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Abstract
Purpose: Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging
and to enable enhanced prediction of therapy response and outcome. An important ingredient to
success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness.
In the present work, we studied the impact of segmentation and discretization on 88 radiomic features
in 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and [11C]methyl-choline ([11C]choline) positron emission
tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma.
Procedures: Forty patients underwent [18F]FDGPET/CT scans.Of these, nine patientswere imaged on
a different day utilizing [11C]choline PET/CT. Tumors were delineated using reference manual
segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum
standardized uptake value (SUVmax) threshold with background correction, Nestle’s method, and
watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and
1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and
57 second- and higher-order textural features, were extracted from the tumors. The robustness of the
features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation
methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and
higher-order features).
Results: Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as
obtained from [18F]FDG and [11C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed
ICC ≥0.8 with respect to discretization as obtained from [18F]FDG and [11C]choline, respectively. Six
features were obtained from both [18F]FDG and [11C]choline having ICC ≥0.8 for both segmentation and
discretization, five of which were gray-level co-occurrence matrix (GLCM) features (SumEntropy,
Entropy, DifEntropy, Homogeneity1, and Homogeneity2) and one of which was an neighborhood gray-
tone different matrix (NGTDM) feature (Coarseness).
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Conclusions: Discretization generated larger effects on features than segmentation in both
tracers. Features extracted from [11C]choline were more robust than [18F]FDG for segmentation.
Discretization had very similar effects on features extracted from both tracers.
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Introduction
Nasopharyngeal carcinoma is a rare malignancy with
highly varying geographic and racial distribution world-
wide [1]. It occurs significantly more commonly in
northern Africa and southeastern Asia, especially in
southern China, with a peak annual incidence ap-
proaching 30 per 100,000 persons [2]. 2-Deoxy-2-
[18F]fluoro-D-glucose ([18F]FDG) positron emission
tomography/computed tomography (PET/CT) imaging
has been established as a powerful technique for
diagnosis and staging in oncology [3] and is also used
in nasopharyngeal carcinoma [4–7]. Due to the intense
physiologic uptake of [18F]FDG in the brain, [18F]FDG
positron emission tomography (PET)/X-ray computed
tomography (CT) lacks sensitivity for T staging, while
[11C]methylcholine ([11C]choline) PET/CT has been
developed as a complementary modality for T staging
of nasopharyngeal carcinoma [7]. For PET/CT assess-
ment using both [18F]FDG and [11C]choline, standardized
uptake values (SUVs) have been the most widely
adopted index in routine clinical oncology to support
diagnosis, prognosis, and therapy response assessment.

Meanwhile, due to the high intratumor heterogeneity
of malignant tumors, radiomic features have been
increasingly applied to delineating tumors, stratifying
risk, and assessing tumor response to therapy in different
malignancies [8]. Several groups have studied metrics
that quantify intratumor PET uptake heterogeneity, with
special focus on [18F]FDG imaging [9–22]. Radiomic
analysis of tumors can be achieved by using statistical,
shape-based, and/or textural feature analysis, including
first-, second-, and higher-order methods of increasing
complexity.

At the same time, radiomic features are affected by
many factors, such as PET image acquisition, reconstruc-
tion, post-smoothing, tumor delineation, and gray-scale
resampling. Thus, some studies have investigated the
robustness of radiomic features due to different image
processing methods. Doumou et al. tested the effects of
image smoothing, segmentation, and quantization on the
precision of heterogeneity measurements in esophageal
cancer [23]. Hatt et al. assessed the robustness of PET
heterogeneity in textural features for delineation of
functional volumes and partial volume correction (PVC)
also in esophageal cancer [24]. Tixier et al. evaluated the

