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Abstract

Purpose: The purpose of the study was to compare image quality and quantitative accuracy of
positron emission tomography/magnetic resonance imaging (PET/MRI) and PET/computed
tomography (PET/CT) systems with time of flight PET gantries, using phantom and clinical studies.
Procedures: ldentical phantom experiments were performed on both systems. Calibration,
uniformity, and standardized uptake value (SUV) recovery were measured. A clinical PET/CT
versus PET/MRI comparison was performed using ['®FIfluoromethylcholine (['®F]FCH).
Results: Calibration accuracy and image uniformity were comparable between systems. SUV
recovery met EANM/EARL requirements on both scanners. Thirty-four lesions with comparable
PET image quality were identified. Lesional SUVmax differences of 4+26 % between PET/MRI
and PET/CT data were observed (R?=0.79, slope=1.02). In healthy tissues, PET/MRI-derived
SUVs were 16+11 % lower than on PET/CT (RP=0.98, slope=0.86).

Conclusion: PET/MRI and PET/CT showed comparable performance with respect to calibration
accuracy, image uniformity, and SUV recovery. ['®F]JFCH uptake values for both healthy tissues
and lesions corresponded reasonably well between MR- and CT-based systems, but only in
regions free of MR-based attenuation artifacts.
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has proven to be a valuable diagnostic tool by
combining in vivo metabolic and anatomic information
[1]. Recently, several hybrid PET/magnetic resonance

Introduction

Multimodality imaging has improved patient care over
the past decade. Non-invasive, integrated positron
emission tomography/computed tomography (PET/CT)
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imaging (PET/MRI) systems have become available
clinically [2]. Strengths of MRI include its high soft
tissue contrast, high spatial resolution, and lack of
exposure to ionizing radiation. General Electric (GE)
has built a tri-modality PET/CT and MRI system (tri-
modality, Discovery PET/CT 690 & 3T Discovery MRI
750) [3]. Using silicon photomultiplier tubes (SiPMTs),
GE also has developed a fully integrated PET/MRI
system that has time of flight (TOF) -capabilities.
However, this system still is a prototype and no
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(clinical) studies have been reported yet. Siemens has a
fully integrated PET/MRI (Biograph mMR, Siemens
Healthcare), which allows simultaneous PET and MRI
acquisitions [4], enabling a reduction of total scan time.
Philips has built a sequential PET and MRI system
(Philips Ingenuity TF PET/MRI), with TOF ability [5].

Although PET/CT was rapidly incorporated into routine
clinical practice, PET/MRI faces a number of technical
challenges. MRI requires well-controlled magnetic and radio
frequency (RF) fields [5]. However, PET photomultiplier
tubes (PMTs), which are needed to convert and amplify the
signal from scintillation crystals into an electronic signal [6],
do not function properly in a strong magnetic field.
Solutions to this have included physically separating PET
and MRI units [5] or using avalanche photodiodes (APDs),
which in contrast to PMTs are not affected by the magnetic
field [7]. APDs, however, have poorer timing resolution than
PMTs and consequently they have no TOF capability [8].
Recently, silicon PMTs (SiPMTs) have been described as a
possible alternative to conventional PMTs, combining good
energy and timing resolution with the ability to decode
arrays of scintillator elements [9].

The second main challenge for PET/MRI is deriving
accurate MR-based attenuation correction (MRAC) maps to
correct corresponding PET data for tissue attenuation. Simul-
taneous Siemens PET/MRI systems use a four-tissue segmen-
tation model, dividing a dedicated MR sequence in fat, air,
lung, and soft tissue. Philips sequential PET/MRI systems
employ a two- (air and soft tissue) or three-segmentation model
(air, lung, and soft tissue). However, a limitation of all these
approaches is that bone, the most attenuating tissue in the body,
is not included in the segmentation process [10]. This yields
underestimation of the standardized uptake values (SUVs) in
bone lesions or lesions localized closed to bone structures.
Furthermore, MRAC assumes uniform attenuation coefficients
in lungs and suffers from MRI truncation due to the relatively
small transaxial field of view (FOV; 45-50 cm) of the PET/
MRI systems. All these shortcomings result in quantitative
biases in the reconstructed PET images. Therefore, MRAC still
requires major efforts to make PET/MRI studies accurate and
robust [11].

PET/CT is used extensively in oncology for diagnosis,
initial staging, restaging, therapy planning, and response
monitoring of a variety of malignancies [12, 13]. Although
PET/MRI is expected to be able to fulfill the same roles as
PET/CT, this needs to be confirmed. There are promising
initial results for several tumor types, including those seen in
brain, head/neck, gynecological, and prostate [14—17].
However, just as for PET/CT, accurate SUV quantification
[18] and, therefore, also accurate attenuation are required.
With this in mind, it is important to know whether SUVs on
PET/CT and PET/MRI are comparable.

