
B The Author(s), 2010
Published Online: 11 August 2010 DOI: 10.1007/s11307-010-0382-1

Mol Imaging Biol (2011) 13:759Y768

RESEARCH ARTICLE

Day-to-Day Test–Retest Variability of CBF,
CMRO2, and OEF Measurements Using Dynamic
15O PET Studies
Jochem P. Bremmer,1 Bart N. M. van Berckel,2 Suzanne Persoon,3 L. Jaap Kappelle,3

Adriaan A. Lammertsma,2 Reina Kloet,2 Gert Luurtsema,2 Abraham Rijbroek,2,4

Catharina J. M. Klijn,3 Ronald Boellaard2

1Department of Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
2Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, the Netherlands
3Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
4Department of Surgery, Kennemer Gasthuis, Haarlem, the Netherlands

Abstract
Purpose: We assessed test–retest variability of cerebral blood flow (CBF), cerebral blood
volume (CBV), cerebral metabolic rate of oxygen (CMRO2), and oxygen extraction fraction
(OEF) measurements derived from dynamic 15O positron emission tomography (PET) scans.
Procedures: In seven healthy volunteers, complete test–retest 15O PET studies were obtained;
test–retest variability and left-to-right ratios of CBF, CBV, OEF, and CMRO2 in arterial flow
territories were calculated.
Results: Whole-brain test–retest coefficients of variation for CBF, CBV, CMRO2, and OEF were
8.8%, 13.8%, 5.3%, and 9.3%, respectively. Test–retest variability of CBV left-to-right ratios was
G7.4% across all territories. Corresponding values for CBF, CMRO2, and OEF were better, i.e.,
G4.5%, G4.0%, and G1.4%, respectively.
Conclusions: The test–retest variability of CMRO2 measurements derived from dynamic 15O
PET scans is comparable to within-session test–retest variability derived from steady-state 15O
PET scans. Excellent regional test–retest variability was observed for CBF, CMRO2, and OEF.
Variability of absolute CBF and OEF measurements is probably affected by physiological day-to-
day variability of CBF.
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Introduction

O xygen-15 positron emission tomography (15O PET)
can be used to measure cerebral blood flow (CBF),

cerebral blood volume (CBV), cerebral metabolic rate of
oxygen (CMRO2), and oxygen extraction fraction (OEF) [1–
8]. Several methods have been proposed for determining

Significance: The present study provides reference data for absolute and
relative (i.e., left-to-right ratios) CBF, CBV, CMRO2, and OEF values
derived from dynamic 15O PET scans. In addition, the observed very good
test–retest variability of CBF, CMRO2, and OEF validates the use of a
dynamic scanning procedure for 15O PET studies.
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CBF, CBV, CMRO2, and OEF using 15O PET. Administration
of radiotracers using a steady-state technique, which is
recognized for its capacity to provide OEF values with very
high accuracy [9], is one of those methods [7, 10–12]. This
method is based on the continuous administration of 15O-labeled
tracers (usually by inhalation) until constant activity concen-
trations are reached in the tissue and blood (dynamic
equilibrium). Quantitative measures of CBF, CMRO2, and
OEF can then be obtained from the observed activity concen-
trations using very simple equations [13]. Disadvantages of the
steady-state technique are the need for stable arterial concen-
trations [10, 14], the relatively high radiation dose, and the need
to assume a value for the volume of distribution of water. In
addition, not all cyclotrons have the capacity to produce 15O-
labeled tracers continuously.

An alternative method to calculate CBF, CMRO2, and
OEF is the use of dynamic scanning protocols together with
bolus injections and/or brief inhalations of the 15O-labeled
tracers [11]. Generation of parametric CBF data using a
basis function approach has been discussed previously [15,
16]. In order to generate parametric CMRO2 and OEF
images with a dynamic scanning protocol, several methods
have been described [17–20]. Day-to-day variability of CBF,
CMRO2, and OEF measurements using dynamic15O PET
scans has not been addressed previously. Such an assess-
ment is essential for interpreting results of longitudinal
studies. In addition to absolute values, left-to-right ratios of
CBF, CMRO2, and especially OEF can be important for
identifying patients with impaired cerebral perfusion caused
by occlusive cerebral artery disease, who might be treated
with extracranial to intracranial bypass surgery [21, 22].
Again, day-to-day variability of these ratios using dynamic
15O PET scans has not been determined.