reproducibility of heterogeneity measurements on double-
baseline [18F]FDG PET scans again in esophageal cancer
[19]. Galavis et al. studied the variability of the textural
features in PET images due to different acquisition
modes and reconstruction parameters for a cohort
containing a wide range of cancers [25]. Van Velden
et al. assessed the impact of reconstruction methods and
delineation on the repeatability of texture features in
nonsmall cell lung cancer (NSCLC) FDG PET/CT
studies [26]. Vallieres et al. analyzed the influence of
discretization on the predictive value of radiomic features
in FDG PET and MRI scans of soft tissue sarcomas [27].
In addition, Willaime et al. assessed the repeatability of
texture descr ip tors in tes t - re tes t 3 ′ -dexoy-3 ′ -
[18F]fluorothymidine ([18F]FLT) PET scans of breast
cancer prior to therapy [28].

In the present work, we focus on nasopharyngeal
carcinoma, including both [18F]FDG and [11C]choline
imaging. In routine clinical practice, reconstruction and
post-smoothing parameters are commonly fixed. There is
significantly more space for varying parameters in
image analysis and quantification, including image
delineation/segmentation and discretization, so we have
focused on the latter aspects. Specifically, there is
increasing interest in the use of automatic segmentation
for routine clinical assessment [29]. Furthermore, the
calculation of texture features is also affected by
discretization (the bin size of SUV range). By using
smaller bin size, the results will be more accurate yet
computationally intensive. To the best of our knowl-
edge, the effects of delineation/segmentation as well as
discretization on the robustness of high-throughput
radiomic features from imaging using different PET
tracers have not been evaluated together. Robustness
analysis for nasopharyngeal carcinoma also appears
completely absent.

The objective of the present work was therefore to
evaluate the impact of segmentation and gray-scale
discretization on radiomic features in both [18F]FDG
and [11C]choline PET images of nasopharyngeal carci-
noma. The consensus of three expert physicians for
delineation was used as reference. The following were
also adopted: 41, 50, and 70 % SUVmax threshold, with
background correction, Nestle’s, gradient-based water-
shed, and region growing methods. Subsequently, the
segmented tumors were discretized with a fixed bin size
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in units of SUV (i.e., 0.05, 0.1, 0.2, 0.5, 1). A total of
88 radiomic features were evaluated, including 31
features based on SUV (intensity), shape, and histogram,
as well as 57 second- and higher-order textural features.

Materials and Methods

Patients and [18F]FDG and [11C]Choline PET/CT
Protocols

Forty patients (including 34 men and 6 women, with a mean age of
46 years [range, 17–75 years]) with nasopharyngeal carcinoma
were enrolled in this study. All of the patients were diagnosed by
histopathology with nonkeratinizing undifferentiated carcinoma.

All examinations were performed on the GE Discovery LS PET/
CT scanner complying with the Society of Nuclear Medicine and
Molecular Imaging (SNMMI) procedure guidelines [30] for tumor
PET imaging at the Nangfang Hospital of Southern Medical
University at Guangzhou, Guangdong. All patients underwent
fasting for at least 6 h prior to tracer injection.

Among the 40 patients, 9 patients (including seven men and two
women, with a mean age of 50.13 years [range, 40–75 years])
underwent additional [11C]choline scan on a different day. The
maximum time interval between the two tracer studies of each
patient was 3 days (more detailed time intervals were given in
supplemental material Table 2), and no treatment was performed
between the two scans. About 60 min (59 ± 3 min, range [53–
62 min]) after the intravenous injection of 315–511 MBq (8.49–
13.81 mCi) of [18F]FDG (∼150 μCi/kg of body weight), whole-
body PET/CT was performed. The patients also underwent regional
PET/CT of the head and neck at approximately 10 min (11 ± 2 min,
range [7–13 min]) after the intravenous injection of 370–740 MBq
(10.0–20.0 mCi) of [11C]choline, as described in [7].