The phantom and prospective clinical study presented
here is distinct from other published work [19, 20] with
respect to two aspects. First of all, it represents a particular
comparison of image quality and quantitative performance

of PET studies using PET/CT and PET/MR systems from
the same vendor with similar hardware and software for the
PET TOF gantries. Secondly, we performed PET/CT and
PET/MRI studies in prostate cancer (PCa) patients using
['*F]fluoromethylcholine (['*F]FCH). Its known relatively
stable biodistribution, with almost no radiotracer redistribu-
tion from about 10 to 90 min post injection (p.i.) [21],
enables good scan statistics. This particular setup, the use of
["®F]FCH and the two TOF imaging systems, is suitable for
evaluating the impact of MRAC on PET image quality and
quantification.

Materials and Methods

Scanners

The study was performed using a Gemini TF-64 PET/CT system
(Philips Medical Systems, Best, the Netherlands) [8] and a 3.0
Tesla Ingenuity TF PET/MRI system (Philips Medical Systems,
Cleveland, Ohio, USA). Both scanners are based on similar PET
hardware, with some minor modifications necessary to make it
compatible with the MRI scanner (Achieva 3T X-series MRI) [5].
The PET software version on the PET/MRI is 9.7.1.0 and on the
PET/CT is 9.5.1.4. Furthermore, on both scanners the same
reconstruction algorithms are used, except that the attenuation
correction maps (p-maps) are different. For PET/CT, the p-map is
based on CT measurements of photon attenuation and uses a
bilinear equation to convert to attenuation coefficients for 511-keV
photon energies. For PET/MRI system, it is based on acquisition of
a dedicated MR sequence (atMR), which subsequently is segment-
ed into two (air and soft tissue) or three (air, lung, and soft tissue)
classes of tissue, depending on the acquisition protocol (i.e., only
pelvic region or body) and the ability of the software to detect lung
contours [22]. The axial FOV (18 cm, with 9-cm overlap between
bed positions) is the same for both systems and both have a 5.5-mm
reconstructed isotropic spatial resolution.

Phantom Measurements

Multiple phantom experiments were performed to determine
specific performance characteristics of the PET/CT and PET/MRI
systems, i.e., count rate linearity, calibration, uniformity, image
quality, and contrast recovery. Both systems allow acquisitions in
two modes: one specifically designed for the brain (brain mode, 2-
mm voxels) and one for the body (body mode, 4-mm voxels). On
both scanners, measurements were repeated up to five times, during
a period of 1 year, using various acquisition protocols. In addition,
phantom data were reconstructed using different algorithms and
settings. All reconstructions included the usual corrections, such as
detector normalization, decay, dead time, attenuation, as well as
random and scatter corrections.

A cylindrical phantom (20-cm diameter, 9283 ml) filled with
short-lived radionuclides (oxygen-15 and carbon-11) was used to
assess count rate linearity over a wide range of radioactivity
concentrations. The initial activity concentration was chosen to
yield a single rate of 40 Mcps body dynamic acquisitions and
20 Mcps dynamic brain acquisitions. Data were reconstructed using
a sinogram-based algorithm (3D-RAMLA) for the body mode and
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a non-sinogram-based algorithm (LOR-RAMLA) for the brain
mode. Body mode images had a final voxel size of 4x4x4 mm® and
a spatial resolution of 5-7-mm full width at half maximum
(FWHM) [5]. Brain mode images had a final voxel size of
2x2x2 mm’ and with similar spatial resolution. The dynamic
image data was analyzed by defining one global region of interest
in the phantom and calculating the average activity as a function of
time. The calibration offset with regard to the true activity in the
phantom was plotted versus true activity.

PET calibration and uniformity were assessed using the same
cylindrical phantom as mentioned above. To assess image quality
and SUV contrast recovery, the NEMA-NU2-2007 image quality
(IQ) phantom (Data Spectrum Corporation, Durham, USA) was
used. SUV contrast recovery was defined as the activity measured
in the spheres relative to the true activity in the spheres (in %).
Phantoms were filled with a 2-deoxy-2-['®F]-fluoro-D-glucose
(["®F]FDG) solution using activity ranges of 1.3-3.9 (cylinder),
14.4-16.3 (spheres 1Q), and 1.6-1.8 (background IQ)kBg'ml ' at
the scan start time. Samples were taken and measured in a gamma
well counter (Wallac 1480 Wizard 3” automatic gamma counter,
Perkin Elmer Life Sciences, Zaventem, Belgium) in order to
accurately define the activity in the phantoms and to be able to
assess the calibration offset of the two scanners. In the IQ phantom,
the sphere to background radioactivity concentration ratio was set
to ~10:1. Phantoms were scanned using the following acquisition
protocols. First, using a single bed position, a 15-min acquisition
was performed. Data were reconstructed using time of flight (blob-
os-tf) [8] and sinogram-based (3D-RAMLA) algorithms, both
resulting in a final voxel size of 4x4x4 mm® and a spatial
resolution of 5-7-mm FWHM. In clinical practice, blob-os-tf is
used for static images and 3D-RAMLA for dynamic acquisitions.
Second, a multi-bed position protocol, with 2 min per bed position,
was performed. In addition, the cylindrical phantom was scanned at
a single bed position for 15 min in (dynamic) brain mode and
reconstructed using a line of response-based reconstruction algo-
rithm (LOR-RAMLA). This resulted in a final voxel size of
2x2x2 mm® and the same spatial resolution as mentioned above.
For the cylindrical phantom, image data acquired with and without
the use of MR coils were assessed by measuring global and local
(volumes of interest (VOIs) ~8 ml) calibration offsets and by visual
inspection for artifacts. Data acquired with the IQ phantom were
assessed for SUV performance compliance with European Associ-
ation of Nuclear Medicine/Research Ltd (EANM/EARL) specifi-
cations [23].

