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Abstract
Purpose: The rapid growth and usage of small-animal positron emission tomography (PET) in
molecular imaging research has led to increased demand on PET scanner's time. One potential
solution to increase throughput is to scan multiple rodents simultaneously. However, this is
achieved at the expense of deterioration of image quality and loss of quantitative accuracy
owing to enhanced effects of photon attenuation and Compton scattering. The purpose of this
work is, first, to characterize the magnitude and spatial distribution of the scatter component in
small-animal PET imaging when scanning single and multiple rodents simultaneously and,
second, to assess the relevance and evaluate the performance of scatter correction under
similar conditions.
Methods: The LabPET™-8 scanner was modelled as realistically as possible using Geant4
Application for Tomographic Emission Monte Carlo simulation platform. Monte Carlo simulations
allow the separation of unscattered and scattered coincidences and as such enable detailed
assessment of the scatter component and its origin. Simple shape-based and more realistic
voxel-based phantoms were used to simulate single and multiple PET imaging studies. The
modelled scatter component using the single-scatter simulation technique was compared to
Monte Carlo simulation results. PET images were also corrected for attenuation and the
combined effect of attenuation and scatter on single and multiple small-animal PET imaging
evaluated in terms of image quality and quantitative accuracy.
Results: A good agreement was observed between calculated and Monte Carlo simulated
scatter profiles for single- and multiple-subject imaging. In the LabPET™-8 scanner, the detector
covering material (kovar) contributed the maximum amount of scatter events while the scatter
contribution due to lead shielding is negligible. The out-of field-of-view (FOV) scatter fraction
(SF) is 1.70, 0.76, and 0.11 % for lower energy thresholds of 250, 350, and 400 keV,
respectively. The increase in SF ranged between 25 and 64 % when imaging multiple subjects
(three to five) of different size simultaneously in comparison to imaging a single subject. The
spill-over ratio (SOR) increases with increasing the number of subjects in the FOV. Scatter
correction improved the SOR for both water and air cold compartments of single and multiple
imaging studies. The recovery coefficients for different body parts of the mouse whole-body and
rat whole-body anatomical models were improved for multiple imaging studies following scatter
correction.

Correspondence to: Habib Zaidi; e-mail: habib.zaidi@hcuge.ch



Conclusions: The magnitude and spatial distribution of the scatter component in small-animal
PET imaging of single and multiple subjects simultaneously were characterized, and its impact
was evaluated in different situations. Scatter correction improves PET image quality and
quantitative accuracy for single rat and simultaneous multiple mice and rat imaging studies,
whereas its impact is insignificant in single mouse imaging.
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Introduction

In recent years, small-animal positron emission tomogra-
phy (PET) has gained popularity and established its utility

in the biomedical research arena owing to its high sensitivity
and capability to provide quantitative measurements of
biochemical and molecular processes in vivo [1, 2]. For
optimal image quality and accurate quantification in PET
imaging, object-specific correction of background (randoms)
and physical degrading factors such as photon attenuation,
Compton scatter, partial volume effects and motion have to
be compensated for prior to reconstruction or incorporated
within statistical iterative image reconstruction techniques
[3, 4]. However, little has been published on the assessment
of the quantitative capability of small-animal PET studies
[5–7].

Attenuation is the loss of true events due to scatter and
absorption which impacts the measured data and results in
inaccurate quantification of reconstructed PET images,
whereas scatter degrades image contrast and affects both
relative and absolute PET quantification. The scatter magni-
tude and spatial distribution depend mainly on the size and
density of the object and scanner-related parameters such as
design geometry, detector energy resolution and acquisition
energy window [8]. In clinical PET imaging, it is well
established that scatter correction is essential for accurate
quantification of tracer uptake since the scatter fraction (SF)
varies between 30 and 35 % in brain imaging and 50 and
60 % in whole-body imaging in three-dimensional acquisi-
tion mode [9, 10]. On the other hand, when imaging small
subjects such as rodents, scatter is assumed to be a minor
factor due to the small size of the animals. The origin of
scatter for small-animal imaging has not been well charac-
terized, but has been proposed to stem mainly from the
gantry and environment rather than the animal itself [11].
This opinion is supported by the fact that scatter correction
usually does not involve correcting for scatter in the detector
crystal. However, annihilation photons are subject to
attenuation and scatter even in small animals such as mice
and rats [12, 13]. SF estimates ranging from 5 to 21 % for
mice and 15 to 30 % for rats have been reported [11, 14–18].
Another 11C-raclopride PET study reported a larger SF (25–
45 %) in the rat brain with an increase in the distribution
volume ratio of 3.5 % after scatter correction [19].

