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1 Introduction

Untargeted metabolomics based on mass spectrometry (MS) 
can provide insight into human health and disease that may 
not be apparent using nucleic acid or protein-based analyti-
cal approaches (Babu & Snyder, 2023). While metabolomic 
studies primarily focus on aqueous metabolites in samples 
such as blood, urine, and feces, breath is a rich and diverse 
matrix containing thousands of different volatile organic 
compounds (VOCs) (Costello et al., 2014; Haworth et al., 
2022). The non-invasive nature of breath sampling makes it 
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Abstract
Introduction Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled 
breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement 
platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident dis-
covery of breath-based biomarkers.
Objectives To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs 
in the breath of a heterogeneous human population.
Methods The analysis cohort consisted of 90 pairs of breath and background samples collected from a heterogenous popu-
lation. Owlstone Medical’s Breath Biopsy® OMNI® platform, consisting of sample collection, TD-GC-MS analysis and 
feature extraction was utilized. VOCs were determined to be “on-breath” if they met at least one of three pre-defined metrics 
compared to paired background samples. On-breath VOCs were identified via comparison against purified chemical stan-
dards, using retention indexing and high-resolution accurate mass spectral matching.
Results 1471 VOCs were present in > 80% of samples (breath and background), and 585 were on-breath by at least one 
metric. Of these, 148 have been identified covering a broad range of chemical classes.
Conclusions A robust breath collection and relative-quantitative analysis method has been developed, producing a list of 
148 on-breath VOCs, identified using purified chemical standards in a heterogenous population. Providing confirmed VOC 
identities that are genuinely breath-borne will facilitate future biomarker discovery and subsequent biomarker validation 
in clinical studies. Additionally, this list of VOCs can be used to facilitate cross-study data comparisons for improved 
standardization.
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particularly attractive for clinical applications, such as early 
diagnosis and ongoing longitudinal monitoring.

However, the validation of clinically useful breath bio-
markers remains limited. This is likely due, at least in part, 
to the lack of consistent methodologies and quality controls 
across the breath research literature (Issitt et al., 2022; Jia et 
al., 2019). To advance the field of breath analysis, there is an 
urgent need to develop a robust platform that can accurately 
identify the VOCs considered to be genuinely originating 
from the breath (which are comprised of endogenous VOCs 
derived from metabolic processes and exogenous VOCs, 
such as microbiome or dietary compounds). These breath-
borne VOCs need to be distinguished from background 
VOCs that arise from the sampling equipment and sur-
rounding air that was inhaled immediately before sampling, 
which are unrelated to underlying physiology. Establishing 
an accurate and repeatable methodology will expedite the 
identification and validation of VOC biomarkers of disease 
in future studies.

There are multiple approaches for collecting and ana-
lyzing breath, each with different advantages, limitations, 
and challenges (Haworth et al., 2022). Untargeted breath 
biomarker discovery workflows are most common, which 
often produce data on unknown VOCs or VOCs tentatively 
identified by comparison with publicly available standard 
libraries, such as those provided by the National Institute of 
Standards and Technology (NIST). This increases the risk 
of misidentifications due to differences in methodology and 
instrumentation between untargeted datasets and reference 
libraries, impeding the replication and validation of find-
ings. Accurate identification of the VOCs in a breath sample 
requires a comparison to purified chemical standards ana-
lyzed using the same instrumentation and methods (Fiehn et 
al., 2007; Sumner et al., 2007). At least one unique chemical 
standard is required for every VOC to be identified, but as 
this is costly and time-consuming, many studies forego this 
critical process.

Another unmet need in the breath field is standardized 
methods for background correction (Herbig & Beauchamp, 
2014). Many reports have noted the significance of back-
ground contributions to the VOCs observed in breath sam-
ples, which can originate from multiple potential sources 
such as ambient air or from breath sample collection equip-
ment (Di Gilio et al., 2020; Westphal et al., 2022). Common 
background correction techniques in breath analysis include 
the calculation of an alveolar gradient to identify VOCs that 
are more abundant in breath (Phillips, 1997), or using a lung 
washout with synthetic air to identify VOCs likely to be con-
tributed by inhaled background (Hewitt et al., 2022; Mau-
rer et al., 2014; Schubert et al., 2005; Spaněl et al., 2013; 
Westhoff et al., 2022). However, the success of background 
correction relies heavily on the quality of the background 

measurement. One commonly used method for background 
measurements is to take a sample of ambient air in the same 
location where breath sampling is being performed, which 
neglects compounds originating from the sampling equip-
ment. Since VOCs are ubiquitous in the environment and 
therefore can be introduced through multiple components 
and points throughout the analytical process (Pham et al., 
2023), it is important to ensure comparable collection and 
handling of breath and background samples, of which there 
is already a method that has been previously described for 
the ReCIVA® breath Sampler (Di Gilio et al., 2020; Doran 
et al., 2017).

Other attempts have been made to develop a compen-
dium of breath biomarkers (Drabińska et al., 2021; Kuo 
et al., 2020) which are useful assemblies and distillations 
of the important literature in this field. However, they also 
have the same limitations as the underlying literature. A 
general lack of standardization in sampling, analysis, and 
identification of VOCs means that it is difficult to quickly 
assign confidence to any single observation without review-
ing the underlying literature. In this study, we present a 
novel methodology that combines robust breath and back-
ground collection, analytical distinguishing breath VOCs 
from background contamination, and VOC identification 
against chemical standards. We demonstrate the capability 
of this method by presenting a list of high-confidence breath 
VOCs identified from a heterogeneous human population.