Specific Parameters and Settings for Phantom PET/MRI
Studies The atMR sequence was used to generate u-maps for the
phantom studies. Specific attention to several points was
required. Firstly, it is known that the signal from phantom walls
is not detected by MRI. Therefore, attenuation by phantom walls
is not corrected for, resulting in a constant underestimation of
MRAC images (~5.5 % for 6-mm wall thickness). Secondly, for
atMR acquisition on the MRI, phantoms were filled with a saline
solution (~0.48 %) in order to approximately match MR
relaxation factors with those of patients. In addition, some MR
processing parameters, such as inhomogeneity corrections, need-
ed to be adjusted. Finally, dedicated MR sequences and image
processing settings based on the two-class segmentation (water
and air) were used in order to obtain appropriate p-maps for the
1Q phantom.

Patient Studies

The clinical study was approved by the Medical Ethics Review
Committee of the VU University Medical Center, Amsterdam, the
Netherlands. All patients participating in the study provided written
informed consent for undergoing additional PET/MRI examina-
tions, following PET/CT scans acquired for clinical purposes.
Inclusion criteria comprised the following: (1) ability to remain
supine for an additional 60 min in the PET/MRI scanner after
undergoing the PET/CT examination and (2) clinical indication for
performing an ['*F]JFCH PET/CT scan. Exclusion criteria were the
standard absolute MRI contraindications (e.g., pacemaker, magnet-
ic metal implants, neuro-stimulator, etc.). Relative (MRI) contra-
indications were claustrophobia and present or prior employment as
a metalworker. For the latter patients, an X-ray of the orbit was
performed prior to the PET/MRI in order to exclude possible metal
splinters.

A total of 12 consecutive patients with histopathologically
proven adenocarcinoma of the prostate were examined. Their mean
age (£SD) was 66+8 years. In all patients, the clinical indication for
performing the PET/CT scans was restaging. This means suspected
residual or recurrent disease after previous therapy, due to
biochemical prostate specific antigen (PSA) relapse. A PSA relapse
was defined as a serum concentration level above 0.2 ng'ml ' after
radical prostatectomy (RP) and more than 2 ng:ml' above the
nadir value in patients treated by means of external beam
radiotherapy (EBRT) [24]. All examinations were performed at
the VU University Medical Center between November 2012 and
February 2014.

Patient characteristics, including age, year of PCa diagnosis,
type of primary treatment, PSA nadir, and PSA at the time of PET/
CT and PET/MRI scans, as well as number, location, and visually
assessed nature of all choline-avid lesions, are listed in Table 1.

PET/CT Acquisition Protocol Patient preparation was similar to
that required for ['®FJFDG PET [22]. The standard activity of
["®F]FCH was 4 MBq per kg body weight [21], resulting in an
average (+SD) administered activity of 340+57 MBq ['*F]FCH. All
patients underwent the same ['*FJFCH PET/CT image acquisition
protocol, including a low-dose CT (LD-CT) for anatomical
localization and attenuation correction (AC), using a beam current
of 30-50 mAs at 100 keV. Thirty minutes p.i., a whole-body (WB)
PET sequence was performed from mid-thigh to the base of the
skull with arms up. The acquisition time was 2 min per bed position
with a standard number of nine bed positions. The total acquisition
time for the WB PET/CT was, on average, 30 min.