It has become a common practice nowadays to scan
multiple rodents simultaneously at different radial offsets in
the scanner's field-of-view (FOV) to increase the throughput
in small-animal PET imaging [20–22]. However, this is
achieved at the expense of deterioration of image quality and
loss of quantitative accuracy due to combined effects of
photon attenuation and Compton scatter [23]. The lack of
literature reporting on the magnitude, spatial distribution of
the scatter component and effect of scatter correction on
image quality and quantitative accuracy when imaging
multiple rodents simultaneously motivated this study.

The purpose of this work is, first, to characterize the
magnitude and spatial distribution of the scatter component in
small-animal PET imaging when scanning single and multiple
rodents (mice and rats) simultaneously and, second, to assess
the relevance and impact of scatter correction on image quality
and quantitative accuracy under similar conditions.

Materials and Methods

Small-Animal PET System

The LabPET™-8 is the PET subsystem of the integrated
trimodality TriumphTM PET/SPECT/CT pre-clinical imaging sys-
tem (Gamma Medica, Inc., Northridge, CA). It is a state-of-art
avalanche photodiode (APD)-based digital small-animal PET
scanner designed with quasi-individual crystal readout along with
parallel digital architecture to achieve high performance [24]. The
scanner has 7.5-cm axial and 10-cm transaxial FOVs. Scintillators
of 2×2×12/14 mm3 in size are composed of a Lu0.4Gd1.6SiO5

(LGSO) and Lu1.9Y0.1SiO5 (LYSO). These are optically coupled
one after the other, forming phoswich pairs of detectors. Four
phoswich detectors are enclosed in a hermetic container made of
kovar (an alloy of iron–nickel–cobalt having a density of 8.359 g/
cm3). The end of the axial FOV shielding is made of tungsten
(19.3 g/cm3 density, 15.75 mm thickness and 131 mm internal
diameter) to minimize the detection of out-of-FOV activity. The
most relevant design features of the LabPET™-8 can be found in
[24], whereas the technical specifications and performance assess-
ment of the system used in our laboratory are given elsewhere [17].

Monte Carlo Simulation Studies

Monte Carlo simulations provide the ability to generate data under
controlled conditions and to discriminate between scattered and
unscattered events [25]. As such, it is considered as a useful tool to
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assist in the development and evaluation of scatter correction
techniques. An experimentally validated Monte Carlo simulation
model of the LabPET™-8 scanner was used in this work [8]. The
LabPET™-8 scanner is modelled as realistically as possible in terms of
geometry, physics of radiation transport and signal processing using
the Geant4 Application for Tomographic Emission (GATE) Monte
Carlo simulation toolkit [26]. All simulations were run using a
coincidence timing window of 10 ns, an energy resolution of 25 % and
lower energy thresholds of 250, 350 and 425 keV, while the upper
energy threshold was kept constant (650 keV). Back-to-back 511 keV
annihilation photons were generated to decrease computational time.
A total of 109 events were generated for each simulation study,
yielding count rates equivalent to those encountered in typical small-
animal PET studies. The GATE output information comprising
separate prompt and scattered events was recorded in ASCII format.
The SF, estimated as the ratio of scattered to total events, was then
calculated. In a second step, coincidence events were binned into
sinograms for further characterization of the spatial distribution of
Compton scatter. Reconstructions were performed by means of the
Software for Tomographic Image Reconstruction (STIR) using the
iterative three-dimensional ordered subsets maximum a posteriori
using the one-step late (OSMAPOSL) algorithm with four subsets and
eight iterations [27].

