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Abstract
Purpose: Head and neck squamous cell carcinoma (HNSCC) is one of common cancers
worldwide. Positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose
([18F]FDG) is increasingly used for diagnosing and staging, as well as for monitoring of
treatment of HNSCC. PET parameters like maximum and mean standard uptake values
(SUVmax, SUVmean) can predict the behavior of HNSCC. The purpose of this study was to
analyze possible associations between these PET parameters and clinically relevant histopath-
ological features in patients with HNSCC.
Procedures: Overall, 22 patients, mean age, 55.2 ± 11.0 years, with different HNSCC were
acquired. Low grade (G1/2) tumors were diagnosed in 10 cases (45 %) and high grade (G3)
tumor in 12 (55 %) patients. In all cases, whole body PET was performed. For this study, the
following specimen stainings were performed: MIB-1 staining (KI 67 expression), epidermal
growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), tumor suppressor
protein p53, hypoxia-inducible factor (HIF)-1α, and human papilloma virus (p16 expression). All
stained specimens were digitalized and analyzed by using the ImageJ software 1.48v.
Spearman’s correlation coefficient (ρ) was used to analyze associations between investigated
parameters. P values G0.05 were taken to indicate statistical significance.
Results: P16-negative tumors showed statistically significant higher SUVmax (ρ = 0.006) and
SUVmean values (ρ = 0.002) in comparison to p16-positive carcinomas. No significant differences
were identified in the analyzed parameters between poorly and moderately/well-differentiated
tumors. In overall sample, there were no statistically significant correlations between the
[18F]FDG-PET and histopathological parameters. Also, in G1/2 tumors, no significant correla-
tions were identified. In G3 carcinomas, cell count correlated statistical significant with SUVmax

(p = 0.580, P = 0.048) and SUVmean (ρ = 0.587, P = 0.045).
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Conclusion: Associations between [18F]FDG-PET parameters and different histopathological
features in HNSCC depend significantly on tumor grading. In G1/2 carcinomas, there were no
significant correlations between [18F]FDG-PET parameters and histopathology. In G3 lesions,
SUVmax and SUVmean reflect tumor cellularity.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is one of
common cancers worldwide [1]. Positron emission tomog-
raphy (PET) with 2-deoxy-2-[18F]fluoro-D-glucose
([18F]FDG-PET) is increasingly used for diagnosing and
staging, as well as for monitoring of treatment of HNSCC
[2, 3]. It has been shown that [18F]FDG-PET provides
additional accuracy and is superior to x-ray computed
tomography (CT) or magnetic resonance imaging (MRI) or
ultrasound alone in the detection of cervical lymph node
status of oral cavity squamous cell carcinoma [2, 3].
Nowadays, combination of [18F]FDG-PET and CT or MRI
is integrated in the work-up of head and neck cancer patients
[4–7]. So Ryu et al. reported that [18F]FDG-PET/CT staging
was significantly more sensitive and accurate than conven-
tional workups staging including physical examination,
endoscopy, CT, and/or MRI and provided important staging
information improving management and prognostic stratifi-
cation in HNSCC [8].

According to the literature, [18F]FDG-PET parameters
can predict tumor stage and behavior of HNSCC. For
example, Haerle et al. showed that metabolic tumor activity
correlated with T stage of HNSCC [9]. Other authors
confirmed this finding and suggested that [18F]FDG-PET
parameters like standardized uptake values (SUVmax,
SUVmean, and SUVpeak), metabolic tumor volume (MTV),
and total lesion glycolysis (TLG) were associated with
pathologically advanced T stage (T3/T4) [10]. Furthermore,
Li et al. reported that SUV values were related to grade of
differentiation of HNSCC, namely well-differentiated tu-
mors showed significantly lower SUVs than poorly differ-
entiated lesions [11].