PET images were reconstructed using standard ordered-subset
expectation maximization (OSEM) with four iterations and 16
subsets, PET image voxel size of 4 × 4 × 4.25 mm3, and matrix size
of 128 × 128 and then were interpolated to the same resolution as
CT voxel size of 0.98 × 0.98 × 2 mm3 and matrix size of 512 × 512,
and the CT scans (80 mA, 140 kVp) were used for attenuation
correction [31]. The body weight SUVs were calculated according
to the following equation:

SUV g=mLð Þ ¼ tissueactivity Bq=mLð Þ
injecteddose Bqð Þ=bodyweight gð Þ ð1Þ

where the tissue activity was decay-corrected to account for the
time elapsed between injection and acquisition.

Tumor Segmentation

Seven tumor segmentation methods were considered in the present
study. Each lesion was first delineated using manual segmentation
by three expert physicians on the [18F]FDG and [11C]choline-PET/
CT images, respectively, and the consensus of three observers was
used for subsequent analysis.

The three other methods were 41, 50, and 70 % of SUVmax

threshold with background correction as follows [32]:

Threshold ¼ T � SUVmax þ SUVbackground

� � ð2Þ

where T is the relative threshold, and SUVbackground was obtained
from normal brain region with a box size of 64 × 64.

Nestle’s method [33] was also implemented using an adaptive
threshold as described in Eq. 3:

Threshold ¼ β � SUVmean 70%SUVmax
þ SUVbackground ð3Þ

where β = 0.15, SUVmean 70%SUVmax
represents the mean SUV of a

region within all pixels, which are greater than or equal to 70 %
maximum SUV, and SUVbackground was also obtained from normal
brain region with a box size of 64 × 64.

In addition, the gradient-based watershed method was used via
the MITK 2.4.0.0 win64 software [34], the last method was region
growing [35], and the result was manually modified as necessary.

Feature Extraction

For each volume of interest (VOI), a total of 88 radiomic
features were extracted in Matlab R2012a (The MathWorks
Inc.) using an available radiomic analysis package (https://
github.com/mvallieres/radiomics/) and software developed in-
house, including 22 first-order intensity features, 9 shape
features, and 57 second- and higher-order textural features,
describing the intensity and spatial distribution of radiotracer
uptake. The detailed mathematical definitions are provided in
supplementary appendix A.

First-Order Statistical Features

First-order statistical features were based on the histogram of
global-scale radiotracer uptake intensity distribution [36]. Among
which, SUVmax and SUVmean were routinely used clinically, and
SUVpeak was defined as the maximum average SUV within a small
fixed-size (3 × 3 × 3) volume of interest centered on the SUVmax of
the tumor [37]. Total lesion glycolysis (TLG) defined as the
product of tumor volume and SUVmean, the variance of all voxel
SUV values (SUVvar), the sum of all voxel SUV values squared
(SUVenergy), and area under the curve of the cumulative SUV-
volume histogram (AUC-CSH) were also considered. In addition,
the maximum, mean, minimum, median, range, mean absolute
deviation (MAD), standard deviation (STD), and root mean square
(RMS) of intensity value were also used. Furthermore, mean,
variance, skewness, kurtosis, energy, and entropy of histogram with
100 bins in this study were extracted.

Shape Geometric Features

Shape geometric features [27, 36] described the shape and size of
the volume of interest. These included the following: metabolically
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active tumor volume (MATV), the ellipsoid that best fits the tumor
region (eccentricity), ratio of the number of voxels in the tumor
region to the number of voxels in the 3D convex hull of the tumor
region (solidity), percent inactive (PI) tumor, surface area of tumor
volume (SurfaceA), surface to volume ratio (SVratio), compact-
ness, and sphericity (details in supplement).

Textural Features

To calculate the remaining 57 texture features, all volumes with
voxel size of 0.98 × 0.98 × 2 mm3 were first isotropically resampled
to initial in-plane resolution with a voxel size of 0.98 × 0.98 ×
0.98 mm3 using cubic interpolation [27] and the VOI SUV range
was then divided into a fixed bin size B (i.e., 0.05, 0.1, 0.2, 0.5, 1)
in units of SUV as follows [38]:

SUVDis xð Þ ¼ SUV xð Þ
B

� �
−min

SUV xð Þ
B

� �� �
þ 1 ð4Þ

where SUV(x) is the original SUV of voxel x and SUVDis(x) is the
resampled value of voxel x. The discretization step is necessary to
generate occurrence/probability matrices, whose sizes (defined by
the maximum SUVDis(x)) highly impact computation and are used
to reduce image noise and generate a constant intensity resolution
so that textural features from different patients are comparable [18].