Various simple digital phantoms and computerized anatomical
models of rodents enabling to simulate simple source geometries
and more realistic complex patterns of tracer distributions were
used to assess the magnitude and spatial distribution of scattered
events [28]. Rodent studies were simulated using typical spatial
biodistribution of 2-deoxy-2-[18F]fluoro-D-glucose for mice and
rats [29, 30] considering the corresponding distribution of attenuation
coefficients. The NEMA NU-04 image quality phantom [31] and
more realistic digital phantoms such as mouse whole body (MOBY)
and rat whole body (ROBY) [32] were used to study the scatter
component for single- and multiple-subject scanning configurations.
The different arrangements of phantoms adopted in this work are
shown in Fig. 1. In the ‘single-subject’ configuration, one subject
was located in the centre of the scanner's FOV. In the ‘three-subject’
configuration, two subjects were located on the left and right sides of
the centrally located subject, whereas in the ‘five-subject’ configu-
ration, five subjects were located at the left, centre, right, top and
bottom positions in the scanner's FOV. The true image obtained by
reconstructing the unscattered component from the GATE simula-
tions is used as reference for comparison.

Evaluation of the Scatter Component and Out-of-FOV
Scatter

The scatter component of the LabPET™-8 scanner was character-
ized in terms of object and detector/gantry scatter. Object scatter
consists of annihilation photons which have undergone Compton
scattering only in the object, whereas detector/gantry scatter
represents Compton scattering in different components of the
scanner other than the object under study. This includes scintilla-
tion crystals, scanner gantry, detector covering and end-of-FOV
shielding. Compton-scattered events in these different components
were also evaluated.

The magnitude of out-of-FOV scatter for the LabPET™-8
scanner was evaluated using both simulated and experimental
measurements. This was performed using short (7 cm height and
2.5 cm diameter) and long (14 cm high and 2.5 cm in diameter)

solid polyethylene phantoms. The short phantom was placed within
the axial FOV of the scanner, while the long phantom was placed
within the axial FOV extending outside the axial FOV at both ends.
A line source (7 cm long) containing 10 MBq of F-18 was inserted
into the short phantom parallel to its long axis, whereas a line
source (14 cm long) containing 20 MBq of F-18 was used for the
long phantom. The SF was calculated according to the method
described in the NEMA NU-04 standards [31]. Scatter from out-of-
FOV activity was calculated by subtracting the SF of the short
phantom from that of the long phantom.

Scatter Modelling and Correction

Model-based scatter estimation techniques use emission and
transmission images to estimate the probability of scattered events
along each line of response for selected scatter points in the
transmission image by calculating the line integral of the scatter
photon trajectories [9]. The scatter distribution is calculated by
summation of the probabilities of Compton scattering estimated for
each possible scatter point in the transmission image and every
detector pair. The single-scatter simulation (SSS) technique used in
this work is based on the single-scatter approximation and estimates
the scatter distribution using the Klein–Nishina formula [33].

The scatter distribution is calculated using the SSS technique,
which is scaled to account for multiple scatter and scatter from out-
of-FOV activity. However, the implementation in STIR package is
optimized for clinical scanners where coarse sampling is used to
speed up the scatter computation, and the full scatter sinogram is
constructed by interpolation [34]. The number of detectors is
smaller in small-animal PET scanners compared to clinical scanners
and, as such, full detector sampling was adopted. The resulting
scatter sinogram obtained using two iterations was compared to
Monte Carlo simulated scatter sinograms for both single- and
simultaneous multiple-subject studies.

The PET data were corrected for attenuation by multiplying the
attenuation correction factors obtained by forward projection of the
object(s)-specific attenuation map at 511 keV. The scatter sinogram
was used as additive terms in the iterative OSMAPOSL algorithm
using STIR.

Image Quality and Quantitative Accuracy

The effect of scatter correction on image quality and quantitative
accuracy was evaluated for single- and simultaneous multiple-
subject PET imaging using various figures of merits including
contrast, signal-to-noise ratio (SNR), spill-over ratio (SOR) and
recovery coefficients. Regions of interest (ROIs) with diameters
approximately equal to half the radius of the two cold cylinders (no
radioactivity) were defined and the mean counts/ROI in each region
and in the background of the NEMA image quality phantom
determined for true, uncorrected, attenuation corrected only and
attenuation and scatter-corrected images. SOR was calculated as the
ratio of counts in the respective cold cylinder to the counts in the
uniformly active region. The contrast recovery (ideal value of
100 %) was calculated according to:

Contrast ¼ NBG−Ncold

NBG

� �
100% ð1Þ
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where NBG is the count density in the background's ROI, and Ncold

is the count density in the cold cylinder's (air or water) ROI.
The SNR was defined as the mean number of counts divided by

the standard deviation of pixel intensities in a ROI defined within
the background region of the NEMA image quality phantom.