[18F]FDG-PET parameters are also associated with
clinical outcome in HNSCC. So far, in the study of Abgral
et al., MTV was identified as an independent prognostic
value of event-free survival and overall survival in patients
with HNSCC [12]. According to Kim et al., patients with
high metabolic tumor burden were associated with higher
distant metastasis rates, translating into worse survival
[13]. Finally, [18F]FDG-PET parameters can also predict
treatment success in HNSCC. For instance, Kitagawa et al.
showed that SUV values were useful in predicting the
response to treatment [14]. Furthermore, Wong et al.
showed that MTV and/or TLG can be used as predictive
biomarkers for ultimate response to subsequent chemora-
diotherapy [15].

The reported data suggest that [18F]FDG-PET parameters
may be associated with several histopathological findings in
HNSCC. Therefore, the purpose of this study was to analyze
possible associations between [18F]FDG-PET parameters
and clinically relevant histopathological features in patients
with HNSCC.

Material and Methods
This prospective study was approved by the institutional
review board.

Patients

For this study, 22 patients, 6 (27 %) women and 16 (73 %)
men, mean age, 55.2 ± 11.0 years, range 24–77 years, with
different HNSCC were acquired (Table 1). G1/2 tumors
were diagnosed in 10 cases (45 %) and high grade (G3)
tumor in 12 (55 %) patients.

Imaging

PET/CT In all 22 patients, a [18F]FDG-PET/CT (Siemens
Biograph 16, Siemens Medical Solutions, Erlangen, Ger-
many) was performed from the skull to the upper thigh after
a fasting period of at least 6 h. Application of [18F]FDG was
performed intravenously with a body weight-adapted dose
(4 MBq/kg, range 168–427 MBq, mean ± std: 281 ±
62.2 MBq). PET/CT image acquisition started on average
76 min (range 60–90 min) after application of [18F]FDG.
Low-dose CT was used for attenuation correction of the
PET-Data.

The acquired PET/CT datasets were evaluated by a
board-certified nuclear medicine and a board-certified
radiologist with substantial PET/CT experience in oncolog-
ical image interpretation. PET/CT image analysis was
performed on the dedicated workstation of Hermes Medical
Solutions, Sweden. For each tumor, maximum and mean
SUV (SUVmax; SUVmean) were determined on PET images.
Prior to this, tumor margins of the HNSCC were identified
on diagnostic CT images and fused PET/CT images and a
polygonal volume of interest (VOI), that include the entire
lesion in the axial, sagittal, and coronal planes, was placed in
the PET dataset (SUVmax threshold 40 %) (see Fig. 1).
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Histopathological Findings

In all cases, the diagnosis was confirmed histopathologically
by tumor biopsy. The biopsy specimens were deparaffinized,
rehydrated, and cut into 5-μm slices. Thereafter, the
histological slices were stained by MIB 1 monoclonal
antibody (DakoCytomation, Glostrup, Denmark), epidermal
growth factor receptor (EGFR, EMERGO Europe, clone
111.6, dilution 1:30), vascular endothelial growth factor
(VEGF, EMERGO Europe, clone VG1, dilution 1:20),
tumor suppressor protein p53 (DakoCytomation, Glostrup,
Denmark; clone DO-7, dilution 1:100), hypoxia-inducible
factor (HIF)-1α (Biocare Medical, 60 Berry Dr Pacheco, CA
94553; clone EP1215Y, dilution 1:100), and human papil-
loma virus (p16 expression, Cintec Histology, Roche,
Germany) according to previous descriptions [4, 16–20].

On the next step, all stained specimens were digitalized
by using the Pannoramic microscope scanner (Pannoramic
SCAN, 3DHISTECH Ltd., Budapest, Hungary) with Carl
Zeiss objectives up to ×41 bright field magnification by
default. In the used bottom-up approach, the whole sample
is acquired at high resolution. Low magnification repre-
sentations are automatically obtained. Via Pannoramic
Viewer 1.15.4 (open source software, 3D HISTECH Ltd.,
Budapest, Hungary), slides were evaluated and three
captures with a magnification of ×200 were extracted of
each sample.

