tumor (t). In the case of null or partial
myocardium suppression, it is much harder to distinguish
tumors from myocardial spillover (*).

Fig. 2 [18F]FDG uptake per animal after each dietary
condition. a A slight increase was observed after a ketogenic
diet (KD) in 9 of 14 tumors, although the difference was not
statistically significant (p = 0.18, Wilcoxon test). b Plot
representing the individual myocardial SUVmean.
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diet 0.139 ± 0.156 cm3, p = 0.397). Our basis for using
SUVmax instead of SUVmean was that it is the most
common marker in oncological applications.

Table 1 shows BGL before administration of [18F]FDG
for each dietary condition. BGL was lower in both cases
(ketogenic diet, 70.5 ± 27.29 mg/dl, and fasting, 72.14 ±
21.15 mg/dl, p = 0.002) than in control animals (no fasting
110.7 ± 21.3 mg/dl). Differences in BGL between fasting
and the ketogenic diet did not reach statistical significance.
No significant relationship was found between BGL and
tumor uptake or myocardial uptake. On average, the
ketogenic diet increased the animals’ weight (24.96 ±
3.60 g) by 1 g compared with the data collected after one
night of fasting (23.96 ± 3.85 g, p = 0.009).

Figure 3a shows representative immunohistochemical
GAPDH staining on non-small cell lung cancer (adenomas
and adenocarcinomas). Adenocarcinomas had a higher
SUVmax than adenomas (2.71 ± 1.52 vs. 1.54 ± 0.96, p =
0.036), and tumors with intense GAPDH activity had a higher
SUVmax than low-mild GAPDH expression (2.98 ± 1.59 vs.
1.46 ± 0.38, p = 0.024). Our results showed a significant
positive association between tumor 18F-FDG uptake and
GAPDH expression (rho = 0.5, p = 0.02, Spearman test).

Discussion
[18F]FDG PET/CT is an essential tool for the study of tumor
progression when staging cancer patients [27] and also in
research applications [20], where, for instance, it provides a
rapid platform for the preclinical evaluation of treatments in
rodent models [28]. Consequently, it is important to consider
any possible anticancer effect of ketogenic diets, since this
can interfere with the assessment of new therapeutic
strategies.

The aim of this study was to explore the possibilities of a
ketogenic diet (as an alternative protocol to fasting) to
improve detection of lung cancer in a mouse model by
analyzing tumor and myocardial [18F]FDG uptake and the
expression of glucose metabolism enzymes. We demon-
strated that 3 days on a ketogenic diet before PET/CT
studies significantly reduced cardiac uptake and did not alter
tumor [18F]FDG uptake or cell viability, thus validating the
proposed pre-imaging protocol as an effective alternative to
fasting.

Lung histopathology revealed that our animal model
simultaneously presented adenomas and adenocarcinomas at
different stages. In addition, we observed a positive

relationship between expression of GAPDH and uptake of
[18F]FDG by tumor tissue.

It is well known that food deprivation improves the
visualization of [18F]FDG-PET target areas, such as tumor
tissue [29–31] and inflammatory/infectious responses [32,
33]. This is the standard protocol for the study of brain
glucose metabolism [34, 35] in animal models. On the other
hand, fasting is known to switch myocardial metabolism
from glucose to free fatty acids (Randle cycle) [22, 36], thus
reducing myocardial uptake of [18F]FDG.

Nowadays, several clinical studies [10, 12, 13, 37] and
preclinical studies [9, 11] suggest that diets (low-carbohy-
drate or low-carbohydrate plus high-fat diets) are more
effective than fasting for suppression of myocardial uptake.
Myocardial suppression is particularly important in lung
imaging [11, 20] and when diagnosing heart diseases [22].
In addition, it has been reported that diets do not reduce
uptake in inflamed areas (osteoarthritis, tendinitis, dental
inflammation) compared with fasting [10]. To our knowl-
edge, ours is the first study to demonstrate that short high-fat
diets do not alter tumor glucose metabolism, at least in the
model we applied. Although in average tumor uptake
difference did not reach statistical significance, this value
is higher under ketogenic diet than under fasting in 9 out of
14 tumors (Fig. 2). We cannot rule out that a larger sample
could render statistical significance. This possible increase in
uptake could depend on a higher [18F]FDG availability
because of the lower myocardial uptake.