SNR ¼ NROI

σROI

 !
ð2Þ

The recovery coefficient, defined as the percentage ratio of
counts in an ROI in the corrected image to those in the same ROI in
the true images, was calculated according to:

Recoverycoefficient ¼ Ncorrected
ROI

Ntrue
ROI

� �
�100% ð3Þ

Results

Modelling the Scatter Component

The magnitude of Compton scattering originating from the
various physical materials present in the LabPET™-8
scanner and the amount of out-of-FOV scatter for various
energy windows are summarized in Table 1. The maximum

amount of scatter observed is due to kovar, which is used as
a covering material for the detectors. The scatter contribution
due to lead shielding is negligible. Both experimental and
simulated out-of-FOV SFs show that out-of-FOV scatter is
negligible in small-animal PET imaging using the
LabPET™-8 scanner. The effect of increasing the number
of objects in scanner's FOV on the magnitude of scatter can
be observed in Table 2. In the case of MOBY, the
percentage increase in SF for three and five subjects is
36.4 and 63.6 % in comparison to one subject, respectively.
Full axial lengths of the NEMA image quality phantom and
MOBY model were covered in one acquisition, whereas the
ROBY model was scanned at three different axial positions
corresponding to brain, thorax and pelvis regions. As
expected, object SF decreases with increasing the LET.

The good agreement between experimentally measured and
Monte Carlo simulated projection data (total events) for a
single NEMA image quality phantom is depicted in Fig. 2 for
both the uniform region and region-containing active rods.
Comparisons between the scatter distributions obtained using
model-based scatter estimation and Monte Carlo simulations

Fig. 1. Illustration of single- and multiple-subject imaging configurations used in this study showing: a single subject located
centrally in the FOV, b three subjects in the FOV placed on the left, central and right positions and c five subjects in the FOV
placed on the left, central, right, up and down positions.

Table 1. The scatter fraction due to different materials in the LabPET™-8
scanner for lower energy thresholds of 250, 350 and 400 keV. The
experimental out-of-FOV SF values are also shown between brackets

Materials Scatter fraction (%)

250–
650 keV

350–
650 keV

400–
650 keV

Kovar 22.51 17.16 10.71
Copper 5.93 2.40 1.19
Lead 1.71 0.65 0.30
Out-of-FOV 1.70 (1.83) 0.76 (0.81) 0.11 (0.12)

Table 2. Object scatter fraction estimates for single and simultaneous
multiple scanning of the NEMA image quality phantom, MOBY and ROBY
for lower energy thresholds of 250, 350 and 400 keV. The percentage
increase in SF for three and five subjects with respect to single-subject
configuration is shown between brackets

Objects Scatter fraction (%)

250–650 keV 350–650 keV 400–650 keV

1 NEMA phantom 8.10 5.08 3.01
3 NEMA phantoms 11.09 (36.91) 7.09 (39.57) 3.81 (26.58)
5 NEMA phantoms 13.11 (61.85) 8.13 (60.04) 4.03 (33.89)
1 MOBY 11.21 7.05 4.03
3 MOBY 15.19 (35.50) 10.03 (42.27) 5.01 (24.32)
5 MOBY 18.15 (61.91) 11.04 (56.60) 6.02 (49.38)
1 ROBY (brain) 12.01 9.00 6.02
2 ROBY (brain) 17.03 (41.80) 13.01 (44.56) 8.00 (32.89)
1 ROBY (thorax) 18.04 15.06 10.04
2 ROBY (thorax) 25.06 (38.91) 20.09 (33.40) 14.05 (39.94)
1 ROBY (pelvis) 20.01 16.07 11.06
2 ROBY (pelvis) 28.00 (39.93) 21.08 (31.18) 15.04 (35.99)
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for single and multiple scanning of the NEMA image quality
phantom and ROBY are shown in Figs. 3 and 4, respectively.
Overall, a good agreement was observed between model-based
and Monte Carlo simulated scatter profiles. A small discrep-
ancy between the tails of the scatter profiles can be observed,
which is likely due to the fact that analytical modelling of
multiple scattering does not account for the different angular
distributions of the rescattered photons.