Further analyses of the digitalized histopathological
images were performed by using the ImageJ software
1.48v (National Institutes of Health Image program) with a
Windows operating system [4, 21, 22]. Tumor proliferation
index KI 67 was estimated on MIB 1-stained specimens as
a ratio: (number of stained nuclei ÷ number of all nuclei) ×
100 %. For the analysis, the area with the highest number
of positive tumor nuclei was selected (Fig. 2a). Tumor cell
count as a number of all nuclei was estimated on MIB 1-
stained specimens as reported previously [4, 21]. The
analyzed tumors were divided into p16 positive and p16
negative based on p16 expression [16].

Furthermore, expression of EGFR, VEGF, HIF-1α, and
p53 (Fig. 2b–e) was estimated as a sum of stained areas
(μm2) according to previous description [23].

Statistical Analysis

Statistical analysis was performed using SPSS package
(IBM SPSS Statistics for Windows, version 22.0, Armonk,
NY: IBM corporation). Collected data were evaluated by
means of descriptive statistics.

Spearman’s correlation coefficient (ρ) was used to
analyze associations between investigated parameters. P
values G0.05 were taken to indicate statistical significance.

Table 1. Characteristics of the patients/tumors involved into the study

N Sex Age Tumor site T stage N stage M stage Grading

1 f 33 Tongue 3 0 0 2
2 m 62 Larynx 3 3 0 3
3 m 55 Tonsil 3 2 0 3
4 m 56 Hypopharynx 3 1 0 3
5 f 58 Oropharynx 1 2 0 3
6 m 24 Oral cavity 4 2 0 2
7 m 64 Oral cavity 2 1 0 3
8 m 57 Tonsil 2 2 0 3
9 m 44 Larynx 4 0 0 3
10 f 77 Epipharynx 4 1 1 3
11 m 59 Tonsil 3 1 0 2
12 m 53 Larynx 4 2 0 3
13 m 64 Hypopharynx 4 2 0 2
14 m 61 Oropharynx 4 2 0 2
15 m 58 Oropharynx 2 2 0 2
16 f 60 Oropharynx 4 2 0 3
17 m 55 Tonsil 3 2 0 2
18 m 54 Oral cavity 4 2 0 2
19 f 65 Tonsil 2 2 0 3
20 m 50 Tonsil 2 2 0 3
21 m 48 Hypopharynx 2 2 0 2
22 f 58 Tongue 4 2 0 1

Fig. 1 [18F]FDG-PET/CT findings in a patient with HNSCC of the left oropharynx. Lesion with polygonal volume of interest (VOI)
in the a axial, b sagittal, and c coronal planes. SUVmax = 10.6, SUVmean = 6.2. d Fused [18F]FDG-PET/CT image demonstration
of the metabolic active HNSCC of the left oropharynx (arrow).
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Results
A complete overview of the results including mean values,
standard deviation, and ranges is shown in Table 2. The
tumors showed a wide spectrum of proliferation activity
ranging from 24 to 97 %, mean value, 66 %. Furthermore,
the lesions had different expression values of VEGF, EGFR,
HIF-1α, and p53 (Table 2). In 14 patients (64 %), p16
positive and in 8 patients (36 %), p16-negative tumors were
diagnosed.

P16-negative tumors showed statistically significant
higher SUVmax (19.07 ± 4.70 vs 12.48 ± 3.38, P = 0.006)
and SUVmean values (11.10 ± 3.34 vs 7.33 ± 2.04, P = 0.002)
in comparison to p16-positive carcinomas (Fig. 3). No
significant differences were identified in the analyzed
parameters between poorly and moderately/well-
differentiated tumors (SUVmax 14.13 ± 4.20 vs 15.59 ± 4.72,
P = 0.60; SUVmean 8.49 ± 3.49 vs 8.90 ± 2.97, P = 0.78).

In overall sample, there were no statistically significant
correlations between the FDG-PET and histopathological
parameters (Table 3). Also in G1/2 tumors, no significant
correlations were identified. Only HIF-1α tended to correlate
with SUVmax (p = −0.624, P = 0.054) and SUVmean (p =

−0.564, P = 0.09) (Table 3). In G3 carcinomas, however, cell
count correlated statistical significant with SUVmax (p =
0.580, P = 0.048) and SUVmean (p = 0.587, P = 0.045)
(Table 3).