In agreement with López-Ríos et al. [38], we found a
positive relationship between expression of GAPDH and
SUV. To our knowledge, our study is the first to explore this
relationship in a murine lung cancer model. Several
proteomic parameters (β-F1-ATPase, Hsp60, GAPDH,
COX, IF1, and their combinations) comprising what is
known as Bthe bioenergetics signature^ [26, 39, 40] have
been assessed in order to predict tumor progression, thus
supporting the hypothesis of Warburg [41], who postulated
that cancer cells undergo abnormally high aerobic glycolysis
owing to impaired mitochondrial bioenergetics activity.
Previous studies evaluated the relationship between the
tumor bioenergetics signature and [18F]FDG uptake. For
example, Huebbers et al. [26] demonstrated that [18F]FDG
uptake correlates with high levels of β-F1-ATPase but found
no association with Hsp60, GAPDH, or other proteins in
patients with head and neck carcinoma. López-Ríos et al.
[38] studied a cohort of lung carcinoma patients and found a
linear association between SUV and expression of GAPDH
and a negative association between SUV and β-F1-ATPase.

It is well known that hyperglycemia has an effect on
uptake of [18F]FDG by tumor tissue [29, 42] and by brain
[43]; consequently, patients are instructed to fast for at least
6 h before [18F]FDG-PET studies. In the present study, both
dietary conditions decreased BGL (within the safety limit of
63–176 mg/dl for mice), as expected [9, 11].

Our study is limited by the heterogenic nature of the lung
tumors, which hampers the interpretation of the results.

Table 1. Blood glucose level before administration of [18F]FDG

Diet BGL, mg/dl

Post-fasting 72.14 ± 21.15*
Post-ketogenic diet 70.5 ± 27.29*
Control 110.7 ± 21.3

Mean BGL (± SD); *pG0.05 vs. control, Mann-Whitney U test
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Animal experiments were not randomized, diets were always
tested following the same order (fasting and ketogenic diet).
Although it is true that we cannot totally rule out any
residual or carry-over effect between diets, as the optimal
withdrawal period is unknown, FFA metabolism is reported
to be suppressed when insulin levels increase after a regular
meal [44]. Although dynamic PET studies might increase the
robustness of [18F]FDG uptake by using kinetic models, we
did not follow this approach, because dynamic acquisition
requires the animals to be anesthetized during the uptake
period, thus altering the distribution of [18F]FDG [45, 46].
No attempt was made to increase fasting time, because,
according to our experience, this is a risk factor in our
transgenic tumor animal model. Finally, the difference in
body weight observed in our study may be attributable to
fasting [47]. Another limitation of our longitudinal study is
that we did not acquire a baseline [18F]FDG before starting
dietary protocols. This was because we did not consider it
advisable to perform so many studies on the same animals.
Nevertheless, we included a diet-free control group to assess
myocardial [18F]FDG uptake values and BGL.

In conclusion, our results show that 3 days on a high-fat diet
prior to [18F]FDG-PET imaging did not change tumor

[18F]FDG uptake compared with one night of fasting, although
high-fat diets suppressed myocardial 18F-FDG uptake better
than fasting. Our findings also demonstrate that [18F]FDG
uptake is increased in tumors with higher GAPDH expression
and that [18F]FDG uptake is more pronounced in adenocarci-
nomas than in adenomas. In summary, the ketogenic diet seems
to be a potentially good alternative to fasting for [18F]FDG-
PET studies in animal cancer models.
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