PET/MRI Acquisition ProtocolSubsequently to the PET/CT
scans, PET/MRI acquisitions were obtained at 90+3 min p.i.,
without administering an additional activity of ['FJFCH. The
protocol included a survey MRI for defining the scan trajectory,
followed by an atMR sequence used for AC of the subsequent PET
scan. Next, a WB PET scan was performed, on average consisting
of eight bed positions, each with 3-min acquisition time. The
acquisition time was increased with 50 % compared with the PET/
CT scan to compensate for radioactive decay. The WB PET
sequence also extended from mid-thigh to the base of the skull. Due
to the small MRI gantry of the scanner, for the patient’s
convenience, all scans were acquired with arms down. Different
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Table 1. Patient and lesion characteristics
Pat. Age Diagnosis PCa Previous PSAn PSAs Choline-avid Suspected benign Suspected
(years) (year) therapy (ng/ml) (ng/nl) lesions malignant
PET/CT PET/MRI PET/CT PET/MRI
1 79 2002 EBRT 0.4 9.8 Prostate + +
Th 7 + +
10R + +
2 64 2011 EBRT 0.6 20.6 Prostate + +
Sternum + +
10 R + +
4R + +
4L + +
3 59 2010 RALP 0.2 17.4 Acetabulum L + +
EBRT Tliac L + +
Para-aortic + +
Pre-sacral + +
Rib 5 R + +
Th 7 + +
Inguinal L + +
Inguinal R + +
4 73 2011 RALP 0.6 18 Pre-sacral + +
Tliac R (1) + +
Iliac R (2) + +
Inguinal L + +
5 59 2010 RALP 7.7 8.7 Tliac L + +
Anti-HT Tliac R + +
Para-aortic + +
Inguinal L + +
Inguinal R + +
6 57 2010 RALP LND 6 14
7 51 2007 RALP 0.2 54 Tliac L + +
EBRT
Anti-HT
8 74 2007 Brachy 2.8 15.5 Prostate + +
9 72 2007 Brachy 1.0 6.5 Vesicle L + +
Vesicle R + +
10 75 2009 Brachy 1.4 8.5 Prostate + +
Cryo Iliac R + +
11 63 2011 RALP 0.8 4.5 Pre-sacral (1) + +
Anti-HT Pre-sacral (2) + +
12 69 2010 RALP 0.2 2 10R + +

Pat. patient, PCa prostate cancer, PSAn PSA nadir, PS4s PSA at the time of the PET scans, EBRT external beam radiation therapy, RALP robot-assisted
laparoscopic prostatectomy, Anti-HT anti-hormonal therapy, LND lymph node dissection, Brachy brachytherapy, Cryo cryotherapy, R right, L left, Vesicle

seminal vesicle

diagnostic MRI protocols were applied as the MRI was done for
initial MR optimization and to evaluate MR image quality and MR
system performance and robustness. The following sequences were
acquired: total body: coronal T1-weighted fast spin-echo (FSE),
coronal short-tau inversion recovery (STIR), and axial Dixon
sequences; prostatic region: T2-weighted turbo spin-echo (TSE) in
axial, sagittal, or coronal planes and axial diffusion-weighted
sequences. The total acquisition time for the WB PET/MRI
protocol was, on average, 67 min.

Reconstruction of PET/CT and PET/MRI Images PET/CT and
PET/MRI data were both reconstructed using the (same) vendor
provided time of flight reconstruction algorithm (blob-os-tf),
resulting in a final voxel size of 4x4x4 mm®.

Image Analysis PET/CT and PET/MR images were interpreted in
consensus by four experienced readers (two radiologists and two

nuclear medicine physicians) who were aware of the clinical history
of the patients. Visual analysis of the images was performed on a
dedicated Philips workstation (Philips Fusion Viewer on Extended
Brilliance™ Workspace), following the approach used in clinical
practice: (1) the lesions were evaluated on a single modality (e.g.,
PET), (2) they were evaluated on PET/CT and PET/MRI
independently, and (3) PET/CT and PET/MRI findings were
compared.

Lesions were defined as choline-avid structures (diffuse or focal
['|F]FCH uptake, exceeding background), incompatible with
physiological uptake and with an anatomical substrate on MRI or
CT. They were deemed benign or malignant based on the
metastatic pattern of PCa [25, 26]. Choline-avid lymph nodes in
the mediastinal, hilar, or inguinal region were considered reactive/
benign in the absence of a pathological lesion [27, 28]. ['*F]JFCH
uptake in all lesions (e.g., prostate, lymph nodes, bone) and certain
normal tissues (e.g., lung, liver, and spleen) was assessed semi-
quantitatively, by means of SUVs. This semi-quantitative approach
was chosen to evaluate differences in ['*F]FCH uptake between the
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PET/CT and PET/MR scans and to eliminate observer variability.
The method consisted of collecting different types of SUVs in
target lesions or tissues, as a clinically preferred alternative to the
gold standard full kinetic modeling [29]. Therefore, VOIs were
drawn semi-automatically on PET images, as described previ-
ously [29, 30]. Maximum and 3D peak SUV, normalized to
body weight (SUVmax and SUVpeak), were obtained for all
lesions. In addition, mean SUV using a 2-3-cm diameter VOI
was derived for healthy tissues, with one exception. In this
patient, a VOI in normal lung could not been drawn due to an
incomplete scan trajectory of the thorax. In all other 11
patients, VOIs were drawn in the left lung in order to avoid
the effects of scatter effect from the physiologically intense
choline uptake in the liver.