2 Methods

2.1 Study design and subjects

This observational study was approved by the Reading 
Independent Ethics Committee RIEC: 290620-1, all par-
ticipants provided written informed consent. Adults (≥ 18 
years; Cambridge, UK) recruited all met the inclusion cri-
teria, were free of active respiratory infection symptoms or 
diagnoses (including COVID-19) and fasted for at least two 
hours prior to breath sampling. We also decided to include 
some volunteers with various chronic diseases to account 
for potential normal variation in the population, and ensure 
breadth of VOC detection. All subjects were treated as a 
single cohort in statistical analysis as the study’s intention 
was not to compare differences between disease and con-
trol. Breath samples were collected from 99 adult volunteers 
between January and February 2022. Nine samples were 
excluded due to saliva contamination (determined by obser-
vation of saliva/bubbles within the tube) (n = 8) or incom-
plete collection volume (n = 1). The final analysis consisted 
of 90 breath samples and 90 paired system backgrounds 
(Table 1). Of the 90 adult subjects, 24 had some type of 
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chronic disease including type 2 diabetes, high blood pres-
sure, arthritis, and irritable bowel syndrome.

2.2 Breath sampling and analysis

The methodology utilized as part of this study is known as 
the Owlstone Medical Novel Insights (OMNI) method, and 
will be described in this section. Breath samples were col-
lected using Owlstone Medical’s ReCIVA® Breath Sampler. 
The ReCIVA Breath Sampler pre-concentrates breath sam-
ples onto adsorbent tubes, enabling a larger collection of 
air volume and offering the potential for greater sensitivity 
in detecting low-abundance compounds. Subjects breathed 
normally into the ReCIVA mouthpiece with a nose plug 
(Supplementary Fig. 1). Approximately 1.25 L of breath 
are collected onto each sorbent tube – with the analysis 
completed with 2.5 L: 2 tubes for analysis and 2 tubes for 
backup. This meant a total of 5 L of breath was collected per 
participant. This takes approximately 12–15 min of normal 
tidal breathing into the device to collect.

Ambient contamination was minimized using the 
CASPER® Portable Air Supply during breath sampling, 
which filters ambient air into the ReCIVA (Supplementary 
Fig. 1). The CASPER is a portable air supply that takes in 
room air, filters it to remove VOCs and particulates, and 
supplies it directly into the ReCIVA Breath Sampler for a 
subject to breathe into. The CASPER removes VOCs using 
a replaceable air filter pack that is filled with activated car-
bon; VOCs from the ambient air are adsorbed to the surface 
of the carbon. These tools combined were used to collect 
VOCs produced from the subject and eliminate VOCs that 
are re-breathed directly from the air in the room. Equal 
volumes of matched system background samples were 
collected immediately before each breath sample. Using 
internal, fast response pressure sensors, the ReCIVA Breath 
Sampler can monitor patient breathing patterns in real-time 
(see Supplementary Fig. 1). Alongside the paired software, 
these sensors estimate when the end-tidal fraction of breath 
is being exhaled, and the sampling pumps are automatically 
turned on and off at the necessary time to collect that breath 

fraction. For background samples, all collection hardware 
was configured as if to collect a breath sample, but with the 
mouthpiece opening sealed and the software configured to 
sample continuously (no selection for specific fractions of 
breath). The exact settings are detailed in Supplementary 
Table 1.

Breath and background samples were analyzed using the 
Breath Biopsy OMNI settings (see Supplementary Materi-
als for more details). The tubes were purged with a TD-100 
(Markes International Ltd. Llantrisant, UK) and stored at a 
temperature of 4–8 °C for no more than 27 days before anal-
ysis. Breath and their paired background samples were liq-
uid injected with a mix of eight deuterated internal standard 
compounds (Supplementary Table 2) solubilized in metha-
nol and analyzed in the same sequence using TD-GC-MS. A 
series of straight-chain alkanes (C5-C16) were spiked onto 
a separate tube (50ng per alkane) and analyzed within each 
analytical sequence, to enable the calculation of retention 
indices. Analysis was conducted on the TD (Markes) – Q 
exactive Orbitrap (Thermo Fisher Scientific) high-resolu-
tion accurate mass spectrometry platform, utilizing the set-
tings specified in Supplementary Table 3.

ReCIVA and CASPER breath collection, paired back-
ground sampling, TD-GC-MS analysis, and the feature 
extraction method are collectively known as the ‘OMNI’ 
method.

2.3 Feature extraction and data normalization

The resulting breath and background chromatograms (an 
example of a breath chromatogram is shown in Supplemen-
tary Fig. 2) were batch processed (spectral deconvolution, 
feature group clustering, and library matching to NIST17) 
utilizing the OMNI untargeted feature extraction method 
in Compound Discoverer (ver. 3.2, Thermo Scientific™), 
detailed in Supplementary Table 4. After feature extraction, 
all features were normalized using the measured peak area 
intensity response of spiked internal standard (IS) com-
pounds to reduce analytical variability associated with TD-
GC-MS. A hybrid correlation-retention time normalization 

Variable Overall Female Male P-value
Total N 90 48 42 N/A
Age, mean (SD) 44.0 (16.6) 44.1 (16.7) 44.0 (16.6) 0.961
BMI, mean (SD) 26.2 (6.0) 26.6 (7.2) 25.8 (4.2) 0.515
Smoking Status, n (%) Current Smoker 5 (5.5%) 2 (4.2%) 3 (7.2%) 0.521

Ex-Smoker 21 (23.3%) 11 (22.9%) 10 (23.8%)
Never Smoker 64 (71.1%) 35 (72.9%) 29 (69.0%)

Ethnicity, n (%) Caucasian 62 (68.9%) 33 (68.8%) 29 (69.0%) 0.900
South Asian 12 (13.3%) 6 (12.5%) 6 (14.3%)
East Asian 9 (10.0%) 6 (12.5%) 3 (7.1%)
Black 5 (5.6%) 2 (4.2%) 3 (7.1%)
Mixed Race 2 (2.2%) 1 (2.1%) 1 (2.4%)

Table 1 Study cohort demograph-
ics. A breakdown of the total 
sample sizes (n) is shown along 
the top row, split into columns 
by the overall cohort, and then 
divided by sex (male and female). 
The mean age, BMI, and standard 
deviation (SD) for the cohort are 
shown in the top two rows. The 
total n and different percentages 
(%) of the cohort for smoking 
status and ethnicity are shown 
in subsequent rows, with finer 
breakdowns outlined
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spectra and the experimental data. These differences can 
arise from variations in the analytical methods, instruments, 
and deconvolution parameters used to generate the spectra. 
Specifically, the in-house library data was generated using 
Orbitrap-MS, whereas the NIST spectra are based on quad-
rupole mass analyzer data. The VOCs with the highest SI 
score and present in the HMDB were prioritized. Addition-
ally, a list of commonly reported VOCs with hypothesized 
biological relevance were compiled from a literature search 
and added to the candidate list.