The purpose of the present study was to generate reference
data of CBF, CMRO2, and OEF using dynamic 15O PET scans
and to evaluate associated day-to-day test–retest variability.

Materials and Methods
Subjects

Test–retest PET studies were performed in ten healthy volunteers
(six men, four women) with a mean age of 69 years (range, 57 to
80 years) who were scanned on two separate occasions (with an
interval of 3–54 days). In addition, all patients underwent magnetic
resonance imaging (MRI), which was needed for PET image
analysis shortly before the first PET study. The study was approved
by the medical ethics committee of the University Medical Center
Utrecht and all volunteers provided informed consent.

Scan Protocol

PET scans were acquired using an ECAT EXACT HR+ scanner
(CTI/Siemens, Knoxville, TN, USA) which has been characterized
elsewhere [23]. Subjects were scanned under baseline conditions,

i.e., lights in the room were dimmed and music was turned off.
Patients were asked to close their eyes. Heads were positioned in an
immobilization device to minimize patient motion during the study
and in between scans. Each study consisted of [15O]H2O, [

15O]O2,
and [15O]CO emission scans. Prior to the emission scans, a 10-min
transmission scan was acquired for attenuation and scatter
correction purposes. For the subsequent CBF study, a bolus
(~5 s) of 1,100 MBq [15O]H2O was administered intravenously,
simultaneously starting a 3D dynamic emission scan (25 frames
over a period of 600 s). The [15O]O2 study was performed 5 min
after the end of the CBF study to allow for decay of residual 15O
activity to background levels. A 3D dynamic emission scan (20
frames over a period of 600 s) was then started simultaneously with
the net inhalation of approximately 300 MBq [15O]O2 gas during a
period of ~30 s. During administration of the [15O]O2 gas, the
subjects continued breathing normally to avoid changes in cerebral
hemodynamics, but they were instructed to inhale through the nasal
administration cannula (oxygen catheter DK3460; diameter,
4.7 mm; Unomedical, Birkerød, Denmark) and exhale through the
mouth. Note that, in this study, scan durations of 600 s were used
for both the water and oxygen studies. Initially, it was attempted to
use these longer scans to derive both perfusion and oxygen
extraction fraction from a single [15O]O2 study. However, it was
found that this was not feasible, and data were therefore analyzed
by reusing perfusion and volume of distribution from the water
scan (see “Image Analysis”). Although, by reusing parameters from
the water scan, shorter scan durations may have been applied, it
would not have shortened the overall study duration as some time
interval between scans is needed to allow for radioactive decay. For
the CBV study, a bolus of approximately 200 MBq [15O]CO gas
was administrated in a manner identical to the [15O]O2 procedure.
One minute after the end of inhalation, a 3D dynamic emission scan
(three frames over a period of 360 s) was started. All scans were
reconstructed using FORE+2D FBP reconstruction with a Hanning
filter at Nyquist frequency, including all usual corrections for
quantification. A matrix size of 256×256 and a zoom of 2.1 were
applied, resulting in a voxel size of 1.2×1.2×2.4 mm3 and a final
image resolution of ~7 mm full width at half maximum. For all
dynamic scans, the arterial input function was measured using an
online continuous blood-sampling device; details on this device are
given in [24]. In short, the device consists of a bismuth germanate
(BGO)-based detector, shielded by a 3-cm lead, a withdrawal
pump, and a computer for reading out the detector and controlling
the pump. During blood withdrawal, a 1-mm-inner-diameter tubing
that is connected to an arterial cannula is positioned in a slit that runs
through the BGO detector. On the other end, the tubing is connected to
a 3-mm-inner-diameter tubing that runs through the pump, and finally
blood is collected in a 3-cm lead shielded waste bag. Using scripts,
both detector readout sampling and pump speed (i.e., withdrawal rates)
can set and automatically change during the studies. When necessary,
pump speed can be overruled manually. During the first 4 min of each
study, blood is withdrawn at a rate of 450 ml/h, and readout of the
detector is performed continuously using 1-s readout samples. After
4 min onwards, pump speed is set to 150 ml/h to minimize the amount
of blood withdrawn, and the detector readout sampling time is set to
10 s. Manual samples were taken at discrete times for calibration
purposes and for assessment of plasma-to-whole blood ratios: three
samples at 5.5, 8, and 10 min during the [15O]H2O scan, six samples at
1, 2, 3, 4.5, 7, and 9 min during the [15O]O2 scan, and three samples at
1, 3, and 5 min during the [15O]CO scan. Activity concentrations in the
blood and plasma were determined for all samples. For the samples
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taken during the oxygen scan, the plasma-to-whole blood ratios were
determined in order to separate the whole blood input function into
water and oxygen input functions needed for kinetic analysis. For the
latter purpose, a multi-exponential function was fitted through the six
plasma-to-whole blood ratios.