Four types of matrices revealing spatial distribution of
radiotracer uptake were computed from each VOI: the second-
order gray-level co-occurrence matrix (GLCM) [39], counting
the number of times of pairwise arrangement of voxels in 13
directions of a 3D space; the higher-order gray-level run
length matrix (GLRLM) [40], in which its each element
represents the number of occurrence of runs with certain gray
level and certain run length in 13 directions of a 3D space;
the gray-level size zone matrix (GLSZM) [39], describing the
number of a certain size zone having same intensity within 26
connected neighbors in a 3D space; and the neighborhood
gray-tone different matrix (NGTDM) [41], characterizing the
difference between a center voxel and its 26 connected
neighbors. Subsequently, 57 textural features were extracted
from these four matrices; thus, in total, 88 features were
adopted in this study. Table 1 lists the 88 extracted features.
Figure 1 illustrates, for [18F]FDG PET/CT image, the steps of
tumor segmentation, discretization, feature extraction, and
robustness analysis. The same procedure was also performed
on [11C]choline PET/CT images. Robustness analysis is
discussed next.

Statistical Analysis

In order to evaluate the robustness of features due to different
segmentation and discretization methods, the intraclass correla-
tion coefficient (ICC) [42] was adopted and defined as follows:

ICC ¼ BMS‐RMS

BMSþ n−1ð Þ � RMS
ð5Þ

where BMS and RMS represent the between-subjects and residual
mean squares and n is the number of segmentation methods or
discretization bin size types.

For each feature, intersegmentation (expert physician, 41, 50,
and 70 % SUVmax thresholding with background correction, as well
as Nestle’s method, gradient-based watershed method, and region
growing method) ICC was computed with a fixed bin size of 0.1,
because there was no obvious difference between features extracted
with 0.1 and 0.05 bin sizes. Correspondingly, interdiscretization
(0.05, 0.1, 0.2, 0.5, 1 bin sizes) ICC of the 57 second- and higher-
order features was computed for the case of manual segmentation
by an expert physician.

Results

Impact of Segmentation

Figure 2a depicts the ICC scatter plot for all features
extracted from [18F]FDG and [11C]choline images with
seven different segmentation methods. Forty-four (50 %)
features extracted from [18F]FDG have ICC higher than 0.8,
while 55 (62 %) features obtained from [11C]choline have
ICC higher than 0.8. Table 2 lists 31 features obtained from
both [18F]FDG and [11C]choline having ICC higher than 0.8
for segmentation.

To evaluate the robustness of different types of features
with respect to segmentation, we show the ICC box plot of
six types of features for [18F]FDG (Fig. 3a) and [11C]choline
(Fig. 3b). GLRLM features have the best performance on
[18F]FDG (a narrow range of ICC close to 1), while GLCM
and NGTDM perform best on [11C]choline. The first-order
and shape features perform worst (a wide range of ICC from
0.1 to 1) on both [18F]FDG and [11C]choline.

Impact of Discretization

Discretization is necessary for calculating the 57 textural
features derived from GLCM, GLRLM, NGTDM, and
GLSZM. We chose manually segmented tumors to analyze
the impact of discretization bin size (i.e., 0.05, 0.1, 0.2, 0.5,
and 1) on these features. Figure 2a depicts the ICC scatter
plot for 57 features extracted from [18F]FDG and [11C]cho-
line images with all different discretization bin sizes.
Thirteen (23 %) features extracted from [18F]FDG had ICC
higher than 0.8, and for [11C]choline, this was the case with
12 (21 %) features. Of these, ten features were shared for
both [18F]FDG and [11C]choline resulting in ICC ≥0.8, as
listed in Table 3.