A certified reference standard (minimum 95% purity) 
was sourced for each candidate compound and analyzed to 
generate spectra for matching against on-breath VOCs. Ref-
erence standards were dissolved in methanol, due to its suit-
ability for GC-MS analysis in terms of expansion coefficient 
and solubility for each candidate compound. Two to six-
teen standards were grouped into each mix using NIST17-
reported retention index values to minimize co-elution risk. 
The prepared chemical mixes were then liquid injected onto 
Tenax TA-Carbograph-5TD sorbent tubes resulting in 50 ng 
on-tube mass per chemical and analyzed using the OMNI 
analytical method (see Supplementary) alongside a C5 to 
C16 straight chain alkane RI ladder.

Spectra for individual reference standards were identified 
by deconvolution (using Thermo Scientific GC Deconvolu-
tion plugin, using the peak detection settings in Supplemen-
tary Table 3) followed by cross-referencing with the NIST 
library (NIST 17 mainlib and replib). A background tube 
loaded with methanol was examined to ensure the peaks of 
interest were not derived from contamination during ana-
lytical processing. Mass spectral cleaning was performed 
to retain only the high-resolution accurate mass fragments 
suspected to derive from the reference standards. The final 
spectrum of each reference standard confirmed the on-
breath VOC identities. Confirmation relied on the three 
breath chromatograms with the highest normalized peak 
area intensity demonstrating a successful match (forward 
and reverse similarity index (SI & RSI) above 800, retention 
index within +/- 2 units). Undetected candidate standards 
were re-analyzed at higher concentrations (150 ng on-tube 
mass) to increase detection probability.

3 Results

3.1 Distinguishing on-breath VOCs from 
background

Following the analysis of the 90 adult breath samples and 
paired system backgrounds using the OMNI method, 1471 
unique features were present in ≥ 80% of breath samples. 
Three metrics, detailed in the Methods section, were applied 

method was applied, where the Pearson correlation coeffi-
cients between each feature in each sample and every IS 
compound were calculated. Features that had a correlation 
coefficient ≥ 0.8 with any IS compound were normalized 
using that IS compound’s response. When correlations for a 
given feature were below 0.8 for all ISs, the mean peak area 
response of the three IS compounds with the closest reten-
tion times to the feature was used for normalization.

2.4 Calculations comparing breath and paired 
system background samples

The three metrics were used to compare VOCs in breath 
samples and paired system background samples:

1. The standard deviation (SD) metric: A VOC was con-
sidered on-breath if the signal exceeded the mean of the 
system background signal plus 3 SDs in at least 50% 
of the breath samples from the cohort. A VOC is auto-
matically on-breath if values are observed in less than 4 
system backgrounds. Additionally, a feature observed in 
breath samples was automatically regarded “on-breath” 
if its signal was observed in fewer than 4 system back-
grounds samples only.

2. The paired T-test approach metric: A VOC was regarded 
as on-breath if the paired breath/ system background 
samples were associated with a fold difference ≥ 2 and 
paired t-test one-tailed p-value ≤ 0.05.

3. The Receiver Operating characteristic area under the 
curve [ROC-AUC] metric: A VOC was considered on-
breath if the fold difference between breath and back-
ground was > 1, and the calculated ROC-AUC value 
was ≥ 0.8.

Each on-breath metric queries the VOC signal detected in 
breath samples, with respect to the system background, in 
different ways. This increases the confidence of a VOC’s 
assignment as “on-breath” if it is calculated as such, by mul-
tiple metrics.

2.5 VOC identification using chemical standards

The candidate identities of on-breath VOCs were deter-
mined by matching the breath data against the NIST library 
and cross-checked against the human metabolome database 
(HMDB) (Westhoff et al., 2022). All NIST matches with a 
similarity index (SI) Match Factor ≥ 500 were considered 
for confirmation using purified standards. All NIST matches 
with a similarity index (SI) Match Factor of 500 or higher 
were considered for confirmation using purified standards. 
This threshold was chosen to reduce the risk of missing 
true matches due to spectral differences between the NIST 
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3.2 Identified VOCs: chemical characteristics

A total of 148 (25% of 585 VOCs on-breath by any metric) 
VOCs were able to be assigned identities based on compari-
sons to reference standards analyzed on the same analytical 
method in this dataset. A total of 825 purified chemical stan-
dards were run to achieve this; 37% of NIST matches with 
SI scores over 800 were found to be the true identity of the 
on-breath VOC. Factors impeding the identification of the 
remaining on-breath features include poor matches against 
the NIST library due to differences in analytical method-
ologies used (as discussed above), logistical considerations 
(such as lack of standard availability, safety considerations 
and/or prohibitive cost) and potential spectral issues during 
deconvolution (such as co-elution or splitting), whereby the 
resulting VOC spectra may not be an accurate representa-
tion of a true compound. Possible avenues of further work to 
overcome these limitations include considering custom syn-
thesis of standards not readily available off the shelf, along 
with applying tailored spectral deconvolution settings for 
the peak-rich regions of the breath sample chromatograms.

Of the 148 identified VOCs, 102 are on-breath by all 
three metrics, a single identified VOC is on-breath by met-
ric 1 alone, three identified VOCs are on-breath by metric 
2 alone, and nine identified VOCs are on-breath by met-
ric 3 alone (Fig. 1A). A substantial portion of the on-breath 
VOCs that have been assigned formal identifications 
(29/148 = 19.6%) were not classified as on-breath by metric 
1, but they were on-breath by both metric 2 and metric 3 
(Fig. 1A). While the three metrics have substantial overlap 
in the VOCs they determine to be on-breath, each metric 
contributed unique entries to the final pool of identified on-
breath VOCs and may be appropriate for different VOCs 

to identify the subset of VOCs present in the breath at levels 
significantly above those in the system background (hence-
forth referred to as “on-breath”).

