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Abstract
Purpose: To assess (1) the repeatability and (2) the impact of reconstruction methods and
delineation on the repeatability of 105 radiomic features in non-small-cell lung cancer (NSCLC)
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomorgraphy/computed tomogra-
phy (PET/CT) studies.
Procedures: Eleven NSCLC patients received two baseline whole-body PET/CT scans. Each
scan was reconstructed twice, once using the point spread function (PSF) and once complying
with the European Association for Nuclear Medicine (EANM) guidelines for tumor PET imaging.
Volumes of interest (n=19) were delineated twice, once on PET and once on CT images.
Results: Sixty-three features showed an intraclass correlation coefficient≥ 0.90 independent of
delineation or reconstruction. More features were sensitive to a change in delineation than to a
change in reconstruction (25 and 3 features, respectively).
Conclusions: The majority of features in NSCLC [18F]FDG-PET/CT studies show a high level of
repeatability that is similar or better compared to simple standardized uptake value measures.

Key words: PET/CT, Repeatability, Radiomics, Tracer uptake heterogeneity, Non-small-cell
lung cancer (NSCLC)

Introduction
Lung cancer is the leading cause of cancer death, with more
than 1.6 million deaths worldwide in 2012 [1]. About 80–
85 % of the cases are classified as non-small-cell lung cancer
(NSCLC) [2]. Early assessment of response to treatment
(e.g., radiotherapy and/or chemotherapy) is essential to
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determine which patients will benefit from treatment and
which may require treatment adaptations, paving the way for
personalized cancer therapies [3]. Several studies have
demonstrated the potential of positron emission
tomography/computed tomography (PET/CT) to assess the
effects of treatment for NSCLC patients early using 2-
deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) [4–7]. Although
the benefits of new response metrics such as the metabol-
ically active tumor volume (MATV) and total lesion
glycolysis (TLG) are currently under investigation, response
to treatment is predominantly measured using the maximum
standardized uptake value (SUVmax) obtained within a tumor
[8]. However, SUVmax is not capable to capture all forms of
responses accurately. For instance, SUVmax can only
measure response accurately if there is a global change in
tracer uptake, i.e., in absence of a spatially heterogeneous
response [9]. In addition, since SUVmax only involves a
single voxel, it is inherently unable to capture intratumor
heterogeneity and unable to measure a change in the shape
or volume of (the metabolically active part of) the tumor. In
recent years, various advanced quantitative imaging features,
so-called radiomic features, have been proposed and
investigated for their potential to quantify tracer uptake,
tracer uptake heterogeneity, and/or (metabolically active)
tumor geometry [9–21]. The term radiomics refers to studies
that extract a large amount of advanced quantitative imaging
features from medical imaging studies, e.g., PET/CT studies,
as a basis for characterizing a specific aspect of patient
health [22–24].

Several challenges have been identified that need to be
addressed before radiomic features can be used in clinical

practice, including the standardization and robustness of
selected features [21]. For standardization, it is of utmost
importance to identify which radiomic features are sensitive
to a change in reconstruction settings [25–27] or to a change
in delineation [11, 26]. For instance, radiomic features that
can characterize tracer uptake heterogeneity may treat both
partial volume effects and noise as heterogeneity [9].
Although it has been shown that several radiomic features
are not sensitive to partial volume effects and noise when
extracted from PET/CT response data of esophageal carci-
noma patients [26], it has been shown that some features do
require image denoising and partial volume correction prior
to extraction [9, 26]. Recently, two studies [25, 27]
investigated the effects of different reconstruction settings
on the values obtained from various texture-based features
and indicated a need for standardization. Note that for
response monitoring studies, it is important to know whether
an observed change in tracer uptake, tumor geometry, or
tracer uptake heterogeneity is due to a true response or
methodological variation (i.e., biological, technical, or
observer variability). Therefore, it is essential to assess the
repeatability of these radiomic features. However, to the best
of our knowledge, the effects of reconstruction and
delineation on the repeatability of a large set of radiomic
features, including intensity-, shape-, and texture-based
features, have not yet been assessed.

Therefore, the aim of this study was to assess the
repeatability of various radiomic features in NSCLC
[18F]FDG-PET/CT studies, taking different reconstruction
settings and delineation methods into account. To assess the
impact of different reconstruction settings, PET data were
reconstructed twice using settings that either ensure harmo-
nization (i.e., complied with the European Association of
Nuclear Medicine (EANM) guidelines for tumor PET
imaging [28]) or are more state of the art (i.e., use of a
resolution model during image reconstruction). To assess the
impact of delineation, volumes of interest (VOIs) were
defined manually on (low-dose) CT images and semi-
automatically on PET images. CT-based delineation was
explored to illustrate the effects when using the anatomical
volume of a tumor, thereby potentially capturing a higher
level of tracer uptake heterogeneity within a VOI (e.g., by
the inclusion of necrotic areas) compared to semi-automatic
threshold-based isocontour methods on PET data.