Assessment of Image Quality and Quantitative
Accuracy

In the uniform compartment of the NEMA phantoms, the SNR
for the five subjects is less than that of the three subject

arrangement, the latter being also less than that of the single
phantom configuration (data not shown). Scatter-corrected
images have a poorer SNR, which can be explained by the
scatter subtraction process. The SORs measured in the cold
compartment of the NEMAphantom are shown in Table 3. The
SOR increased in the case of multiple subjects scanning
compared to single-subject scanning. Scatter correction de-
creases the SOR in both air- and water-filled compartments in
the configurations adopted in this study. However, the effect of
scatter correction was more noticeable in the air compartment
than in the water compartment. The effect of attenuation and
scatter correction on image contrast is demonstrated in Table 4
for different configurations of the NEMA image quality
phantom. The contrast was more degraded in the multiple
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Fig. 2. Comparison of experimental and Monte Carlo simulated projection data (total events) for the single NEMA image
quality phantom through a the uniform region and b the region covering the active rods.
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Fig. 3. Comparison between Monte Carlo simulated and model-based scatter sinogram plane (upper row) and corresponding
profiles (lower row) for a single and b multiple five NEMA image quality phantoms.
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subjects' arrangement. Attenuation correction had a negligible
effect on the contrast. However, scatter correction along with
attenuation correction improved the contrast for the cold air
compartment in single- and multiple-subject PET studies. The
impact of scatter correction was more pronounced in simulta-
neous multiple subjects.

A representative transaxial slice of the NEMA image
quality phantom corresponding to single-, three- and five-
subject configurations is shown in Fig. 5. Horizontal profiles
through the centre of images corresponding to the true image
(unscattered events only) serving as reference, the image
reconstructed after attenuation correction only and after
applying attenuation and scatter corrections are also shown.
It can be seen that scatter correction improves the contrast in
the cold cylinders and matches better the true image,
especially in the five-subject configuration.

The recovery coefficients in the lung, liver, left and right
kidney regions of the MOBY phantom are summarized in
Table 5 for the different scanning configurations. The use of
attenuation correction overestimates the recovery coeffi-
cients especially in the five-subject configuration, whereas
attenuation and scatter correction underestimate the recovery
coefficients. Higher recovery coefficients are obtained for
single compared to multiple-subject imaging after scatter
correction. A transverse slice of the MOBY phantom
corresponding to single-, three- and five-subject configura-
tions through the kidney region is shown in Fig. 6. It can be
seen that scatter correction has little value especially for the
single-subject configuration.

The recovery coefficients in the lung, heart and kidney
regions of the ROBY phantom reconstructed with attenuation
correction only and with attenuation and scatter corrections for
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Fig. 4. Comparison of Monte Carlo simulated and model-based scatter component sinogram plane (upper row) and
corresponding profiles (lower row) for a single ROBY and b two ROBY models.

Table 3. Spill-over ratio (SOR) measured in the cold compartments of the NEMA phantom reconstructed without correction (NC), with attenuation correction only
(AC) and with attenuation and scatter corrections (AC + SC) for different scanning configurations. Estimates of the same metric in the actual images are also shown

Number of objects Position True NC AC AC + SC

Air Water Air Water Air Water Air Water

1 Centre 0.04 0.32 0.15 0.41 0.07 0.34 0.05 0.32
3 Centre 0.06 0.42 0.17 0.43 0.10 0.48 0.07 0.40

Right 0.05 0.38 0.15 0.45 0.09 0.51 0.06 0.39
Left 0.06 0.41 0.14 0.46 0.11 0.53 0.08 0.40