Figure 1A shows the total number of on-breath VOCs 
that were calculated using each of the 3 metrics. There is a 
significant overlap in the subset of on-breath features clas-
sified using each on-breath calculation metric. A total of 
585 VOCs were identified as on-breath using any metric, 
and, of these, the majority (328/585 = 56%) were on-breath 
by all metrics. Metric 1 was the most stringent, with most 
(328/346 = 95%) of the features identified on-breath using 
metric 1 also on-breath by the other two metrics.

Metric 1 includes a flexible cut-off for the frequency of 
a VOC’s appearance on-breath at levels 3 SDs above back-
ground (Fig. 1B). In this analysis, a 50% frequency thresh-
old was applied, restricting the subset of on-breath VOCs to 
346 out of the total 1471 (22.3%) features (Fig. 1B). This 
threshold was chosen to emphasize the VOCs that are on-
breath in the majority of samples but could be adjusted to 
accommodate other analyses. For example, if a more strin-
gent threshold was deemed appropriate, fewer VOCs could 
be considered as on-breath.

The three metrics were chosen to provide complimentary 
insights into the potential composition of on-breath VOCs. 
Equally, metrics of differing stringencies, when combined 
into a panel of metrics, may give higher confidence to an 
on-breath identification. For example, being on-breath in 
multiple metrics at once, or in metrics with lower odds of 
a false positive may provide higher confidence that a VOC 
is indeed on breath, while still ensuring that a wide range 
of potentially on-breath VOCs are still captured by at least 
one metric.

Fig. 1 A - Venn diagram showing the numbers of VOCs classified as 
on-breath by each metric, along with the number of those VOCs that 
have been identified, in brackets. B - Bar chart showing the frequency 
with which individual VOCs are classified as on-breath across all 

samples using metric 1. The dotted line indicates the 50% threshold, 
restricting the number of on-breath VOCs above this cut-off to 346 of 
the 1471 total
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in cirrhosis could be explained by impaired hepatic clear-
ance, providing a plausible mechanistic relationship 
between a microbiome related VOC and a clinical diagnosis 
(Ferrandino et al., 2023). In terms of well-established clini-
cal applications, the gold standard diagnostic test used in 
gut health clinics for small intestinal bacterial overgrowth 
(SIBO) involves the ingestion of an exogenous substrate 
(lactulose). If SIBO is present, this synthetic sugar is metab-
olized by bacteria in the small intestine to produce molecular 
hydrogen, detectable on breath. Similarly, limonene, a VOC 
generated by dietary exposure was observed to be elevated 
in the breath of subjects with cirrhosis compared to con-
trols in multiple studies (Dadamio et al., 2012; Fernández 
del Río et al., 2015), suggesting that reduced liver function 
and impaired hepatic perfusion induce limonene accumula-
tion in the body resulting in elevated levels in breath. These 
alterations make limonene a candidate biomarker for non-
invasive cirrhosis detection using a breath test (Ferrandino 
et al., 2023).

Acetone, isoprene, and indole can be used as a starting 
point to assess the consistency of the results of this study 
with breath compositions reported elsewhere, as these are 
some of the most abundant and commonly identified breath 
VOCs (Drabińska et al., 2021). All three of these compounds 
were frequently found to be on-breath within this popula-
tion, supporting the replicability of this study’s results. Iso-
prene has been associated previously with a broad range of 
disease states, however, there are doubts over how useful of 
a biomarker breath isoprene currently is due to the lack of 
specificity to certain disease states, and sensitivity to indi-
vidual breathing patterns and movement (Mochalski et al., 
2023). Breath isoprene has recently been mechanistically 
associated with skeletal muscle metabolic activity using a 
multi-omic approach (Sukul et al., 2023; Mochalski et al., 
2024), demonstrating endogenous origin. The majority of 
breath isoprene is produced through the IDI2 protein that 
is only present within skeletal-myocellular peroxisomes 
(Sukul et al., 2023), and therefore supports the observa-
tion that breath isoprene abundance increases after exercise 
(Chou et al., 2024; Pugliese et al., 2022). This understand-
ing of the body’s mechanistic origin has helped to associ-
ate isoprene with a specific physiological process and could 
help establish what clinically useful information could be 
gained by the use of breath isoprene as a biomarker.

As the current study only aimed to characterize the com-
position of normal human breath, the identified on-breath 
VOCs currently cannot suggest metabolic pathway changes, 
however, certain valuable insights can be gained. For exam-
ple, acetic acid and propionic acid were both found to be 
on-breath and are two well-characterized short-chain fatty 
acids (SCFAs) associated with the gut microbiome. SCFAs 
are considered exogenous VOCs because they are produced 

or study designs. Additionally, to include VOCs that are 
on-breath in only a subset of the population, due to their 
uniqueness to a particular demographic, a separate analysis 
was carried out whereby features’ on-breath status was cal-
culated per collected demographic variable, by considering 
only the system background samples relevant to the specific 
sub-population. This resulted in 3 additional on-breath fea-
tures: two unique to the age 70 + group (one of which was 
successfully identified as 1,3-Dimethylcyclohexane), and 
one unique to the 30 + BMI group.

A full list of the identities of the 148 on-breath VOCs are 
presented in Table 2.

4 Discussion

The challenges in studying breath VOCs are well-known 
in the research community. Healthy human breath profiles 
have been developed to understand how physiological con-
ditions, including age, gender and circadian rhythms, can 
influence breath profiles (Sasiene et al., 2024). However, 
differentiation of on-breath compounds from background, 
and confirmation of their identities, remain major obstacles 
to advancing their applications in diagnostics and clinical 
settings. In this study, we present a list of 148 breath-associ-
ated (on-breath) chemically identified VOCs. The integrity 
of this data relies on stringent criteria for two key aspects: 
distinguishing VOCs from background contaminants and 
confirming their chemical identity. The on-breath VOCs 
presented in this study have been confidently chemically 
identified using MSI standards and were distinguishable 
from background contaminants through a robust methodol-
ogy in a heterogenous human population (spanning a range 
of ages, BMIs, and ethnicities). On-breath VOCs span 45 
chemical classes, indicating that they comprise a diverse 
pool of chemical entities, and 62% have been previously 
reported in the literature in different biological matrices 
such as blood, urine, and fecal matter. However, the identi-
fied VOCs may also not necessarily be consistent with other 
studies in the literature due to differences in populations and 
analytical methodologies utilized previously.