Materials and Methods
Patient Data

Eleven NSCLC patients (Table 1) received double-baseline whole-
body [18F]FDG scans that were acquired on a time-of-flight (TOF)
PET/CT scanner (Philips Healthcare, Cleveland, OH). The time
interval between first and second baseline scans was less than
3 days (1.3 ± 0.5 days). This prospective study has been approved
by the institutional review board and is part of a study that has been
registered in the Dutch trial register (www.trialregister.nl;

Table 1. Patient demographics

Parameter Value

Gender
Male 7
Female 4

Age (year)
Median 61
Range 45–66

Weight (kg)
Median 76
Range 57–114

Stage
III B 4
IV 7

Histology
Adenocarcinoma 8
Squamous cell carcinoma 3

Type of lesion
Primary 6
Metastasis 13

Localization
Lung 5
Mediastinum 8
Hilum 2
Clavicular region 4

Lesion volume (ml)
Median 39
Range 18–702
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NTR3508). Informed consent was obtained from all individual
participants included in the study. Patients were included if they
were 18 years or older, were diagnosed with stage IIIB or IV of
NSCLC, had at least one lesion with a diameter larger than 3 cm,
and were able to remain supine for 60 min during acquisition.
Patients were excluded if they were pregnant or lactating, had
chemotherapy in the past 4 weeks, metal implants, a body weight of
more than 100 kg, or known diabetes mellitus type I or II.

Acquisition, Reconstruction, and Post-Processing

A static whole-body emission scan was started 1 h (61 ± 2 min)
after injection of [18F]FDG (263 ± 61 MBq). Prior to this emission
scan, a low-dose CT scan (120 kVp, 50 mAs) was acquired during
normal breathing. All PET data were normalized and corrected for
scatter and random events, dead time, attenuation, and decay and
reconstructed twice using vendor-recommended reconstruction
settings. All reconstruction settings utilize a blob-based TOF list-
mode-ordered subset expectation maximization algorithm with 3
iterations and 33 subsets [29]. The first reconstruction setting
applied an additional Gaussian filter in order to comply with the
EANM guidelines for tumor PET imaging [28]. The second
reconstruction setting applied an additional post-reconstruction
resolution recovery method, i.e., a maximum likelihood expectation
maximization deconvolution [30] that uses the spatially variant
point spread function (PSF) of the system, as implemented by the
PET/CT vendor. All resulting PET images have a matrix size of
144 × 144 voxels with a voxel size of 4 × 4 × 4 mm. After
reconstruction, PET image data were expressed in SUV by
normalizing voxel radioactivity concentrations [kBq · ml−1] to
injected dose of [18F]FDG [MBq] and the patient’s body weight
(kg). All CT images have a matrix size of 512 × 512 voxels with a
voxel size of 1.2 × 1.2 × 5 mm and were rescaled to the dimensions
of the PET images prior to delineation. In this way, voxel tissue
fraction effects within the delineations are avoided and calculations

are performed using the original non-rebinned PET images, as
recommended by Uniform Protocols for Imaging in Clinical Trials
(UPICT) working group [31].

Delineation

Nineteen VOIs were delineated for lesions larger than 10 ml on
both PET and low-dose CT images. CT-based VOIs were drawn
manually upon consensus between an experienced physician, a
physician in training, and a medical physic expert, using the
medical history and previously acquired contrast-enhanced CT
images as prior knowledge. PET-based VOIs were drawn semi-
automatically by using an isocontour method that applies a
threshold of 50 % of the 3D peak SUV (SUVpeak, obtained using
a sphere of 12-mm diameter) corrected for local background [12].
PET-based VOIs were drawn twice, i.e., both on PSF-based and
EANM-compliant images.

Radiomic Features

For each VOI, 105 radiomic features were determined. These
features can be divided into the following three groups (Table 2):
intensity (n= 27), shape (n= 9), and texture (n = 69). The textural
features were based on fractals, grey-level co-occurrence matrices
(GLCMs), or grey-level run-length matrices (GLRMs). Features
derived from GLCM and GLRM were calculated by averaging the
obtained values over 13 symmetric directions in three dimensions
[11]. For those features that require SUV discretization (i.e.,
resampling of the image intensity values), two types of discretiza-
tion were used [21], 64 grey-level bins [14, 18] or a fixed bin size
of 0.25 g/ml [21]. A fixed bin size of 0.25 g/ml represents the mean
SUVmax for all 19 lesions (18 and 14 g/ml when obtained from
PSF-based and EANM-compliant images, respectively) divided by
64 bins.