5 Centre 0.06 0.51 0.19 0.55 0.08 0.59 0.06 0.52
Right 0.05 0.46 0.17 0.56 0.08 0.46 0.03 0.47
Left 0.03 0.39 0.16 0.47 0.07 0.59 0.05 0.42
Up 0.07 0.50 0.16 0.51 0.09 0.58 0.05 0.52
Down 0.06 0.47 0.15 0.53 0.11 0.55 0.04 0.46
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single- and two-subject scanning configurations are represent-
ed in Fig. 7. The use of scatter correction compensates for the
overestimation of recovery coefficients resulting from attenu-
ation correction alone but induces equivalent underestimation.
Transaxial slices and corresponding horizontal profiles of the
ROBY thorax region representing the true, uncorrected,
attenuation corrected only and attenuation and scatter-corrected
images are shown in Fig. 8.

Discussion
In this work, we assessed the magnitude and spatial
distribution of the scatter component in small-animal PET
when imaging single- and multiple-subject simultaneously.

The impact of scatter correction on image quality and
quantitative accuracy under the same conditions was also
evaluated. Monte Carlo calculations are widely used to study
the characteristics of Compton scattering in PET [35].
Moreover, theMonte Carlo method offers the unique capability
to provide detailed information about unscattered and scattered
events and even to distinguish between single- and multiple-
scattered events. Recent developments in computationally
efficient Monte Carlo simulation packages combined with
advances in computational platforms including graphical
processing units and cloud computing has made it possible to
model the scatter component in small-animal PET imaging
using realistic source distributions within complex anatomical
models under controlled conditions [25].

Table 4. Contrast measured in the NEMA phantom reconstructed without correction (NC), with attenuation correction only (AC) and with attenuation and
scatter correction (AC + SC) for different scanning configurations. Values of the same metric in the true images are also shown

Number of objects Position True NC AC AC + SC

Air Water Air Water Air Water Air Water

1 Centre 71.08 52.27 61.67 48.76 62.98 49.98 70.32 51.84
3 Centre 82.35 52.86 60.74 46.49 61.96 47.92 80.39 51.09

Right 78.04 48.34 56.10 40.31 57.00 41.57 76.94 46.65
Left 78.03 47.05 58.69 40.87 59.51 41.87 77.62 45.96

5 Centre 83.68 49.44 55.63 45.08 56.99 46.04 86.66 51.33
Right 80.31 40.41 50.45 36.09 51.24 36.63 83.36 42.37
Left 80.63 42.75 54.63 36.04 55.34 36.48 82.05 43.41
Up 82.29 42.88 53.83 38.40 54.81 39.12 84.51 43.69
Down 79.47 41.08 52.66 35.70 53.53 36.01 81.46 42.53
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Fig. 5. Reconstructed images of the simulated NEMA image quality phantom (upper row) and their corresponding horizontal
profiles (lower row) comparing true, attenuation corrected (AC) and attenuation and scatter-corrected (AC + SC) images for a
single, b three and c five phantom configurations. The displayed transverse slices correspond to AC + SC images.
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In this work, the GATE platform was used to study the
scatter characteristics of the LabPET-8 scanner. It was observed
that the scatter contribution from kovar covering material was
significantly higher in comparison to scatter originating from
lead and copper plate serving as end-of-FOV shielding material.
This is due to the fact that kovar, being a high-density alloy
covering the entire detectors, produces more Compton scatter-
ing in the LabPET-8 scanner. Similar observations regarding
the behaviour of this material were reported more recently [18].
In particular, when imaging rats, organs presenting with high
uptake such as the heart, brain and bladder can be outside the
imaging FOV owing to the small axial FOV of the scanner. This
might increase detected scatter originating from outside the
FOV. Therefore, the contribution of scattered events arising
from outside the FOV was evaluated. It was observed that

events arising from outside the FOV have a negligible impact
(G1 %) for LETs of 350 and 450 keV, whereas the contribution
was less than 1.7 % for a LET of 250 keV, thus indicating that
the end shields of the LabPET-8 scanner are reasonably
effective in rejecting out-of-FOV scatter. This also implies that
a scatter correction method that models only scattered events
originating within the FOV, such as the single-scatter simula-
tion method used in this study [33], is reasonably adequate is
small-animal PET imaging. The object SF was evaluated for
single and multiple scanning of the NEMA image quality
phantom, MOBY and different body regions of the ROBY
anatomical model. The SF increases substantially for simulta-
neous multiple subjects imaging compared to single-subject
imaging, implying that scatter correction is important when
imaging simultaneous multiple subjects.