Image Analysis

Parametric images were calculated using previously developed
models. Parametric CBF and the volume of distribution of water

(VT) images were generated using a basis function implementation
of the blood flow model, including corrections for dispersion, delay,
and arterial blood volume as described previously [16]. Next,
parametric CMRO2 and OEF images were generated using a slightly
modified implementation of the method published by Hattori et al.
[20] with the following differences: (1) as scans were acquired over
600 s, all frames during this interval were included in fitting the data;
(2) the parametric VT data derived from the CBF scans were reused
voxelwise rather than using the (same) fixed value for all voxels [16,
25]; and (3) the blood volume fraction was included as fit parameter
rather than reusing it from the CO study as it has been shown that this

Fig. 1. Typical warped whole-brain flow territory volumes of interest (maps). Territory of ACA, gray on left hemisphere. Territory
of MCA, brown on left hemisphere. Territory of PCA, blue on left hemisphere.
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Fig. 2. Typical CBF, OEF, and CMRO2 parametric maps for a healthy volunteer in comparison with a patient who had recurrent
TIAs associated with a left internal carotid artery occlusion. The PET study of the patient shows in the ipsilateral hemisphere a
decreased CBF and increased OEF compared with the contralateral hemisphere.
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procedure provides more accurate fits near large blood vessels [25].
More details about the implementation of the basis function method
are given in the Appendix. Parametric CBV data were derived from
the CO scan as described by Martin et al. [26] and Hattori et al. [20].

Next, anatomical T1-weighted MRI images were coregistered
with the PET images. These scans were reviewed visually to
exclude anatomical abnormalities. Subsequently, an MRI template
with volumes of interest (VOIs) of the 3D flow territories of middle
cerebral artery (MCA), anterior cerebral artery (ACA), and
posterior cerebral artery (PCA) (Fig. 1) [27] was warped onto the
coregistered MRI scan of each subject. Warping was performed
using the Automated Image Registration (AIR) software developed
by Woods et al. [28]. Nonrigid 12-parameter perspective warping
was applied to fit the template onto the subject's MRI scan.
Afterwards, the warped, 3D VOIs were inspected and manually
corrected when needed. Statistical parametric mapping (SPM02,
Wellcome Department of Cognitive Neurology, London, UK,
application written in Matlab 5.2; MathWorks, Inc., Natick, MD,
USA) was used for gray–white matter segmentation of the

coregistered MRI scan. These gray and white matter segmentations
were then used in combination with the warped VOI template to
calculate mean CBF, CBV, CMRO2, and OEF in the different flow
territories, separating data/VOI into gray and white matter
subregions. The generation of CBF, CBV, CMRO2, and OEF data
and VOI analyses were performed using in-house developed
software (IDL, 6.2, ITT, Boulder CO, USA).

Statistical Analysis

Individual CBF, CBV, CMRO2, and OEF test–retest data will be
displayed for all subjects. To assess intersubject variability of gray
matter CBF, CBV, CMRO2, and OEF measurements, standard
deviation and coefficient of variation CV ¼ SD=meanð Þ were
calculated across subjects for the defined flow territories.
Day-to-day reproducibility of gray matter CBF, CBV,
CMRO2, and OEF measurements was calculated in a similar
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fashion. As stated above, left-to-right ratios of hemodynamic
parameters, in particular OEF for the MCA territory [21],
may be important for selecting patients with compromised
cerebral hemodynamics. Therefore, left-to-right ratios of
CBF, CBV, CMRO2, and OEF were also calculated as well
as their intersubject variability.