Table 2. Implemented radiomic features with corresponding literature references describing the features

Group No. of
features

Names of radiomic features Described
in

Intensity 27 Maximum standardized uptake value (SUVmax), mean SUV (SUVmean), mean SUV of a sphere
of 12-mm diameter (SUVpeak), coefficient of variation (COV), total lesion glycolysis (TLG), mean
SUV of maximum SUV and the six adjacent voxels (SUVstar), minimum SUV (SUVmin), range
of SUV (SUVrange), median SUV (SUVmedian), standard deviation (SD), skewness, kurtosis, mean
absolute deviation, median absolute deviation, mean Laplacian, total energy, variance, root-mean-
square (RMS), Moran’s I, Geary’s C, uniformitya, entropya, local entropya, and area under a
cumulative (AUC) SUV-volume histogram

[9–14]

Shape 9 Compactness A, compactness B, sphericity, disproportion, surface area, metabolically active tumor
volume (MATV) or anatomical volume (AV), surface to volume ratio (S2V), surface of an equivolumetric
sphere to volume ratio (S2Veq), and radius of an equivolumetric sphere

[11]

Texture 69 Based on fractals (n = 3): fractal dimension (FD), abundance, and lacunarity;
Based on grey-level co-occurrence matricesa (n = 44): autocorrelation, cluster prominence, cluster
shade, cluster tendency, contrast, correlation, difference entropy, dissimilarity, energy, entropy,
homogeneity 1, homogeneity 2, informational measure of correlation 1 (IMC1), IMC2, inverse
difference moment normalized (IDMN), inverse difference normalized (IDN), inverse
variance, maximum probability, sum average, sum entropy, sum variance, and variance;

Based on grey-level run-length matricesa (n = 22): grey-level non-uniformity (GLN), high-grey-level
run emphasis (HGLRE), long-run emphasis (LRE), long-run high-grey-level emphasis (LRHGLE),
long-run low-grey-level emphasis (LRLGLE), low-grey-level run emphasis (LGLRE), run length
non-uniformity (RLN), run percentage (RP), short-run emphasis (SRE), short-run high-grey-level
emphasis (SRHGLE), and short-run low-grey-level emphasis (SRLGLE)

[11, 15, 16]

aTwo types of SUV discretization were used, 64 grey-level bins or a fixed bin size of 0.25 g/ml
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Statistics

To assess the level of repeatability, mean relative test-retest
variability (TRTr, in %) was calculated for all 105 radiomic
features by Eq. (1).

TRTr ¼ 1

n
�
X n

i¼1

test‐retest

mean test; retestð Þ � 100% ð1Þ

where n is the number of lesions. In addition, mean absolute TRT
(TRTα, in %) was calculated by TRTa = |TRTr|. A TRT closer to
zero indicates a higher level of repeatability. In addition, intraclass
correlation coefficients (ICCs) were calculated between the values
obtained from first and second baseline scans using a one-way
random single-measure model (Real Statistics Resource Pack
release 3.5; www.real-statistics.com). ICC does not only take the
variance within subjects but also variance between subjects into
account. An ICC of 1 indicates perfect reliability. For both TRTr

and ICC, 95 % confidence intervals were calculated. A related-
sample Wilcoxon signed-rank test was applied to ICC, TRTr, and
TRTa of all features to assess whether a change in reconstruction
setting or delineation significantly changed ICC, TRTr, or TRTa. P
values less than 0.05 were considered significant.

A threshold of 0.90 for ICC was used to group features into sets
of features showing an overall good, variable, or overall poor
performance. This threshold is in line with the ICC found in
literature for SUVmax [11, 13, 14]. An overall good performance
means that all four possible combinations of delineation and
reconstruction algorithm resulted in an ICC ≥ 0.90, whereas a
variable performance means that at least one but not all combina-
tions resulted in an ICC ≥ 0.90. An overall poor performance

indicates that all combinations resulted in an ICCG 0.90. Features
were considered to be sensitive to an applied delineation and/or
selected reconstruction algorithm when the absolute change in ICC
was at least 0.03. For these features, the best performing delineation
and/or reconstruction algorithm was determined.