Figure 4 depicts the ICC box plots for the four types of
features (GLCM, GLRLM, GLSZM, and NGTDM) on
[18F]FDG and [11C]choline images. Most features show a
wide range of ICC with a median value smaller than 0.5,
especially for GLSZM features, which results in the smallest
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ICC with a median value smaller than 0.2 and a maximum
value smaller than 0.6.

Simultaneous Feature Robustness
for Segmentation and Discretization

For the 57 second- and higher-order textural features,
Fig. 5 plots ICC of segmentation versus discretization in
the cases of [18F]FDG (Fig. 5a) and [11C]choline
(Fig. 5b), with each dot representing a specific feature.

In the case of [18F]FDG, eight features exhibited
robustness wherein ICC of segmentat ion and
discretization both exceeded 0.8. In the case of [11C]cho-
line, this was the case for 11 features. Segmentation ICC
for most features showed a narrower distribution in the
range of 0.6 to 1 for two tracers, while discretization
ICC distribution spanned the entire range of 0 to 1.
Two-sample Student’s t test applied to ICC of these 57
features showed that segmentation ICC values were
significantly higher than discretization ICC values in
both [18F]FDG and [11C]choline images (p G 0.0001).

Table 1. Features extracted from SUV, shape, histogram, and textural matrixes

Type (order) Features

SUV intensity histogram (first) 1. SUVmax 2. SUVmean 3. SUVpeak

4. SUVstd 5. SUVvar 6. SUVenergy

7. AUC_CSH 8. Max_intensity 9. Mean_intensity
10. Min_intensity 11. Median_intensity 12. Range_intensity
13. MAD_intensity 14. STD_intensity 15. RMS_intensity
16. Mean_hist 17. Variance_hist 18. Skewness_Hist
19. Kurtosis_Hist 20. Energy_Hist 21. Entropy_Hist
22. TLG

Shape (first) 23. MATV 24. Eccentricity 25. Solidity
26. PI 27. SurfaceA 28. SVratio
29. Compactness1 30. Compactness2 31. Sphericity

GLCM (second) 32. Energy_GLCM 33. Entropy_GLCM 34. DifEntropy_GLCM
35. SumEntropy_GLCM 36. Variance1_GLCM 37. Variance2_GLCM
38. SumVariance_GLCM 39. MaxPossibility_GLCM 40. Contrast_GLCM
41. Dissimilarity_GLCM 42. Homogeneity1_GLCM 43. Homogeneity2_GLCM
44. Correlation1_GLCM 45. Correlation2_GLCM 46. AutoCorrelation_GLCM
47. ClusterPro_GLCM 48. ClusterShade_GLCM 49. ClusterTen_GLCM
50. IMC1_GLCM 51. IMC2_GLCM 52. InvDifMoment_GLCM
53. IDMN_GLCM 54. IDN_GLCM 55. SumAverage1_GLCM
56. SumAverage2_GLCM 57. Agreement_GLCM

GLRLM (higher) 58. Short run emphasis (SRE_GLRLM)
59. Long run emphasis (LRE_GLRLM)
60. Gray-level nonuniformity (GLN_GLRLM)
61. Run length nonuniformity (RLN_GLRLM)
62. Run percentage (RP_GLRLM)
63. Low gray-level run emphasis (LGRE_GLRLM)
64. High gray-level run emphasis (HGRE_GLRLM)
65. Short run low gray-level emphasis (SRLGE_GLRLM)
66. Short run high gray-level emphasis (SRHGE_GLRLM)
67. Long run low gray-level emphasis (LRLGE_GLRLM)
68. Long run high gray-level emphasis (LRHGE_GLRLM)
69. Gray-level variance (GLV_GLRLM)
70. Run length variance (RLV_GLRLM)