Statistical Analysis

Pearson product moment correlation coefficients (R?) were used
to test agreement between visual ratings, and mean and
maximum SUVs derived from PET/MRI and PET/CT. Corre-
lations were assessed for bias using linear regression. In
addition, percentage differences between PET/CT- and PET/
MRI-derived SUVmax were plotted as function of the PET/CT
derived SUVmax to illustrate relative differences in quantitative
findings.

Results

Phantom Studies

Count rate linearity in brain mode was comparable between
the two scanners. Calibration offsets, ranging from 2 to
10 kBq'ml ™', were less than 10 %. However, the perfor-
mance in body mode showed slight differences between the
systems with a stable performance (calibration offsets less
than 5 %) for PET/CT, whereas for PET/MRI, the
calibration offsets were less than 10 % with activity
concentration ranging from 2 to 20 kBq~m17l (supplementa-
ry Fig. 1). The images of the cylindrical phantom scanned on
both systems showed uniform uptake and no visual artifacts.

Global calibration accuracy and image uniformity were
comparable (within £10 %) between PET/MRI and PET/
CT systems (Table 2). PET/MRI studies with additional
MRI coils required the use of additional template-based
AC for the coils (Fig. 1). However, template-based AC did

Table 2. Calibration offsets ranges (%) for PET/MRI and PET/CT systems
for different reconstruction algorithms based on five measurements within
1 year

Reconstruction PET/MR PET/CT
Blob-os-tf -5.8to—1.5 —4.3 t0 2.0
3D-RAMLA —0.6 to 4.8 -6.9 to —0.4
LOR-RAMLA -2.1t0 3.7 -6.5t0 —0.3

Calibration offset is defined as global activity of a cylindrical phantom in
reconstructed PET images relative to the true activity measured using the
dose calibrator

not fully compensate for true attenuation of the coils,
resulting in image artifacts in the PET images near the
denser part of the coils. For example, image non-
uniformities measured in a uniform source were up to
15 % when using the neurovascular coils.

The NEMA NU-2 2007 image quality phantom was
measured several times on both systems The PET/CT
met EANM/EARL requirements in all cases. Slightly
higher contrast recoveries were found for the PET/MRI
in comparison with the PET/CT (Fig. 2) for smaller
spheres (<6 ml). Note that the AC by the phantom walls
was not corrected because the signal from these walls
(6 mm thick) is not detected by MRI. This resulted in a
constant underestimation of the true recovery coefficients
(5.5 % lower activity concentration).

Patient Results

A total of 12 benign and 22 suspected malignant lesions
were identified on both PET/MRI and PET/CT systems.
Coexistence of benign and malignant lesions was observed
in five patients. In three patients, no cause for an elevated
PSA could be identified.

Benign/reactive lymph nodes were found in seven
patients and were localized in the mediastinum (n=2), the
lung hilar region (#n=3), and the inguinal zone (#n=5). In
one patient, two pre-sacral lymph nodes with slightly
increased choline uptake were seen. The intensity of
uptake was less than on a PET/CT scan performed
previously, consistent with a response to radiotherapy.
Suspected malignant lesions were identified in nine
patients and were represented by lymph nodes (seven
iliac, two para-aortic, two pre-sacral), bone lesions (two
thoracic vertebrae, one solitary acetabulum lesion, one
rib, one sternal lesion), and residual/recurrent PCa (four
in the peripheral zone of the prostate and two in the
seminal vesicles). Visual inspection showed comparable
PET image quality for all lesions between both modal-
ities (Fig. 3).

The semi-quantitative lesion analysis revealed a differ-
ence of 4£26 % in SUV values between PET/MRI and PET/
CT data (R*=0.79, slope=1.02) (Fig. 4). In normal tissues,
PET/MRI SUV values were 16+11 % lower than
corresponding values derived from PET/CT (R*=0.98,
slope=0.86) (Fig. 5). The largest quantitative differences
(up to =37 %) were found in the lungs. Two out of 12
patients showed severe artifacts in the thorax region
(patient no. 1: one lymph node in the right lung hilus;
patient no. 2: one mediastinal left lower para tracheal
lymph node) on PET/MRI images, resulting in discrep-
ancies of more than 50 %. These were due to incorrect
lung segmentation in the MR p-map (Fig. 6). Incorrect
AC in the lungs does affect the SUV of the lesions
nearby located, such as the lung hilus or mediastinal
space. This is because the measured lines of response
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Fig. 1 Example of coil attenuation effects: a image of the MR head-sense 8 coil, b PET acquisition including the MR head-
sense 8 coil, but without a template for its attenuation correction, and ¢ PET acquisition including the MR head-sense 8 coil
and with a template for attenuation correction.

going through both the lungs and adjacently regions are determines the amplitude of the AC. Therefore, also
not correctly adjusted for attenuation. This means that  activity adjacent to the lungs will suffer from errors in
the overall attenuation along each line of response lung segmentation.