It is also imperative to emphasize that on-breath VOCs 
can include both endogenously and exogenously generated 
VOCs (as exogenous VOCs can be very strongly breath-
associated, especially those generated from internal sources 
such as the gut microbiome). Although not produced by the 
body, exogenous on-breath VOCs can interact widely with 
the host metabolome and demonstrate powerful utility in 
bridging the gap between research tools and breath-based 
clinical applications. One such example is indole, which is 
generated by the catabolism of tryptophan, mediated by the 
human gut microbiome; elevated levels of indole observed 
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High-quality identification of volatile organic compounds (VOCs) originating from breath

O
n-

br
ea

th
 st

at
us

O
n-

br
ea

th
 V

O
C

 ID
In

C
hI

 k
ey

C
la

ss
Su

bc
la

ss
%

 o
f b

re
at

h 
sa

m
pl

es
 o

n-
br

ea
th

 in
 b

y 
m

et
ric

 1

M
et

ric
 1

 
(m

ea
n +

 st
d 

de
v)

M
et

ric
 2

 
(p

ai
re

d 
t-t

es
t)

M
et

-
ric

 3
 

(R
O

C
-

A
U

C
)

M
et

ha
cr

ol
ei

n
ST

N
JB

C
K

SH
O

AV
A

J-
U

H
FF

FA
O

Y
SA

-N
O

rg
an

oo
xy

ge
n 

co
m

po
un

ds
C

ar
bo

ny
l c

om
po

un
ds

99
TR

U
E

TR
U

E
TR

U
E

Ph
en

ac
yl

 a
ce

ta
te

B
G

A
X

C
PS

N
M

H
V

H
JC

-U
H

FF
FA

O
Y

SA
-N

O
rg

an
oo

xy
ge

n 
co

m
po

un
ds

C
ar

bo
ny

l c
om

po
un

ds
50

TR
U

E
TR

U
E

TR
U

E

Pr
op

yl
en

e 
gl

yc
ol

D
N

IA
PM

SP
PW

PW
G

F-
U

H
FF

FA
O

Y
SA

-N
O

rg
an

oo
xy

ge
n 

co
m

po
un

ds
A

lc
oh

ol
s a

nd
 p

ol
yo

ls
33

FA
LS

E
TR

U
E

FA
LS

E

Py
rr

ol
e-

2-
ca

rb
ox

al
de

hy
de

ZS
K

G
Q

V
FR

TS
EP

JT
-U

H
FF

FA
O

Y
SA

-N
O

rg
an

oo
xy

ge
n 

co
m

po
un

ds
C

ar
bo

ny
l c

om
po

un
ds

80
TR

U
E

TR
U

E
TR

U
E

Sa
lic

yl
al

de
hy

de
SM

Q
U

ZD
B

A
LV

Y
ZA

C
-U

H
FF

FA
O

Y
SA

-N
O

rg
an

oo
xy

ge
n 

co
m

po
un

ds
C

ar
bo

ny
l c

om
po

un
ds

73
TR

U
E

TR
U

E
TR

U
E

Tr
ie

th
yl

en
e 

gl
yc

ol
 m

on
om

et
hy

l e
th

er
JL

G
LQ

AW
TX

X
G

V
EM

-U
H

FF
FA

O
Y

SA
-N

O
rg

an
oo

xy
ge

n 
co

m
po

un
ds

Et
he

rs
47

FA
LS

E
TR

U
E

FA
LS

E

C
ar

bo
n 

di
su

lfi
de

Q
G

JO
PF

R
U

JI
SH

PQ
-U

H
FF

FA
O

Y
SA

-N
O

th
er

 n
on

-m
et

al
 

or
ga

ni
de

s
O

th
er

 n
on

-m
et

al
 su

lfi
de

s
73

TR
U

E
TR

U
E

TR
U

E

Eu
ca

ly
pt

ol
W

EE
G

Y
LX

ZB
R

Q
IM

U
-U

H
FF

FA
O

Y
SA

-N
O

xa
ne

s
94

TR
U

E
TR

U
E

TR
U

E
1,

6-
A

nh
yd

ro
-b

et
a-

D
-g

al
ac

to
se

TW
N

IB
LM

W
SK

IR
AT

-U
H

FF
FA

O
Y

SA
-N

O
xe

pa
ne

s
32

FA
LS

E
TR

U
E

FA
LS

E
Ph

en
al

en
-1

-o
ne

W
W

B
G

W
PH

H
LR

ST
FI

-U
H

FF
FA

O
Y

SA
-N

Ph
en

al
en

es
Ph

en
al

en
on

es
34

FA
LS

E
TR

U
E

TR
U

E
2-

(3
-M

et
hy

lp
he

no
xy

)e
th

an
ol

FD
B

X
U

X
V

Q
IO

Q
Y

IX
-U

H
FF

FA
O

Y
SA

-N
Ph

en
ol

 e
th

er
s

77
TR

U
E

TR
U

E
TR

U
E

A
ne

th
ol

e
R

U
V

IN
X

PY
W

B
R

O
JD

-U
H

FF
FA

O
Y

SA
-N

Ph
en

ol
 e

th
er

s
A

ni
so

le
s

86
TR

U
E

TR
U

E
TR