GLSZM (higher) 71. Small zone emphasis (SZE_GLSZM)
72. Large zone emphasis (LZE_GLSZM)
73. Gray-level nonuniformity (GLN_GLSZM)
74. Zone-size nonuniformity (ZSN_GLSZM)
75. Zone percentage (ZP_GLSZM)
76. Low gray-level zone emphasis (LGZE_GLSZM)
77. High gray-level zone emphasis (HGZE_GLSZM)
78. Small zone low gray-level emphasis (SZLGE_GLSZM)
79. Small zone high gray-level emphasis (SZHGE_GLSZM)
80. Large zone low gray-level emphasis (LZLGE_GLSZM)
81. Large zone high gray-level emphasis (LZHGE_GLSZM)
82. Gray-level variance (GLV_GLSZM)
83. Zone-size variance (ZSV_GLSZM)

NGTDM (higher) 84. Coarseness_NGTDM 85. Contrast_NGTDM 86. Busyness_NGTDM
87. Complexity_NGTDM 88. Strength_NGTDM

GLCM gray-level co-occurrence matrix, GLRLM gray-level run length matrix, GLSZM Gray-level size zone matrix, NGTDM neighborhood gray-tone
difference matrix
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Figure 6 lists the ICC values of the individual 57
features for both tracers. It is seen that for GLRLM,
GLSZM, and NGTDM features, ICC values for
discretization are most commonly smaller than those of
segmentation. However, in the case of GLCM features,
this is not the case, and some exhibit high ICC values
for both segmentation and discretization. In fact, except
for those features of GLCM, in the case of [18F]FDG,
only one feature of NGTDM (Coarseness) and one
feature of GLRLM (RP) showed both ICC values greater
than 0.8, and in [11C]choline, only one NGTDM feature
(Coarseness) exhibited a similar pattern. Finally, Table 4
lists the six features obtained from both [18F]FDG and
[11C]choline having ICC higher than 0.8 for both
segmentation and discretization, five of which were
GLCM features (SumEntropy, Entropy, DifEntropy,
Homogeneity1, and Homogeneity2) and one of which
was an NGTDM feature (Coarseness).

Discussion
An increasing number of reports have investigated the use of
radiomic features in oncologic [18F]FDG PET imaging.
Radiomic features can reflect the heterogeneity of FDG
uptake and have the potential to enhance prediction of
response to chemoradiotherapy [43], patient outcome [13],
and histopathology [44]. At the same time, radiomic features
are influenced by different imaging processes, and there
have been some efforts, as also mentioned in the introduc-
tion, to investigate sensitivity of radiomic features to
different parameters/modes, data acquisition, reconstruction,
and analysis [19, 23–26, 45]. So far, to our knowledge, there
have been no studies of robustness of radiomic features in
PET imaging of nasopharyngeal carcinoma or, in fact, any
radiomic analysis for [11C]choline PET.

In the present study, the impacts of different segmen-
tation and discretization methods on radiomic features for

Fig. 1 General framework applied in this study. a Original PET image (dashed box represents rough initial region around the
tumor). b Slicewise tumor segmentation and volume rendering. c Resampling of the segmented tumor. d Feature extraction. e
Robustness analysis via the intraclass correlation (ICC).

Fig. 2 Scatter plot illustrating the ICC for a all 88 features extracted from [18F]FDG (red circles) and [11C]choline (blue blocks)
images involving different segmentations. b Fifty-seven texture features affected by different discretization bin sizes (i.e., 0.05,
0.1, 0.2, 0.5, and 1) on manually segmented [18F]FDG (red circles) and [11C]choline (blue blocks) images (features on x-axis were
placed according to the feature index of Table 1) (Color figure online).
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both [18F]FDG and [11C]choline PET images of naso-
pharyngeal carcinoma were assessed. Our results show
that the segmentation methods have relatively smaller
effect on radiomic features relative to discretization
methods for both [18F]FDG and [11C]choline PET
imaging. This was demonstrated in a different context
of [18F]FDG PET scans of esophageal cancer [23]. It is
also worth noting that the effects of modifying resam-
pling bin widths on features for [18F]FDG and [11C]cho-
line imaging are quite similar (as shown in Fig. 4).
However, for different segmentation methods, more
features extracted from [11C]choline PET exhibited ICC
value equal or greater than 0.8 than features derived
from [18F]FDG PET as shown in Fig. 3.