Results
Complete test and retest parametric CBF, CBV, CMRO2, and
OEF images could be generated reliably in seven of the ten
subjects. In two subjects, the input curve of one of the scans
(i.e., either test or retest scan) showed irregularities due to

radiation spillover, possibly due to poor positioning of the
tubing within the detector and poor inhalation of 15O2. In one
subject, due to technical reasons and human mistakes,
erroneous well-counter readings were obtained for the manual
samples. The time duration between the two scans was 54 days
in one subject, 28 days in another subject, and 3 to 8 days in the
other five subjects. Figure 2 shows an example of the
parametric images of a healthy subject in comparison with a
patient with recurrent transient ischemic attacks (TIAs)
associated with a left internal carotid artery occlusion. The
CBF, CMRO2, and OEF results for the seven successful test–
retest studies are shown in Fig. 3 and, together with CBV data,
summarized in Table 1. Left-to-right ratios of test and retest
CBF, CMRO2, and OEF measurements are shown in Fig. 4

Table 1. Intersubject variability and day-to-day reproducibility of dynamic gray matter PET measurements

Intersubject variabilitya Day-to-day variability

Mean ± SDb SD CV (%) SD CV (%)

CBF (ml/min/100 ml)
MCA
Left 37.4±3.3 5.5 14.6 3.3 8.9
Right 37.3±3.3 5.8 15.2 3.4 9.1

PCA
Left 41.2±3.8 6.3 14.6 4.1 9.7
Right 41.3±3.6 6.6 15.5 3.3 7.8

ACA
Left 37.1±2.8 5.9 15.4 3.9 10.6
Right 37.9±3.0 5.6 14.4 3.2 8.3
Total brain 37.6±2.9 5.1 13.1 3.3 8.8

CBV (mL/100 mL)
MCA
Left 2.96±0.5 0.4 13.6 0.4 13.8
Right 2.99±0.5 0.4 12.0 0.4 14.1

PCA
Left 3.35±0.5 0.5 15.1 0.5 15.9
Right 3.47±0.6 0.6 15.8 0.5 16.1

ACA
Left 2.79±0.4 0.2 7.9 0.4 15.9
Right 2.90±0.5 0.6 18.2 0.4 14.9
Total brain 4.06±0.6 0.5 12.1 0.5 13.8

CMRO2 (ml/min/100 ml)
MCA
Left 3.04±0.2 0.2 6.9 0.1 4.1
Right 3.01±0.2 0.2 7.2 0.1 4.5

PCA
Left 3.39±0.3 0.3 7.7 0.2 5.3
Right 3.38±0.3 0.3 9.0 0.2 5.4

ACA
Left 2.92±0.2 0.3 8.8 0.2 6.9
Right 2.96±0.3 0.3 9.2 0.1 3.8
Total brain 3.05±0.2 0.2 7.1 0.2 5.3

OEF (%)
MCA
Left 43.4±6.5 9.5 22.0 4.0 9.8
Right 43.1±6.5 9.2 21.6 4.1 9.5

PCA
Left 43.6±5.6 8.4 19.6 4.1 9.5
Right 43.4±6.3 9.0 21.0 3.9 9.3

ACA
Left 41.8±6.6 9.6 23.1 4.3 10.5
Right 41.3±6.0 8.8 21.5 4.1 9.9
Total brain 43.0±6.3 9.1 21.4 4.0 9.3

SD test–retest standard deviation, CV coefficient of variation, MCA middle cerebral artery, PCA, posterior cerebral artery, ACA anterior cerebral artery
aBaseline data
bMean test and retest data. Mean values given for comparison
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and, together with CBV data, summarized in Table 2. The
range of the left-to-right OEF ratio in the MCA gray matter
territory was 0.98–1.03 (n=14).