U
E

4-
Et

hy
lp

he
no

l
H

X
D

O
ZK

JG
K

X
Y

M
EW

-U
H

FF
FA

O
Y

SA
-N

Ph
en

ol
s

1-
hy

dr
ox

y-
2-

un
su

bs
ti-

tu
te

d 
be

nz
en

oi
ds

76
TR

U
E

TR
U

E
TR

U
E

G
ua

ia
co

l
LH

G
V

FZ
TZ

FX
W

LC
P-

U
H

FF
FA

O
Y

SA
-N

Ph
en

ol
s

M
et

ho
xy

ph
en

ol
s

67
TR

U
E

TR
U

E
TR

U
E

H
yd

ro
qu

in
on

e
Q

IG
B

R
X

M
K

C
JK

V
M

J-
U

H
FF

FA
O

Y
SA

-N
Ph

en
ol

s
B

en
ze

ne
di

ol
s

39
FA

LS
E

TR
U

E
TR

U
E

o-
C

re
so

l
Q

W
V

G
K

Y
W

N
O

K
O

FN
N

-U
H

FF
FA

O
Y

SA
-N

Ph
en

ol
s

C
re

so
ls

71
TR

U
E

TR
U

E
TR

U
E

Ph
en

ol
IS

W
SI

D
IO

O
B

JB
Q

Z-
U

H
FF

FA
O

Y
SA

-N
Ph

en
ol

s
1-

hy
dr

ox
y-

4-
un

su
bs

ti-
tu

te
d 

be
nz

en
oi

ds
97

TR
U

E
TR

U
E

TR
U

E

1,
4-

C
in

eo
le

R
FF

O
TV

C
V

TJ
U

TA
D

-U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

M
on

ot
er

pe
no

id
s

28
FA

LS
E

TR
U

E
TR

U
E

3-
C

ar
en

e
B

Q
O

FW
K

ZO
C

N
G

FE
C

-U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

M
on

ot
er

pe
no

id
s

82
TR

U
E

TR
U

E
TR

U
E

al
ph

a-
C

ur
cu

m
en

e
V

M
Y

X
U

ZS
ZM

N
B

R
C

N
-U

H
FF

FA
O

Y
SA

-N
Pr

en
ol

 li
pi

ds
Se

sq
ui

te
rp

en
oi

ds
21

FA
LS

E
TR

U
E

FA
LS

E
al

ph
a-

Pi
ne

ne
G

RW
FG

V
W

FF
ZK

LT
I-

U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

M
on

ot
er

pe
no

id
s

96
TR

U
E

TR
U

E
TR

U
E

al
ph

a-
Th

uj
en

e
K

Q
A

ZV
FV

O
EI

RW
H

N
-U

H
FF

FA
O

Y
SA

-N
Pr

en
ol

 li
pi

ds
M

on
ot

er
pe

no
id

s
63

TR
U

E
TR

U
E

TR
U

E
be

ta
-P

he
lla

nd
re

ne
LF

JQ
C

D
V

Y
D

G
G

FC
H

-U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

M
on

ot
er

pe
no

id
s

83
TR

U
E

TR
U

E
TR

U
E

be
ta

-P
in

en
e

W
TA

R
U

LD
D

TD
Q

W
M

U
-U

H
FF

FA
O

Y
SA

-N
Pr

en
ol

 li
pi

ds
M

on
ot

er
pe

no
id

s
93

TR
U

E
TR

U
E

TR
U

E
C

ar
yo

ph
yl

le
ne

N
PN

U
FJ

AV
O

O
O

N
JE

-U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

Se
sq

ui
te

rp
en

oi
ds

60
FA

LS
E

TR
U

E
TR

U
E

Li
m

on
en

e
X

M
G

Q
Y

M
W

W
D

O
X

H
JM

-U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

M
on

ot
er

pe
no

id
s

87
TR

U
E

TR
U

E
TR

U
E

M
en

th
of

ur
an

Y
G

W
K

X
X

Y
G

D
Y

Y
FJ

U
-U

H
FF

FA
O

Y
SA

-N
Pr

en
ol

 li
pi

ds
M

on
ot

er
pe

no
id

s
76

TR
U

E
TR

U
E

TR
U

E
O

ci
m

en
e

IH
PK

G
U

Q
C

SI
IN

R
J-

U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

M
on

ot
er

pe
no

id
s

60
TR

U
E

TR
U

E
TR

U
E

p-
M

en
th

an
-3

-o
ne

N
FL

G
A

X
V

Y
C

FJ
B

M
K

-U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

M
on

ot
er

pe
no

id
s

73
TR

U
E

TR
U

E
TR

U
E

Ta
bl

e 
2 

(c
on

tin
ue

d)
 

1 3

Page 11 of 16   102 



W. Arulvasan et al.

O
n-

br
ea

th
 st

at
us

O
n-

br
ea

th
 V

O
C

 ID
In

C
hI

 k
ey

C
la

ss
Su

bc
la

ss
%

 o
f b

re
at

h 
sa

m
pl

es
 o

n-
br

ea
th

 in
 b

y 
m

et
ric

 1

M
et

ric
 1

 
(m

ea
n +

 st
d 

de
v)

M
et

ric
 2

 
(p

ai
re

d 
t-t

es
t)

M
et

-
ric

 3
 

(R
O

C
-

A
U

C
)