Results
Most intensity-, shape-, and texture-based features (98 %)
have a repeatability that is comparable to those seen for
simple SUV measures in literature (e.g., SUVmax, SUVmean,
and SUVpeak) (Supplemental Tables 1 to 12). When
compared to the ICC of SUVmean observed in this study,
37 % of the features showed an equal or better ICC for at
least one combination of delineation and reconstruction,
while 12 % of the features showed an equal or better ICC
independent of delineation and reconstruction. Figure 1
shows a typical example where the various reconstruction
settings and image types (e.g., functional or anatomical)
resulted in different VOI. A small but significant improve-
ment in median ICC was observed for features extracted
using CT-based delineation compared to those extracted
using PET-based delineation independent of the applied
reconstruction setting (from 0.960 to 0.962 and from 0.953
to 0.962 for EANM-compliant and PSF-based images,
respectively; Fig. 2). This is also reflected in a decrease in
the number of outliers and extreme cases (Table 3), derived
from the box plots (Fig. 2). In addition, a small but
significant improvement in median ICC was observed for

Fig. 1 Axial (left) and sagittal (right) PET/CT images of a typical NSCLC patient with (visually) rather heterogeneous [18F] FDG
uptake in the primary lung tumour. The black contours illustrate the various (CT- or PET-based) delineations. Rigid co-
registration was applied for illustration purposes only to co-register the second baseline scan onto the first baseline scan using
VINCI v4.23 (Max-Planck-Institute for Neurological Research, Cologne, Germany) (Color figure online).
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features extracted using EANM-compliant reconstruction
with CT-based delineation compared to those extracted
using PSF-based reconstruction with PET-based delineation
(from 0.953 to 0.962). All other differences in median ICC
were insignificant.

Sixty three out of 105 radiomic features showed a good
performance (i.e., ICC≥0.9) independent of the applied

delineation or selected reconstruction algorithm, while 40
features only showed a good performance for certain
combinations of reconstruction algorithm and/or delineation
(Fig. 3a). More features were sensitive to a change in
delineation than to a change in reconstruction (25 and 3
features, respectively), and 25 features were sensitive to a
change in both reconstruction and delineation. Only fractal
dimension and homogeneity 2 (obtained using 64 grey-level
bins) showed an overall poor performance. After excluding
these two features, the majority of the features showed less
than 0.03 difference in ICC for either applied delineation
and/or reconstruction (49 %; Fig. 4a). The best performance
was seen using CT-based delineation (32 %), followed by
EANM-compliant reconstruction or PET-based delineation
(both 17 %), and PSF-based reconstruction (10 %).

More than two thirds of the intensity-based features
(70 %) and one third of shape-based and texture-based
features show an overall good performance (56 and 57 %,
respectively; Fig. 3b). After excluding the features with an
overall poor performance, most intensity-based features had
a less than 0.03 difference in ICC for either applied
delineation and/or reconstruction (70 %). Most shape-based
features showed the best performance using PET-based
delineation (56 %), while most texture-based features
showed the best performance using CT-based delineation
(39 %; Fig. 4b).

The percentages of both GLCM-based and GLRM-based
features showing an overall good performance increased
when fixed bins were applied compared to 64 grey-level
bins (55 and 100 % vs 36 and 63 %, respectively; Fig. 3c, d).
After excluding those features showing an overall poor
performance, most features showed less than 0.03 difference
in ICC for either applied delineation and/or reconstruction,
except for GLCM-based features when 64 grey-level bins
were applied, showing the best performance using CT-based
delineation (62 %; Fig. 4c).

Discussion
The present study shows that the majority of radiomic
features show a high level of repeatability that is similar or
better compared to simple SUV measures such as SUVmean

in terms of ICC, TRTr, and TRTa [12, 32]. These results are
in line with three previous studies by Leijenaar et al. [11],
Tixier et al. [14], and Van Velden et al. [13], investigating
the repeatability of various radiomic features in NSCLC
patients, esophageal cancer patients, and patients with
colorectal liver metastases, respectively. Data presented in
these studies and the present study enable a preselection of
well-performing features per category in order to further
assess them for their clinical applicability.