Overall, features derived from GLCM and NGTDM
show good robustness with respect to both segmentation
and discretization, and these can be pursued for transla-
tion to clinical applications: namely, SumEntropy, En-
tropy, DifEntropy, Homogeneity1, Homogeneity2, and
Coarseness (as listed in Table 4). Pearson correlation coefficient
was used to assess the correlation of these features as shown in
supplemental material Table 1. Strong correlations were found
among the Entropy_GLCM, DifEntropy_GLCM, SumEntropy_
GLCM, Homogeneity1_GLCM, and Homogeneity2_GLCM.
However, Coarseness displayed poor correlation (−0.17–0.23)
with other features, indicating that it contained different

information with other features. Some of these features have also
been reported as robust to image processing and associated with
therapy response on [18F]FDG PET images. For instance,
Homogeneity_GLCM (Homogeneity2 in the present study) also
presented small variability between different segmentation
methods [23], was very robust with respect to delineation and
PVC [24], and depicted good reproducibility on test-retest scans
[19]. This also can explain the enhanced performance of such
metrics in correlation with clinical measures [46]. We should also
note that a given same name of a texture feature in different
publications does not always correspond to the same definition
[47]. Therefore, we considered a wider range of texture feature
definitions in the present work. Specifically, variance, homoge-
neity, correlation, and SumAverage each included two different
definitions (as listed in Table 1 and described in supplemental
material). Both Homogeneity1 and Homogeneity2 depicted good
robustness to segmentation and discretization (as listed in Table 4).

Though many features were not robust with respect to
discretization in our study, some of them were reported as
potentially useful for clinical applications. For instance, a study
[13] reported that energy was significantly associated with
treatment failure in cervical cancer (AUC= 0.72), while contrast
was significantly associated with overall survival in head and
neck cancer (AUC= 0.80), and yet, energy and contrast were
highly influenced by discretization in our study (ICC = 0.18 and

Table 2. Thirty-one features (of total 88) having segmentation ICC ≥0.8 for
both [18F]FDG and [11C]choline images

Type Features [18F]FDG [11C]choline

SUV and
intensity (8)

SUVmax 1.00 1.00
Max_intensity 1.00 0.99
SUVpeak 0.98 1.00
SUVenergy 0.98 0.96
SUVmean 0.99 0.94
TLG 0.94 0.90
SUVstd 0.85 0.92
RMS_intensity 0.83 0.80

Shape (1) MATV 0.80 0.80
GLCM (11) Entropy_GLCM 0.94 0.96

SumEntropy_GLCM 0.94 0.95
InvDifMoment_GLCM 0.94 0.92
DifEntropy_GLCM 0.90 0.95
Homogeneity1_GLCM 0.94 0.92
Homogeneity2_GLCM 0.94 0.90
SumAverage1_GLCM 0.90 0.93
Agreement_GLCM 0.95 0.86
SumAverage2_GLCM 0.87 0.94
Dissimilarity_GLCM 0.87 0.92
Energy_GLCM 0.86 0.90

GLRLM (5) LRHGE_GLRLM 0.91 0.96
SRE_GLRLM 0.93 0.91
RP_GLRLM 0.95 0.88
GLN_GLRLM 0.94 0.85
LRE_GLRLM 0.93 0.84

GLSZM (3) LZHGE_GLSZM 0.96 0.96
SZE_GLSZM 0.93 0.92
ZP_GLSZM 0.94 0.91

NGTDM (3) Strength_NGTDM 0.88 0.93
Coarseness_NGTDM 0.86 0.81
Busyness_NGTDM 0.83 0.81

Fig. 3 Box plot comparing segmentation ICC of all types of
features on a [18F]FDG and b [11C]choline images (using 0.1
discretization bin size for second- and higher-order texture
features).
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0.16, respectively). As such, texture features may work very well
using a certain bin size, and nonrobustness with respect to bin
size does not necessarily render them useless for clinical
applications if appropriate settings/parameters are consistently
observed. However, this is less likely for segmentation, as it is
more likely to vary in the hands of different users and institutions.