Va
le

nc
en

e
Q

EB
N

Y
N

LS
C

G
V

ZO
H

-U
H

FF
FA

O
Y

SA
-N

Pr
en

ol
 li

pi
ds

Se
sq

ui
te

rp
en

oi
ds

47
FA

LS
E

TR
U

E
TR

U
E

2-
M

et
hy

lp
yr

id
in

e
B

SK
H

PK
M

H
TQ

Y
ZB

B
-U

H
FF

FA
O

Y
SA

-N
Py

rid
in

es
 a

nd
 

de
riv

at
iv

es
M

et
hy

lp
yr

id
in

es
94

TR
U

E
TR

U
E

TR
U

E

3-
M

et
hy

lp
yr

id
in

e
IT

Q
TT

ZV
A

R
X

U
R

Q
S-

U
H

FF
FA

O
Y

SA
-N

Py
rid

in
es

 a
nd

 
de

riv
at

iv
es

M
et

hy
lp

yr
id

in
es

90
TR

U
E

TR
U

E
TR

U
E

3-
Py

rid
in

ec
ar

bo
xa

ld
eh

yd
e

Q
JZ

U
K

D
FH

G
G

Y
H

M
C

-U
H

FF
FA

O
Y

SA
-N

Py
rid

in
es

 a
nd

 
de

riv
at

iv
es

Py
rid

in
e 

ca
rb

ox
al

de
hy

de
s

83
TR

U
E

TR
U

E
TR

U
E

Py
rid

in
e

JU
JW

R
O

O
IH

B
ZH

M
G

-U
H

FF
FA

O
Y

SA
-N

Py
rid

in
es

 a
nd

 
de

riv
at

iv
es

88
TR

U
E

TR
U

E
TR

U
E

1-
M

et
hy

lp
yr

ro
le

O
X

H
N

LM
TV

IG
ZX

SG
-U

H
FF

FA
O

Y
SA

-N
Py

rr
ol

es
Su

bs
tit

ut
ed

 p
yr

ro
le

s
54

TR
U

E
TR

U
E

TR
U

E
2-

M
et

hy
l-1

 H
-p

yr
ro

le
TV

C
X

V
U

H
H

C
U

Y
LG

X
-U

H
FF

FA
O

Y
SA

-N
Py

rr
ol

es
Su

bs
tit

ut
ed

 p
yr

ro
le

s
23

FA
LS

E
TR

U
E

TR
U

E
1,

1,
3-

Tr
im

et
hy

lc
yc

lo
he

xa
ne

PY
O

LJ
O

JP
IP

C
R

D
P-

U
H

FF
FA

O
Y

SA
-N

Sa
tu

ra
te

d 
hy

dr
oc

ar
bo

ns
C

yc
lo

al
ka

ne
s

16
FA

LS
E

TR
U

E
TR

U
E

H
ep

ta
ne

IM
N

FD
U

FM
R

H
M

D
M

M
-U

H
FF

FA
O

Y
SA

-N
Sa

tu
ra

te
d 

hy
dr

oc
ar

bo
ns

A
lk

an
es

12
FA

LS
E

TR
U

E
TR

U
E

N
on

an
e

B
K

IM
M

IT
U

M
N

Q
M

O
S-

U
H

FF
FA

O
Y

SA
-N

Sa
tu

ra
te

d 
hy

dr
oc

ar
bo

ns
A

lk
an

es
17

FA
LS

E
TR

U
E

TR
U

E

O
ct

an
e

TV
M

X
D

C
G

IA
B

B
O

FY
-U

H
FF

FA
O

Y
SA

-N
Sa

tu
ra

te
d 

hy
dr

oc
ar

bo
ns

A
lk

an
es

49
FA

LS
E

TR
U

E
TR

U
E

D
ip

he
ny

lm
al

ei
c 

an
hy

dr
id

e
O

U
JC

FC
N

ZI
U

TY
B

H
-U

H
FF

FA
O

Y
SA

-N
St

ilb
en

es
29

FA
LS

E
TR

U
E

TR
U

E
D

im
et

hy
l s

ul
fo

xi
de

IA
ZD

PX
IO

M
U

Y
V

G
Z-

U
H

FF
FA

O
Y

SA
-N

Su
lfo

xi
de

s
80

TR
U

E
FA

LS
E

TR
U

E
Te

tra
hy

dr
of

ur
an

W
Y

U
R

N
TS

H
IV

D
ZC

O
-U

H
FF

FA
O

Y
SA

-N
Te

tra
hy

dr
of

ur
an

s
28

FA
LS

E
FA

LS
E

TR
U

E
B

is
(m

et
hy

lth
io

)m
et

ha
ne

LO
C

D
PO

RV
FV

O
G

C
R

-U
H

FF
FA

O
Y

SA
-N

Th
io

ac
et

al
s

D
ith

io
ac

et
al

s
93

TR
U

E
FA

LS
E

FA
LS

E
M

et
hy

l t
hi

oc
ya

na
te

V
Y

H
V

Q
EY

O
FI

Y
N

JP
-U

H
FF

FA
O

Y
SA

-N
Th

io
cy

an
at

es
98

TR
U

E
TR

U
E

TR
U

E
D

im
et

hy
l s

ul
fid

e
Q

M
M

FV
Y

PA
H

W
M

C
M

S-
U

H
FF

FA
O

Y
SA

-N
Th

io
et

he
rs

D
ia

lk
yl

th
io

et
he

rs
97

TR
U

E
TR

U
E

TR
U

E
M

et
hy

l p
ro

py
l s

ul
fid

e
ZO

A
SG

O
X

W
EH

U
TK

Z-
U

H
FF

FA
O

Y
SA

-N
Th

io
et

he
rs

D
ia

lk
yl

th
io

et
he

rs
96

TR
U

E
TR

U
E

TR
U

E
M

et
he

na
m

in
e

V
K

Y
K

SI
O

N
X

SX
A

K
P-

U
H

FF
FA

O
Y

SA
-N

Tr
ia

zi
na

ne
s

1,
3,

5-
tri

az
in

an
es

93
TR

U
E

TR
U

E
TR

U
E

1,
3,

5-
Tr

ia
zi

ne
JI

H
Q

D
M

X
Y

Y
FU

G
FV

-U
H

FF
FA

O
Y

SA
-N

Tr
ia

zi
ne

s
1,

3,
5-

tri
az

in
es

90
TR

U
E

TR
U

E
TR

U
E

1-
B

ut
en

e
V

X
N

ZU
U

A
IN

FG
PB

Y-
U

H
FF

FA
O

Y
SA

-N
U

ns
at

ur
at

ed
 

hy
dr

oc
ar

bo
ns

U
ns

at
ur

at
ed

 a
lip

ha
tic

 
hy

dr
oc

ar
bo

ns
72

TR
U

E
TR

U
E

TR
U

E

1-
D

oc
os

en
e

SP
U

R
M

H
FL

EK
VA

A
S-

U
H

FF
FA

O
Y

SA
-N

U
ns

at
ur

at
ed

 
hy

dr
oc

ar
bo

ns
U

ns
at

ur
at

ed
 a

lip
ha

tic
 

hy
dr

oc
ar

bo
ns

48
FA

LS
E

TR
U

E 
TR

U
E 

1-
M

et
hy

lc
yc

lo
pe

nt
en

e
AT

Q
U

FX
W

B
V

ZU
TK

O
-U

H
FF

FA
O

Y
SA

-N
U

ns
at

ur
at

ed
 

hy
dr

oc
ar

bo
ns

B
ra

nc
he

d 
un

sa
tu

ra
te

d 
hy

dr
oc

ar
bo

ns
56

TR
U

E
FA

LS
E

TR
U

E

2-
Pe

nt
en

e
Q

M
M

O
X

U
PE

W
R

X
H

JS
-U

H
FF

FA
O

Y
SA

-N
U

ns
at

ur
at

ed
 

hy
dr

oc
ar

bo
ns

U
ns

at
ur

at
ed

 a
lip

ha
tic

 
hy

dr
oc

ar
bo

ns
32

FA
LS

E
TR

U
E

TR
U

E

3-
M

et
hy

l-1
-b

ut
en

e
Y

H
Q

X
B

TX
EY

ZI
Y

O
V-

U
H

FF
FA

O
Y

SA
-N

U
ns

at
ur

at
ed

 
hy

dr
oc

ar
bo

ns
U

ns
at

ur
at

ed
 a

lip
ha

tic
 

hy
dr

oc
ar

bo
ns

59
TR

U
E

TR
U

E
TR

U
E

Ta
bl

e 
2 

(c
on

tin
ue

d)
 

1 3

  102  Page 12 of 16



High-quality identification of volatile organic compounds (VOCs) originating from breath

by microbial fermentation of dietary fiber and are thought to 
diffuse into local blood vessels of the gastrointestinal tract, 
travel via the blood, and enter the breath through alveolar 
exchange. The microbially-formed gas hydrogen produced 
in the gastrointestinal tract is rapidly detectable in the breath 
through this mechanism, and is therefore currently used in 
the clinic to diagnose conditions such as small intestinal 