Discussion
The present study investigated associations between differ-
ent [18F]FDG-PET parameters and histopathological find-
ings in HNSCC.

According to the literature, several biomarkers play an
important role in HNSCC [24–26]. Especially, proliferation
index KI 67, epidermal growth factor receptor (EGFR),
tumor suppressor protein p53, vascular endothelial growth
factor (VEGF), human papilloma virus (p16 expression), and
hypoxia-inducible factor (HIF)-1α were highlighted [26–32].
It has been shown that high expression of KI 67 correlated
with tumoral aggressiveness and worse prognosis in patients
with HNSCC [24, 25]. Another biomarker, EGFR is
involved in the regulation of many cellular responses,
including cell proliferation, apoptosis, and cellular differen-
tiation [27]. Some studies indicated that EGFR expression
represents a good prognostic parameter in HNSCC [27, 28].
Furthermore, p53 regulates the activity of pathways, which
lead variously to cell cycle arrest, senescence, or apoptosis
following exposure of cells to endogenous or exogenous
cellular stresses [29]. VEGF overexpression has been
reported as a poor predictor for patients with head and neck
cancer [30]. Human papilloma virus is common among
HNSCC and has been reported as an independent prognostic
factor [31]. Finally, HIF-1α characterizes cellular responses
to hypoxic stress [32]. Overexpression of HIF-1α was
significantly associated with increase of mortality risk and
worse prognosis of HNSCC [32]. Therefore, the question, if

Fig. 2 Histopathological features of the tumor. a MIB-1 staining. KI 67 index is 35 %. Cell count is 244. b EGFR staining.
Stained area is 110,834 μm2. c VEGF staining. Stained area is 9202 μm2. d HIF-1α staining. Stained area is 15,006 μm2. e p53
staining. Stained area is 10,467 μm2.

Table 2. Estimated parameters of HNSCC

Parameters M ± SD Median Range

SUVmax 14.3 ± 5.1 14.8 5.9–24.1
SUVmean 8.4 ± 3.1 8.3 3.7–14.9
Cell count 199 ± 78 186 97–403
Ki 67, % 66 ± 22.4 64 24–97
EGFR expression, μm2 85,069 ± 62,154 56,610 8755–245,157
VEGF expression, μm2 15,584 ± 17,549 9294 0–51,745
HIF-1α expression, μm2 24,597 ± 22,496 13,552 452–67,894
p53 expression, μm2 29,987 ± 29,159 27,925 188–86,688
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imaging, in particular, PET parameters can reflect histopath-
ological features of HNSCC, is very important.

Previously, some studies also analyzed relationships
between FDG-PET and histopathology in HNSCC. Overall,
there were few reports [4, 16, 18–20]. Furthermore, the
reported data were inconclusive. For instance, Yokobori
et al. showed that SUVmax correlated statistically significant
with microvessel density (p = 0.407, P = 0.038) and L-type
amino acid transporter 1 (LAT1) (p = 0.465, P = 0.018), but
not with expression of glucose transporter 1 (GLUT1) (p =
0.167, P = 0.395) or KI 67 (p = 0.37, P = 0.060) [33]. Also
Grönroos et al. identified no significant correlations between
SUV and GLUT 1 or KI 67 [18]. However, in the study of
Deron, SUVmax correlated significantly with GLUT 1 (r =
0.408, P = 0.04) [34]. Furthermore, according to Jacob et al.,
SUVmax correlated well with KI 67 (r = 0.78) and another
proliferation marker, namely PCNA (proliferating cell
nuclear antigen), r = 0.66 [35]. In addition, Jacob et al. also

identified that SUVmax correlated with tumor aggressiveness
parameters DNA aneuploidy (2c deviation index) with a
Pearson’s correlation coefficient of 0.76 [35]. Similar
controversial results were reported for associations of
[18F]FDG-PET parameters with other biomarkers like tumor
suppressor protein p53 and hypoxia-inducible factor (HIF)-
1α [16, 18, 36]. According to Grönroos et al., SUVmax

tended to correlate with p53 (p = 0.47, P = 0.078) [18].
However, Rasmussen et al. could not identify significant
correlations between SUV values and expression of p53
(p = −0.42, P = 0.69) [16]. Furthermore, according to Zhao
et al., SUVmax correlated well with expression of HIF-1α
[19]. Other authors did not confirm this result [18]. It is
unknown, why some authors found significant correlations
between PET and histopathological parameters in HNSCC
while others did not.