a b
14 14
1.2 1.2 a
- 3,,‘ s 1 X
[ [
g 08 £ 08
° ]
v v
] K 4
_Z' 0.6 = 0.6
> S
- g
S o4 ? 2 o4
0.2 0.2
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Sphere volume (mL) Sphere volume (mL)
c d
1 1
0.9 0.9
0.8 0.8
o7 € o7
§ 06 g o6
3 3
E 0.5 § 0.5
g 0.4 £ o4
-] i
2 03 2 03
0.2 0.2
0.1 01
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Sphere volume (mL) Sphere volume (mL)

Fig. 2 Measured activity recoveries (%) derived from the IQ phantom for both PET/MRI and PET/CT together with EARL
boundaries (solid lines). Volumes of interest (VOIs) were defined based on a single voxel with maximum intensity (VOlmax) or as
an isocontour at 50 % of the maximum voxel intensity (VOIA50): a PET/MRI VOImax, b PET/CT VOImax, ¢ PET/MRI VOIA50, d
PET/CT VOIA50. Five experiments were performed during a period of 1 year, each experiment indicated by a different symbol.
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Fig. 3 ['®FJFCH PET/CT and PET/MRI scans of patient 3 with recurrent prostate cancer and a PSA of 17.4 ng-ml~". Both

'1. ' : “,

scans show comparable PET image quality in a suspected bone metastasis in the seventh thoracic vertebra: a attenuation
corrected PET image of the PET/CT, b non-attenuation corrected PET image of the PET/CT, ¢ low-dose CT image, d fusion
image of ['"®F]FCH PET/CT, e attenuation corrected PET image of the PET/MRI, f non-attenuation corrected PET image of the
PET/MRI, g MR-derived attenuation image, h fusion image of ['"®FIFCH PET/MRI.

Discussion

The aim of this study was to directly compare image quality
and quantitative performance of Philips Ingenuity TF PET/
MRI with Gemini TF PET/CT systems, using phantoms and
clinical data from a homogenous patient group. Because the
PET gantries of both scanners are similar, it can be assumed
that the performance of both PET units would be similar. To
the best of our knowledge, this comparison has not previously
been reported. In addition, by performing PET/CT and PET/

MR studies in PCa patients with ['*F]FCH, the relatively stable
biodistribution with almost no pharmacokinetic changes
between about 10 and 90 min p.i., minimizes radiotracer
redistribution, and robust scan statistics are expected.

Phantom Experiments

The phantom experiments showed comparable performances
with respect to calibration accuracy, image uniformity, and
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between PET/MRI- and PET/CT-derived SUVmax (R?=0.79, slope=1.02), and b corresponding Bland-Altman plot showing large
differences for two intra-thoracic lesions (green ovals: one para tracheal and one hilar lymph node), which were due to incorrect

lung segmentation of the PET/MRI scan.

contrast recovery. Due to differences between CT and MRI,
some differences related to AC could be anticipated (e.g.,
phantom walls cannot be measured using MRI). This
shortcoming, however, seemed to have a relatively low
impact (not exceeding 5.5 %) on final accuracy in the
phantom studies. The calibration offset of PET/MRI,
together with the expected underestimation, resulted in
comparable calibration accuracy for PET/MRI and PET/
CT. Furthermore, a cylindrical phantom reconstructed using
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o
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various available methods showed, on both scanners,
uniform uptake without visual artifacts.

Some differences were seen with respect to count rate
linearity, which was more accurate on PET/CT than on PET/
MRI. These might be due to differences in scanner
calibration software between the systems—the PET/CT is
equipped with a more recent software version incorporating
improved calibration and death time correction tables.
Furthermore, slightly higher recoveries in the smaller
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Fig. 5 Results of the semi-quantitative analysis for healthy tissues: a correlation between PET/MRI- and PET/CT-derived
SUVmax of liver (blue diamonds), spleen (pink squares), and lungs (yellow triangles) (R*=0.98, slope=0.86) together with the line
of identity, and b corresponding Bland-Altman plot showing the largest differences in the lungs (up to =37 %).
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Fig. 6 Impact of incorrect lung segmentation: a PET image using CT-based attenuation correction; b PET image using MRI-
based attenuation correction, showing artificially increased uptake in the most of the lung tissue (black arrows); and ¢
corresponding MRI-based attenuation map with incorrect lung segmentation (red left arrow: segmentation of only the apex of

the right lung; red right arrow: no segmentation of the left lung).

spheres (<6 ml) were observed in case of the PET/MRI
These might be due to a combination of calibration offsets
and shortcomings in the AC of the phantom. Apart from
these minor differences, these initial phantom evaluations
show that basic PET performance characteristics of PET/CT
and PET/MRI systems are comparable.