As a point of caution, it must be emphasized [13, 48, 49]
that aside from image processing parameters, performance
and robustness of radiomic features may also depend on
specific clinical context and variables, which can have a
confounding effect. This includes the impact of volume [50],

the partial volume effect [51], etc. As a result, closer
attention to standardization of PET acquisition protocols
and pre-processing steps, while accounting for possible
clinical confounding effects, is being sought in efforts by
the community to properly account for these related issues.

Since some of the radiomic features extracted from
[18F]FDG have presented ability to assess response to
therapy in other works [43, 52], it is plausible that
features extracted from [11C]choline images may also

Table 3. Ten features (of total 57) having discretization ICC ≥0.8 for both
[18F]FDG and [11C]choline images

Type Features [18F]FDG [11C]choline

GLCM (9) DifEntropy_GLCM 0.98 1.00
Correlation1_GLCM 0.98 1.00
SumEntropy_GLCM 0.96 1.00
Entropy_GLCM 0.93 1.00
Variance1_GLCM 0.91 0.97
IDMN_GLCM 0.91 0.96
IDN_GLCM 0.90 0.96
Homogeneity1_GLCM 0.92 0.92
Homogeneity2_GLCM 0.89 0.84

NGTDM (1) Coarseness_NGTDM 0.96 0.99

Fig. 4 Box plot comparing discretization ICC values of four
types of features on manually segmented a [18F]FDG and b
[11C]choline images.

Fig. 5 Scatter plot of ICC of segmentation (Seg) versus
discretization (Dis) on a [18F]FDG and b [11C]choline images.
The yellow region defines features depicting both ICC (Seg)
and ICC (Dis) equal or higher than 0.8.
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associate better with response of therapy, which we plan
to pursue in future work for different types of cancers.
Another potential area for future investigation is to

include other more advanced segmentation methods [53–
55] that are better designed for and applicable to
heterogeneous tumors.

Fig. 6 Bar chart illustrating 57 features for segmentation and discretization on a [18F]FDG and b [11C]choline images.

Table 4. Eight features having ICC ≥0.8 for both segmentation and discretization in both [18F]FDG and [11C]choline images

Type Features Segmentation Discretization

[18F]FDG [11C]choline [18F]FDG [11C]choline

GLCM (5) SumEntropy_GLCM 0.94 0.95 0.96 1.00
Entropy_GLCM 0.94 0.96 0.93 1.00
DifEntropy_GLCM 0.90 0.95 0.98 1.00
Homogeneity1_GLCM 0.94 0.92 0.92 0.92
Homogeneity2_GLCM 0.94 0.90 0.89 0.84

NGTDM (1) Coarseness_NGTDM 0.86 0.81 0.96 0.99
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Conclusion
This study analyzed the robustness of a wide range of
radiomic features in [18F]FDG and [11C]choline PET images
of nasopharyngeal carcinoma with respect to different
segmentation and discretization methods. Discretization has
larger effects on feature variability than segmentation in both
[18F]FDG and [11C]choline PET, and features extracted from
[11C]choline PET are more robust than [18F]FDG PET with
respect to segmentation. Discretization has very similar
effects on features computed from [18F]FDG versus
[11C]choline PET. Further investigations, including robust-
ness and therapy response prediction in more types of
cancers and radiotracers, are needed to enable radiomic
standardization and promote successful clinical use of
radiomic features.
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