To the best of our knowledge, this is the first study that
investigates the impact of various reconstructions and
delineations on the repeatability of several radiomic features,
including intensity-, shape-, and texture-based features.
However, this is not the first study that investigates the

Fig. 2 Box plots of a ICC, b TRT, and c TRT of radiomic
features extracted from EANM-compliant reconstruction with
(I) PET-based or (III) CT-based delineation or PSF-based
reconstruction using (II) PET-based or (IV) CT-based delin-
eation. Circles illustrate outliers, and stars illustrate extreme
cases. A bar indicates a statistically significant difference (p
valueG0.05).
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impact of reconstruction and delineation on radiomic
features. A previous study by Hatt et al. [26] investigated
the impact of reconstruction-based partial volume correction
and various PET-based delineation on radiomic features in
terms of therapy response prediction for esophageal cancer
patients, showing that the performance of radiomic features
were more dependent on delineation than on partial volume
correction (i.e., reconstruction settings). Two studies [25, 27]
investigated the effects of different reconstruction settings on
the values obtained from various texture-based features.
Galavis et al. [25] found that most features (80 %) showed a
large variation between values (930 %) when reconstruction
settings were varied. Yan et al. [27] showed that 5 to 56 %
of the features showed a large variation between values
(920 %) when reconstruction settings were varied and that
zone percentage, cluster shade, and skewness should be used
with caution. The level of features sensitive to the
reconstruction settings is expected to be different in the
present study, as the present study does not investigate
differences between values obtained from features extracted
from PSF-based and EANM-compliant reconstructed images
but investigates whether or not they show repeatable results.
Note that thresholds used in this study are arbitrary and only
intended to illustrate which features are sensitive to
delineation and/or reconstruction. Nonetheless, our study
confirmed that many texture-based features (36 %) were
sensitive to the selected reconstruction algorithm by showing
a change in repeatability (i.e., showing a more than 3 %
difference in ICC). In addition, we observed a large variation
in repeatability for skewness and cluster shade when
reconstruction settings were varied.

Recently, Leijenaar et al. [21] investigated the effects of SUV
discretizations on radiomic features and concluded that the
manner of SUV discretization (i.e., fixed bin size in units of
SUV or a fixed number of bins) had a crucial impact on the
values of various texture-based radiomic features and the
interpretation thereof. They suggest that using a fixed bin size
in units of SUV is more appropriate in a clinical response
monitoring setting as it can incorporate changes in SUV due to a
course of treatment. Our present study shows that using a fixed
bin size in units of SUV results in texture-based features that
show a better repeatability and a lower sensitivity to a change in
delineation and/or reconstruction compared to using a fixed
number of bins. A previous study [14] showed that 64 grey-level
bins are best suited for extraction of radiomic features when a
fixed number of bins is applied. This would, on average,
translate to 0.25 g/ml for the lesions in the present study.
However, a fixed bin size of 0.5 g/ml has been applied in a
previous publication [11], but no further motivation is provided.
A clinical study that includes outcome measures is required to
validate which fixed bin size is optimal in a clinical setting.
Nevertheless, this study confirms that, if a fixed bin size is best
suited for clinical response monitoring, a standardized method-
ology in texture analysis is needed to compare results in a
multicenter setting, i.e., by standardization of reconstruction
settings, delineations, and SUV discretization [18, 21, 33].T
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A limitation of this study is that the CT-based delineation is
obtained manually. Therefore, these results may to a small extent
be affected by inter-observer variability [11, 34]. Ideally, the
effects of inter-observer variability on our results should be

assessed by manual CT delineation by three observers. In this
study, we aimed to minimize the impact of inter-observer
variability by achieving consensus by means of discussion
between three experienced observers.

Fig. 3 Performance of radiomic features extracted from EANM-compliant or PSF-based reconstructed PET images using PET-
based or CT-based delineation. Performance is given for a all features; b intensity-based, shape-based, and texture-based
features; c GLCM-based and GLRM-based features using 64 grey-level bins; and d GLCM-based and GLRM-based features
using fixed bins.

Fig. 4 Combinations of delineation and reconstruction showing the best performance, given for a all features; b intensity-
based, shape-based, and texture-based features; c GLCM-based and GLRM-based features using 64 grey-level bins; and d
GLCM-based and GLRM-based features using fixed bins. Features that showed a poor performance were not included.
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Conclusion
In this paper, we report on the repeatability of radiomic
features for NSCLC [18F]FDG-PET/CT studies, showing
that many features have similar TRT and ICC performance
as more commonly used PET parameters, such as SUVmax,
SUVmean, and SUVpeak. Furthermore, PSF-based reconstruc-
tions do not necessarily result in improved repeatability of
radiomic features when compared to EANM-compliant
reconstructions. Performance of radiomic features depended
more on delineation method than on the applied reconstruc-
tion algorithm. CT-based delineation showed favorable
repeatabilities and ICCs for most radiomic features, except
for shape-based features for which PET-based delineation
resulted in better performance in terms of TRT and ICC.
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