MRAC remains challenging, especially when using
WB PET/MRI for clinical purposes. Firstly, WB PET/
MRI scan is a time-consuming procedure, requiring a
stepwise optimization of the scan sequences [31].
Because of the small diameter of the MR gantry, patients
are scanned with arms down. A smaller transaxial MRI
field of view than the patients’ circumference may result
in truncation artifacts in the MR images. Lung segmen-
tation is another challenge, due to the diminished signal
intensity of these air-containing organs in conventional
MRI images. Furthermore, the current PET/MRI systems
have no ability to characterize bone tissue [32], resulting
in underestimation of the SUVs in bone lesions or in
visceral lesions predominantly surrounded by bone
structures (e.g., pelvic region).

Clinical Evaluations

For the clinical comparison, ['*F]JFCH was used as radio-
tracer because of its known stable pharmacokinetic profile
[24] with limited biological redistribution during the
protocol period. At present, ['*F]JFCH is seen as one of the
preferred tracers for restaging PCa. A systematic review and
meta-analysis [33] showed a pooled sensitivity and speci-
ficity to identify all recurrent/metastatic localizations (pros-
tatic region, bone, or lymph node) of 85.6 % (95 % CI 82.9—
88.1 %) and 92.6 % (95 % CI 90.1-94.6 %), respectively.

In the present study, visual assessment of choline-avid
lesions showed comparable PET image quality on both PET/
CT and PET/MRI systems. Although PET/MRI showed the
same detection rate of lesions compared with PET/CT,
severe artifacts due to incorrect lung segmentation were
identified in a small number or patients. This underlines the
necessity to always inspect p-maps, as well as attenuation-
(MRAC) and non-attenuation-corrected (NAC) images to
avoid incorrect conclusions from severe AC artifacts.

Similar observations with respect to lesion detection and
quantitative measurements were described by Tian et al. [34]
in an ["*F]JFDG PET/CT and PET/MRI comparative study of
285 patients with different malignancies. A strong diagnostic
concordance between ['*FIFDG PET/CT and PET/MRI was
also found by Kohan et al. [35] in the context of lymph node
staging of lung cancer patients. The authors addressed both
tissue AC and anatomical nodal localization issues by using
a single morphological MRI sequence (3D T1-weighted
spoiled gradient echo sequence; Tlw 3D GRE). Neverthe-
less, the applied sequence yielded a number of artifacts on
the PET/MRI, limiting the confident anatomic localization in
some mediastinal lesions. Drzezga and colleagues [36]
described comparable reliability of data derived from
['*FJFDG PET/MRI and PET/CT studies in patients with
suspected malignant lesions. Pace et al. [37] showed an
equivalent performance of the two hybrid modalities in 36
patients with breast cancer undergoing initial staging or
follow-up scans.

In PCa, comparable results regarding lesion detection
were described by Souvatzoglou et al. [19] in a study
performed for (re)staging patients using [''C]choline PET/
CT, followed by an integrated PET/MRI. Evaluating 36
patients with histologically proven PCa and suspected
recurrent disease, Wetter et al. [20] found no difference in
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visual quality of PET images between ['*FJFCH PET/MRI
and PET/CT systems and concluded that the new ['*F]JFCH
PET/MRI technique could be used with confidence in daily
practice.

In the absence of PET/MRI artifacts (in two cases),
the semi-quantitative analysis of the present data showed
good correspondence in ['®F]FCH uptake values between
PET/CT and PET/MRI for both healthy tissues (R*=0.98)
and lesional data (R*=0.79). Analysis of various lesions
revealed slightly higher SUVs for PET/MRI (4+26 %)
than for PET/CT, while values in normal tissues were
systematically lower (1611 %). The lowest SUVs were
found in lungs, followed by spleen and liver. A possible
reason for these differences might be a small ongoing
redistribution of ['®FJFCH with a slightly decreasing
trend over time in normal or benign lesions and a stable
or slightly increasing pattern in malignant lesions [28,
38, 39]. As there was a mixture of benign and malignant
lesions, this could have resulted in some over- and
underestimations of PET/MR versus PET/CT data. How-
ever, the observed variability is likely also related to
differences in AC performance between both systems.
Deriving accurate MRAC maps to correct corresponding
PET data for tissue attenuation in PET/MRI remains a
challenging task. Inadequate AC results in under- or
overestimation of SUVs in different tissues (e.g., under-
estimation of the SUVs in bone lesions or Iesions
localized closed to bone structures, due to excluding
the bone tissue in the segmentation process). In the
particular case of the lungs, the theoretically assumed
uniform attenuation coefficients are responsible for the
lower SUVs in these organs [11]. In clinical practice,
due to physiological, variable lung tissues densities, these
attenuation coefficients lead to attenuation under-
correction and consequently to underestimation of the
SUVs in the lungs.