Table 5. Recovery coefficients measured in different body regions of the MOBY phantom reconstructed with attenuation correction only (AC) and with
attenuation and scatter corrections (AC + SC) for different scanning configurations

Number of objects Position Lung Liver Left kidney Right kidney

AC AC + SC AC AC + SC AC AC + SC AC AC + SC

1 Centre 101.66 98.35 100.81 98.34 100.20 99.00 100.55 99.03
3 Centre 100.21 93.71 100.91 95.19 100.14 95.07 99.82 94.82

Right 99.86 95.26 99.75 94.92 99.73 95.41 100.61 97.28
Left 99.74 92.99 100.02 94.79 100.37 96.74 100.26 96.18

5 Centre 104.47 93.06 105.12 92.66 100.84 90.62 102.26 91.10
Right 102.11 93.32 102.98 92.72 99.45 91.37 100.78 93.13
Left 105.84 95.48 105.87 96.32 100.20 93.38 101.69 92.20
Up 103.86 96.38 101.87 93.66 100.38 94.20 102.16 95.53
Down 101.78 93.77 103.59 96.03 102.77 97.19 101.39 94.76

a b c

0 5 10 15 20 25 30
0

2

4

6

8

position (pixel)

0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

2.5

position (pixel)
0 20 40 60 80

0.0

0.5

1.0

1.5

position (pixel)

 True
 AC
 AC+SC
 NC

Fig. 6. Representative slices of the simulated MOBY phantom (upper row) and their corresponding horizontal profiles (lower
row) comparing true, uncorrected (NC), attenuation corrected (AC) and attenuation and scatter-corrected (AC + SC) images for
a single, b three and c five MOBY model configurations.
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Since APDs are inherently slow, APD-based systems such
as the LabPET-8 scanner require a wide coincidence window
as well as a wide energy window. Also, different timing

windows are used for LGSO-LGSO, LYSO-LYSO and
LGSO-LYSO in LabPET-8 scanner. Hence, the SF was
evaluated under realistic conditions for a selected coincidence
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Fig. 7. Recovery coefficients measured in different body regions of the ROBY phantom reconstructed with attenuation
correction only (AC) and with attenuation and scatter correction (AC + SC) for a single and b two ROBY models.
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timingwindow of 10 ns and lower energy threshold of 250, 350
and 425 keV (the upper threshold was set to 650 keV). As
expected, the SF decreased with increasing the LET [8].

The estimated scatter distribution using the single-scatter
simulation method shows good agreement with Monte Carlo
simulations for single- and simultaneous multiple-subject
imaging. The SNR for scatter-corrected images deteriorates
owing to the scatter subtraction process and the consequent
reduction of statistics in the acquired data sets. However, the
quantitative accuracy is improved especially for simulta-
neous multiple-subject imaging. The spill-over ratio in-
creases with increasing the number of subjects in the FOV.
Scatter correction improves the SOR for both cold water and
air compartments in single- and multiple-subject imaging;
however, this effect is much noticeable for the air compart-
ment. Similar observations about the SOR were reported in a
related study [21]. The model-based scatter correction
technique improves image contrast for both cold compart-
ments of the NEMA image quality phantom compared to the
case where no correction is performed. Likewise, the
recovery coefficients in different body regions of the MOBY
and ROBY phantoms were remarkably improved after
scatter correction for simultaneous multiple mice as well as
single and multiple rat imaging.

Conclusion
The scatter component originating from different parts of the
LabPET-8 scanner including gantry and out-of field-of-view
was characterized. The magnitude and spatial distribution of
Compton scattering were evaluated for single and simulta-
neous multiple subjects. Model-based estimation of the
scatter component has good agreement with corresponding
Monte Carlo simulations. Attenuation and scatter corrections
improve contrast and quantification in small-animal PET
especially for simultaneous multiple-subject imaging. For
accurate PET quantification, attenuation correction is re-
quired for single and multiple mice and rat studies, whereas
scatter correction is required for single rat and multiple mice
and rat studies.
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