Discussion
This study provides reference data for CBF, CBV, CMRO2, and
OEF values derived from dynamic 15O PET scans. Obtained
mean values of CBF, CBV, CMRO2, and OEF are comparable
to those reported previously [9, 29, 30]. Compared with the
within-session reproducibility of steady-state measurement of
CBF and OEF [30], we found a similar day-to-day test–retest
variability of CBF and a higher day-to-day test–retest variability

of OEF measurements. Day-to-day variability of CBF measure-
ments in the present study was comparable to that reported
previously for healthy volunteers [2, 31, 32]. In addition to
measurement errors that affect day-to-day variability of CBF,
CBV, CMRO2, and OEF measurements [33], the day-to-day
test–retest variability of CBFmeasurements in the present study
is most likely also affected by physiological day-to-day
variability. With the present study design, however, it is not
possible to distinguish between measurement errors and
physiological day-to-day variance. Although the exact contri-
bution of physiological and measurement errors could be
studied further using a within-session test–retest reproducibility
study, the present design provides a clinically relevant assess-
ment of the variability in CBF, CBV, CMRO2, and OEF
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measurements for follow-up studies (e.g., when monitoring the
effects of treatment). Interestingly, the variability of CMRO2

measurements was low and comparable to within-session
reproducibility of CMRO2 derived from steady-state studies
[30]. The relatively high day-to-day variability in CBF and low
day-to-day variability in CMRO2 also implies a high variability
in OEF. This finding is in line with previous observations where
artificial changes in CBF were compensated by opposite
changes in OEF [34] to maintain constant CMRO2 needed to
preserve cell functions of brain neurons [35]. The observed very
good test–retest variability of CMRO2 validates the use of a
dynamic scanning procedure for 15O PET studies.

Other 15O PET techniques have been described in
literature, such as autoradiographic methods and dual
autoradiographic methods [18, 36] and steady-state meas-
urements [7, 10–12]. A possible advantage of the method
used in our study is that it is not required to assume a
fixed value for the volume of distribution (or partition
coefficient) of water and that the blood volume fraction is
used as fit parameter. In theory, this may provide more
accurate results but at the cost of using two additional fit
parameters in the calculations. The latter could potentially
result in worse reproducibilities. The test–retest variability
and CBF, CMRO2, and OEF values observed in our
studies, however, are very comparable to those found
elsewhere using different scanning techniques as dis-
cussed above. Moreover, the very low variability seen in
CMRO2 suggests that the higher day-to-day variabilities
observed for CBF and OEF are likely determined by
physiological variation rather than technical issues or the
applied 15O PET technique. It is therefore assumed that

the observed test–retest variabilities are independent of the
applied 15O PET technique or, at least, that the dynamic
scanning technique performs equally as well as others.
Clearly, critical issues in the dynamic scanning technique
are related to the collection of the arterial input function
as illustrated by the three study failures. Also, shorter
scan durations than 10-min acquisitions may have been
applied, yet it would not have shortened the overall study
duration as some time interval between scans is needed to
allow for radioactive decay. Moreover, time is needed for
quality control of the collected input function data and for
repeat production of the 15O-labeled tracers when needed.

When studying left-to-right ratios of CBF, CMRO2, and
OEF (Table 2), excellent test–retest variabilities were observed,
i.e., in the order of a few percent (CV). This good test–retest
variability was less prominent for the CBV left-to-right ratio,
probably due to higher noise levels in the [15O]CO scan and
asymmetry in the presence of larger blood vessels in the 3D
VOI. In the kinetic analysis of CBF, CMRO2, and OEF data,
the vascular component within a VOI was used as fit parameter
rather than reusing CBV derived from the [15O]CO study.
Therefore, differences or inaccuracies in vascular fraction seen
in the [15O]CO scans did not affect regional test–retest
variability of CBF, CMRO2, and OEF measurements. Apart
from studying absolute changes in CBF, CMRO2, and OEF in
case of monitoring response to treatment or following
pathophysiological processes over time, dynamic 15O PET
studies may be used clinically as a sensitive means of detecting
ipsilateral versus contralateral asymmetries in CBF, CMRO2,
and OEF. The present values of left-to-right ratios were
comparable with previous measurements [37]. Taken together,

Table 2. Intersubject variability and day-to-day reproducibility of left–right ratios of dynamic gray matter PET measurements