Higher lesional SUVs on PET/MRI were also observed
by Souvatzoglou et al. [19] with good correlation between
[''C]choline PET/MRI and PET/CT (p=0.86). In the same
study, SUVs of various normal organs, except liver, were
generally lower for PET/MRI and all these differences were
attributed to the uptake mechanism of [''C]choline. In
contrast, statistically significant (p<0.05) lower lesional
SUV values were reported by Wetter et al. [20] for bone
and prostate, with slightly higher SUVs for lymph nodes.
The authors used ['*F]choline as radiotracer for performing
the scans on a simultancous PET/MRI system. Possible
explanations of the discrepancy between their findings and
those from the group of Souvatzoglou were different
techniques for AC and different biodistribution and bio-
kinetics of ['*F]JFCH between early and delayed time points.
The slight differences between the present findings and
those of Wetter et al., while using the same radiotracer,
underline the role of multiple factors contributing to
underestimation in SUVs. In this respect, we agree with
the German group’s hypothesis suggesting that differences

in SUVs on PET/MRI are possibly related to different
examination time points and MRAC.

Although in our study we focused on PET image quality
and quantitative accuracy, the opportunities of assessing
patients with the combined and concurrent use of PET/CT
and PET/MRI will be shortly discussed. Integrated PET/CT
is nowadays recognized as a preferred hybrid oncological
imaging technique. It combines the anatomical information
derived from CT with the functional data of tumor
metabolism from PET, in an efficient whole-body setting.
Nevertheless, combining PET with MRI, simultaneously or
sequentially, offers new perspectives in clinical molecular
imaging [40]. Three evident advantages of the new hybrid
technique are the superior soft tissue contrast of MRI above
CT, less radiation exposure, and the additional functional
information. Nevertheless, performing PET/MRI in a whole-
body setting is a time-consuming procedure, in which
adequate selection of the MR sequences, clinical indications,
and workflow-related aspects has to be considered.

PET/MRI is expected to be more accurate than PET/CT
for tumor staging in all indications in which MRI has proven
to be more valuable than CT (e.g., head and neck tumors,
breast and liver malignancies, musculoskeletal neoplasms,
etc.). Comparable performance is expected for lymph node
staging as N-disease assessment is mainly diagnosed on
functional (PET) imaging. For metastatic disease, potential
advantages of PET/MRI over PET/CT depend on the site of
metastatic spread [15]. In case of prostate cancer, potential
PET/MRI indications are staging in patients with a positive
biopsy, assessment of tumor recurrence after treatment in
patients with increasing PSA, and tumor detection in case of
increased PSA but negative biopsies [31].

With regard to the quantification differences between
PET/CT and PET/MRI systems in our study, several short-
comings of MRAC have to be mentioned. On the one hand,
there are general aspects, all vendors having difficulties with
MRI truncation artifacts, not including bone structures in the
segmentation process and assigning uniform lung
attenuation coefficients. Specific for Philips TF PET/MRI
is that it uses a three-tissue segmentation model, dividing a
dedicated MR sequence in air, lung, and soft tissue. Other
PET/MRI systems perform a four-segmentation model,
including fat as an additional class for generating the
attenuation maps. Ignoring fat may result in a small overall
overestimation of the AC. Nevertheless, several approaches
have been developed and evaluated to mitigate these short-
comings [41]. Furthermore, Philips designed a sequential
PET/MRI system with TF ability, requiring longer acquisi-
tion time when compared with the simultaneous (e.g.,
Siemens) systems. However, MRAC is still work-in-
progress, future clinical studies being needed to evaluate
the usefulness of the different PET/MRI designs.

A limitation of the present study is represented by the
sequential character of the study design, resulting in a
possible redistribution of the tracer between the imaging
time points of the PET/CT and PET/MRI. Nevertheless, we
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have specifically chosen ['®*FJFCH as radiotracer for this
evaluation in order to minimize these effects. The good
correspondence in SUVs across most lesions also points into
this direction. Furthermore, a measurable difference in scan
statistics can be expected by performing the PET/CT and the
PET/MRI with a gap of 60 min. To compensate for this
effect, the acquisition time on PET/MRI was increased with
50 % compared with that applied during the PET/CT scan.
Another possible limitation is the variability of the used MRI
protocol, as MR images were acquired in a process of
optimizing imaging procedures. Yet, the same amount of
lesions was identified on both PET/CT as well as PET/MRI.
In a more optimal MRI setting, it is anticipated that the PET/
MRI will outperform PET/CT in, e.g., differentiation of
benign versus malignant lesions and identification of tumor
ingrowth in surrounding soft tissue structures, including the
seminal vesicles or rectal wall. However, this was not the
primary aim of the present study and this remains to be
studied in further studies.

Conclusion

This study demonstrates that PET/MRI and PET/CT systems
provide comparable performance with respect to calibration
accuracy, image uniformity, and contrast recovery. In the
absence of PET/MRI attenuation correction artifacts, there
was reasonably good correspondence between ['*F]JFCH
uptake in both healthy tissues and suspect lesions, yet
systematically lower SUVs in normal tissues were seen for
PET/MRI. Therefore, further improvement of MR-based
attenuation correction is warranted. Furthermore, it is
recommended to inspect attenuation corrections maps in
order to avoid (quantitative) misinterpretations due to
attenuation correction artifacts.
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