bacterial overgrowth (Pitcher et al., 2022; Read et al., 1985; 
Sachdev & Pimentel, 2013). The abundance level of SCFAs 
has been implicated in multiple health contexts, including 
cancer, neurogenerative disease, and inflammatory bowel 
disease (Duizer & de Zoete, 2023; Majumdar et al., 2023; 
Ney et al., n.d.; Parada Venegas et al., 2019; van Vorsten-
bosch et al., 2023; Wang et al., 2023). In addition, their mul-
tiple signaling roles have become increasingly appreciated 
for their potential impacts on human health (Louis & Flint, 
2017; Miller & Wolin, 1996). Therefore, the SCFAs could 
serve as breath biomarkers of disease much like hydrogen 
and methane breath tests in the future. Their characteriza-
tion on-breath and the development of reference ranges in 
a healthy population is essential for this development, of 
which this study provides a useful starting point.

Isoprene, acetic and propionic acid are examples of the 
connections between the identified on-breath compounds 
and the literature, but there have been many more associa-
tions with a broader range of these compounds with physi-
ological processes in the literature, such as carbon disulfide, 
dimethyl sulfide, and dimethyl disulfide (Carrión et al., 
2015; Di Cagno et al., 2011; Grabowska-Polanowska et al., 
2017; Preter et al., 2015). While the mechanism behind the 
appearance of certain on-breath VOCs in this dataset remain 
unknown, crucially, their identities have been verified. This 
suggests that the discovery of novel pathways and a new 
understanding of physiological processes can occur if the 
levels of these VOCs are found to change in disease cohorts.

In this study, the system background samples were col-
lected from the entire equipment flow path of air to capture 
all possible sources of VOC background in the sampling 
process. Moisture levels may differ between background 
samples and breath. Given that humidity and temperature 
are key variables for VOC capture, mitigations have been 
implemented to reduce this differential: hydrophobic sor-
bents are used in our TD tubes and all samples are dry purged 
prior to analysis. We acknowledge that this minimizes the 
carryover risk, but not the instantaneous risk. Despite our 
best efforts, breath and blank samples are ultimately differ-
ent sample types and there may be small analytical differ-
ences introduced as a result. We did not consider this to have 
a major impact to the conclusions we draw from this article.

The analytical methodology utilized offers high mass 
accuracy and resolution capability, resulting in precise 
mass measurement of ions and separation of closely spaced 
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results. Furthermore, the list of VOCs can be utilized to 
optimize precise and accurate measurement of breath via 
informed selection of patient preparation, breath collection, 
sample storage, and sample analysis. This optimization pro-
cess will preserve biological variability while minimizing 
technical variability, thereby advancing the reliability and 
reproducibility of breath-based biomarker research. This 
list of chemically confirmed on-breath VOCs distinguished 
from background contaminants lays the foundation for the 
development of the Breath Biopsy VOC Atlas®, an ongoing 
project to develop a database of chemically identified breath 
VOCs complete with on-breath status, and quantified refer-
ence ranges across different cohorts, including different dis-
ease states. Biological interpretation of VOCs in the breath 
will significantly help to confidently assign on-breath VOC 
status, and therefore adding mechanistic understanding 
of breath VOCs in the literature is important future work. 
Work is ongoing to build the VOC Atlas as a reference data-
base on confirmed compounds in the breath alongside their 
scientific context in the literature, utilizing the robust OMNI 
method and the on-breath VOC list presented in this work.

5 Conclusion

Through the development of a robust methodology, this 
study collected and compared breath and background 
samples of a heterogenous human population to identify 
on-breath VOCs. These on-breath VOCs can serve as a 
reference for breath researchers to improve confidence 
that their results are capturing truly on-breath VOCs, and 
it will continue to expand as additional VOCs are identified 
using reference standards. Future work will expand the list 
to include a broad range of populations and physiologies 
to capture the diversity of on-breath VOCs. By continuing 
to compare background samples collected and analyzed in 
the same manner as their breath samples, VOCs confidently 
identified as being on-breath can be the basis for future bio-
marker investigations.
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