Intersubject variabilitya Day-to-day reproducibility

Mean ± SDb SD CV (%) SD CV (%)

CBF (ml/min/100 ml)
L/R ratio
MCA 1.00±0.02 0.02 2.2 0.01 1.1
PCA 1.00±0.03 0.03 2.8 0.03 2.9
ACA 0.98±0.04 0.08 7.9 0.04 4.5

CBV (ml/100 ml)
L/R ratio
MCA 0.99±0.01 0.03 3.4 0.03 2.6
PCA 0.97±0.08 0.09 9.4 0.03 3.5
ACA 0.97±0.12 0.13 12.7 0.07 7.4

CMRO2 (ml/min/100 ml)
L/R ratio
MCA 1.01±0.02 0.02 1.8 0.02 1.6
PCA 1.00±0.04 0.03 2.9 0.03 3.0
ACA 0.99±0.04 0.08 7.8 0.04 4.0

OEF
L/R ratio
MCA 1.01±0.01 0.02 1.7 0.01 1.5
PCA 1.01±0.02 0.02 2.1 0.01 0.8
ACA 1.01±0.02 0.02 2.2 0.01 1.4

SD test–retest standard deviation, CV coefficient of variation, MCA middle cerebral artery, PCA posterior cerebral artery, ACA anterior cerebral artery
aBaseline data
bMean test and retest data. Mean left–right ratios given for comparison
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the present study provides additional reference data for
absolute and relative (i.e., left-to-right ratios) CBF,
CMRO2, and OEF measurements using dynamic 15O
PET scans. When asymmetry in CBF or OEF is expected
such as in patients with unilateral ICA occlusion who are
at high risk of stroke [21], left-to-right ratios may be
useful because of their excellent test–retest variability
(Table 2). It should be emphasized that in our study
results were obtained at a baseline condition. In physio-
logically stressed conditions, test–retest variabilities may
be different than those observed in the present study. It is
likely that the technical component of the observed test–
retest variability may be similar to those seen under
baseline conditions, i.e., effects of image noise and input
function collection and processing on CBF, OEF, and
CMRO2 test–retest variabilities may be similar. Yet day-
to-day test–retest variability may be more strongly
affected by the quality of obtaining reproducible stressed
conditions. From the present data, it is not possible to
determine the test–retest variability under physiologically
stressed or pathological conditions, and this warrants
further investigations, yet information on test–retest
variability under baseline conditions provide valuable
information of the normal range of CBF, OEF, and
CMRO2, and this information is needed in order to
reliably identify subjects or brain regions with abnormally
high or low values.

In the present study, warped 3D VOIs were used to
measure CBF, CMRO2, and OEF in entire MCA, PCA,
and ACA flow territories. This approach has both
advantages and disadvantages. It prevents possible selec-
tion errors that can occur when only a few smaller regions
of interest are used for analysis. Moreover, as carotid
occlusions are likely to affect CBF, CMRO2, and OEF in
entire flow territories, use of 3D VOI will provide data
with better statistics and higher sensitivity. However, use
of larger 3D VOI may underestimate and even miss small
focal changes in CBF, CMRO2, and OEF because of the
relatively large volumes of the flow territories. It should
be noted, however, that in the present study first para-
metric maps were generated. Clearly, these parametric
images could also be used to analyze the data with
smaller VOI or at the voxel level. In addition, they are
presently used for visual inspection/evaluation.

The dynamic acquisition protocol is relatively vulner-
able to technical errors. As mentioned above, three out of
20 PET studies could not be analyzed primarily because
of errors in the acquired input function data. Correct
administration of the tracers and collection of the input
functions seem to be the most critical issues in obtaining
reliable results. Because of the short half-life of 15O,
however, acquisition errors could easily be corrected
provided that they are detected immediately after or
during the scanning procedure. In those cases, a scan
could be repeated, adding only 15 min to the overall study
duration. Therefore, for routine clinical use, it is required

to have an online data quality assurance procedure in
place. At present, we have implemented an online quality
control system based on the number of counts (activity)
seen in the manual samples to verify sufficient and correct
administration of the tracers. Furthermore, online review
of the input functions allows verification of correct
collection of the continuous online blood input curves.