Based on our previous data [37], we hypothesized that
well, moderately, and poorly differentiated tumors might
show also different relationships of [18F]FDG-PET param-
eters and histopathology. For instance, previously, we found
that associations between imaging parameters, such as SUV
and apparent diffusion coefficient, depended significantly on
tumor grading [37]. The present study confirmed our
assumption. In the overall sample, no significant correlations
were found between the analyzed PET and histopathological
parameters. This finding may suggest that there are no
associations between PET and histopathology. However,
separate correlation analyses in the subgroups based on
tumor grading revealed other results. As seen, in G1/2
carcinomas, there were also no significant correlations
between the investigated parameters. Only HIF-1α tended
to correlate with SUVmax and SUVmean. However, in G3
tumors, SUVmax and SUVmean correlated statistical signifi-
cant with cell count. It is unclear why tumor grading
influences the relationships between PET values and
histopathology. To the best of our knowledge, this phenom-
enon has not been described previously. The exact cause of
this finding is unclear. Obviously, different tumor architec-
tures show also different associations between metabolic
activity and morphological features. Presumably, one or
more histopathological factors, which are incorporated into
grading system in HNSCC, like cell size, nuclear pleomor-
phism, number of mitoses, pattern of invasion, and presence
or absence of inflammatory infiltrates may play a role here.
Furthermore, this finding may be related to the fact that
high-grade tumors have other relations between parenchyma
and stroma than low-grade lesion [38, 39]. In addition,
poorly differentiated carcinomas have also higher microvas-
cular density in comparison to low/moderate HNSCC [38].

Our finding is very interesting and may explain contro-
versial results of the previous studies. Presumably, they
might contain well, moderately, and poorly differentiated
tumors in several proportions. Consequently, this may
induce different relationships between [18F]FDG-PET and
histopathological parameters. In addition, our findings
suggest that [18F]FDG-PET parameters can be used as

Fig. 3 Comparison of SUV values between p16-positive and
p16-negative tumors. a SUVmax values of p16-negative
tumors are statistically significant higher than those of p16-
positive lesions (19.07 ± 4.70 vs 12.48 ± 3.38, P = 0.006). b
SUVmean values of p16-negative tumors are statistically
significant higher than those of p16-positive lesions (11.10
± 3.34 vs 7.33 ± 2.04, P = 0.002).
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surrogate cellularity marker in poorly differentiated HNSCC
but not in well/moderately differentiated tumors.

Furthermore, we found that p16-negative tumors showed
statistically significant higher SUVmax and SUVmean values
than p16-positive carcinomas. This finding is in agreement
with those of Rasmussen [16]. According to the literature,
p16-positive tumors are smaller and less FDG avid than
HPV-negative tumors [40]. Furthermore, p16 positivity has
been reported to be associated with the most favorable
prognosis [16, 40]. Therefore, our finding seems to be
logical.

Our study is limited due to a small number of patients.
Furthermore, the histopathological samples only represent a
relatively small portion of the tumors, whereas the FDG-
PET parameters were analyzed as a whole tumor measure-
ment. Clearly, further investigations with more cases are
needed to verify our results.

In conclusion, associations between [18F]FDG-PET pa-
rameters and different histopathological features in HNSCC
depend significantly on tumor grading. In G1/2 carcinomas,
there were no significant correlations between [18F]FDG-
PET parameters and histopathology. In G3 lesions, SUVmax

and SUVmean reflect tumor cellularity.
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