Conclusion
Day-to-day test–retest variability of CMRO2 measure-
ments using dynamic 15O PET scans is comparable to
within-session test–retest variability using steady-state
[15O] PET scans. Day-to-day test–retest variability of
CBF and OEF measurements probably is determined
primarily by day-to-day physiological variability in CBF
and corresponding adaptation of OEF. Test–retest varia-
bility in left-to-right ratios of CBF, CMRO2, and OEF is
excellent (CVG4.5%) and may even be used to detect
impaired brain perfusion and/or oxygen consumption in
individual patients.
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Appendix: Generation of OEF
and CMRO2 Parametric Images
Using Basis Function Methods
Parametric CBF and volume of distribution of water (VT)
images were generated using a basis function implementa-
tion of the blood flow model, including corrections for
dispersion, delay, and arterial blood volume as described
previously (Eqs. 1–4). The model is given by a single tissue
compartment model with (arterial) blood volume fraction
(Va) correction:

CT ¼ F � Ca � e�ðF=VTÞ�t ð1Þ

CROI=VOX ¼ ð1� VaÞ � F � Ca � e�ðF=VTÞ�t þ Va � Ca ð2Þ

CT represents the activity concentration in tissue and CROI/

VOX the activity concentration in a region of interest or, in
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this case, in a voxel. F is the flow or perfusion, VT is the
volume of distribution, and Ca is the arterial input function
(in this case of arterial whole-blood activity concentration
over time).

In order to reduce computation time, the convolution term
in these equations can be precomputed for a range of
F=VT ¼ kið Þ values and then Eq. 1 can be rewritten as a
linear equation:

BFiðtÞ ¼ Cb � e�F=VT�t ¼ Cb � e�ki�t ð3Þ
and Eq. 2 is then rewritten as (Eq. 4):

CROI=VOX ¼ ð1� VaÞ � F � BFi þ Va � Ca ð4Þ

Finally, for each voxel time–activity curve, the combination
of BFi(t) (and thus ki), F, and Va which provides the minimal
weighted least squares discrepancy between measured data
and Eq. 4 is used to calculate Va, F, and VT.

Next, parametric CMRO2 and OEF images were gener-
ated using a slightly modified implementation of the method
published by Hattori et al. [20] with the following differ-
ences: (1) all frames over the interval of 0–600 s post-
injection were included, (2) the parametric VT data derived
from the CBF scans were reused voxelwise rather than using
the (same) fixed value for all voxels [16, 25], and (3) arterial
blood volume was used as fit parameter rather than reusing it
from the CO study as it has been shown that this procedure
provides more accurate fits near large blood vessels [25].
The basis function method for analyzing the oxygen studies
is thus given by (Eq. 5):

Ct ¼ Va � CO2
a þ ð1� VaÞ � ½F � CH2O

a � e�kt þ F � E �
CO2
a � e�kt�

ð5Þ

CROI/VOX is the PET tissue time–activity curve, corrected
for contribution of activity from venous blood using method
of Holden et al. [17]. Va is the arterial blood volume fraction
OR spillover correction term (needed in parametric applica-
tion of the model). Ca

H2O is the arterial input function of
water. Ca

O2 is the arterial input function of oxygen. F is the
flow or perfusion, E is the oxygen extraction fraction (OEF),
and k ¼ F=VT; VT ¼ volume of distribution of water. The
total arterial input function Ca is split into Ca

H2O and Ca
O2 ,

based on the activity concentration ratios between whole blood
¼ 15O½ �H2Oþ 15O½ �O2ð Þ and plasma ¼ 15O½ �H2Oð Þ sample
data, thus assuming that oxygen is bound in red blood cell, i.e.,
[15O]O2 is not present in plasma.

In our implementation, F and VT and thus the k values are
reused voxelwise from the parametric data derived from the
15O water study. Consequently, the convolution terms are
precomputed/known for each voxel, and only a linear
equation remains. By weighted linear least squares fitting
of the voxel TAC with Eq. 5, the OEF (=E) and thus also the
product of OEF and F are obtained. CMRO2 is then derived
simply by multiplying the OEF by the F image with the

oxygen content in blood (derived from the manual blood
samples).
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