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Abstract
Background  Spectral library searching is currently the most common approach for compound annotation in untargeted 
metabolomics. Spectral libraries applicable to liquid chromatography mass spectrometry have grown in size over the past 
decade to include hundreds of thousands to millions of mass spectra and tens of thousands of compounds, forming an essential 
knowledge base for the interpretation of metabolomics experiments.
Aim of review  We describe existing spectral library resources, highlight different strategies for compiling spectral libraries, 
and discuss quality considerations that should be taken into account when interpreting spectral library searching results. 
Finally, we describe how spectral libraries are empowering the next generation of machine learning tools in computational 
metabolomics, and discuss several opportunities for using increasingly accessible large spectral libraries.
Key scientific concepts of review  This review focuses on the current state of spectral libraries for untargeted LC–MS/MS 
based metabolomics. We show how the number of entries in publicly accessible spectral libraries has increased more than 
60-fold in the past eight years to aid molecular interpretation and we discuss how the role of spectral libraries in untargeted 
metabolomics will evolve in the near future.
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1  Introduction

Spectral library searching is currently the most common 
approach for compound identification in untargeted metab-
olomics, with the earliest historical spectral libraries that 
can be traced back to the 1950s (Zemany, 1950). Metabo-
lite annotation using spectral library searching is based on 
the concept that molecules undergo fragmentation that cre-
ates a reproducible “fingerprint.” Matching against a spec-
tral library of ground truth MS/MS spectra collected with 
chemical standards of known molecules can then be used to 

narrow down structural hypotheses. During library search-
ing, experimental MS/MS spectra are annotated by matching 
against the library MS/MS spectra and transferring com-
pound labels from library to experimental spectra when a 
high-scoring match is achieved. This is the gold standard for 
metabolite annotation from MS/MS data only, and it forms 
a level 2 or level 3 annotation based on the guidelines of the 
Metabolomics Standards Initiative (Sumner et al., 2007). A 
level 2 annotation corresponds to library searching result-
ing in a structural hypothesis for a specific molecule, while 
a level 3 annotation is a match hypothesis to a molecular 
family. Especially isomeric compounds with identical pre-
cursor mass may result in more than one structural match. 
For example, it is impossible to distinguish between vari-
ous stereoisomers of hexenoylcarnitine by MS/MS matching 
only (Fig. 1). To promote such a level 3 match to a level 1 
identification, complementary analytical approaches, such as 
nuclear magnetic resonance (NMR), are needed, or all pos-
sible isomers in the molecular family have to be tested under 
the same mass spectrometry conditions to best determine 
MS/MS spectrum similarity, in addition to liquid chromatog-
raphy (LC) co-migration of the compound of interest with 
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the chemical standards to validate whether it elutes with the 
same peak shape and retention time.

Although in proteomics, sequence database searching is 
the dominant strategy to annotate MS/MS spectra (Eng et al., 
2011), the usage of spectral libraries has become increas-
ingly popular for the analysis of peptide MS/MS data as 
well in recent years (Deutsch et al., 2018; Griss, 2016; Shao 
& Lam, 2017). Spectral library searching is more sensitive 
than sequence database searching, achieving a higher rate 
of spectrum identifications (Zhang et al., 2011), and results 
from spectral library searching and sequence database 

searching can be combined to maximize the number of 
identified MS/MS spectra (Shteynberg et al., 2013). This 
increased sensitivity is especially relevant for the analysis 
of data-independent acquisition (DIA) experiments, where 
mixtures of analytes within large, pre-specified mass ranges 
are measured, in contrast to data-dependent acquisition 
(DDA), which attempts to isolate and measure individual 
analytes (Hu et al., 2016). The resulting complex DIA spec-
tra contain signals from multiple peptides, and most DIA 
analysis tools require detailed MS/MS fragmentation pat-
terns from reference spectral libraries to annotate peptides.

Fig. 1   Representative example of a molecular family level annota-
tion from spectral library searching that matches to hexenoylcarni-
tine. The MS/MS spectrum contains several diagnostic fragments and 
neutral losses that make it possible to assign it to the acylcarnitines 
molecular family, as indicated on the molecular structures (Yan et al., 
2020). However, routine spectral library matching cannot distinguish 
between the 14 potential stereo- and regioisomers, resulting in a level 

3 annotation. This highlights the need for new strategies to commu-
nicate the results from spectral library searching, as narrowing down 
to the molecular family, even when the exact molecular identity is 
unknown, can often already be valuable for biological interpretation. 
Top is the experimental observed MS/MS spectrum, with a precur-
sor m/z deviation of 11.6 ppm compared to the calculated m/z of the 
protonated ions
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As the authors of this perspective believe that open and 
transparent science has strong cascading benefits for the 
larger scientific community (Wilson et al., 2021) and are 
most familiar with the GNPS/MassIVE platform (M. Wang 
et al., 2016), most of the following discussion is contextu-
alized in reference to this resource for untargeted metabo-
lomics analysis. In this context, we discuss the state of spec-
tral libraries for untargeted metabolomics in 2022, describe 
the essential role of spectral libraries in the development of 
computational tools, and highlight some open challenges and 
opportunities for the metabolomics community to address in 
the coming years.

2 � Impact of growing and freely accessible 
spectral libraries

Over the past decade, MS/MS small molecule spectral 
libraries have steadily increased in size to include hundreds 
of thousands to millions of MS/MS spectra and hundreds 
of thousands of compounds (Fig. 1a). Some of the largest 
experimental small molecule spectral libraries that are cur-
rently available include both commercial libraries, such as 
the National Institute of Standards and Technology (NIST) 
tandem mass spectral library (https://​chemd​ata.​nist.​gov/) 
and the METLIN Gen2 spectral library (Xue et al., 2020), 
and open spectral libraries, which also serve as aggregation 
sites for third-party community spectral libraries, such as 
the Global Natural Products Social Molecular Networking 
(GNPS) community spectral libraries (M. Wang et al., 2016) 
and Massbank of North America (MoNA; https://​mona.​fiehn​
lab.​ucdav​is.​edu/). Additionally, mass spectrometry instru-
ment vendors also provide commercial spectral libraries, 
such as mzCloud (https://​www.​mzclo​ud.​org/). Excitingly, 

publicly and freely accessible MS/MS spectral libraries 
recently saw explosive growth (Fig. 2a).

There also exist many other, often subject-specific spec-
tral libraries, including Massbank (Horai et al., 2010) and 
Massbank EU (https://​massb​ank.​eu/​MassB​ank/), the Human 
Metabolome Database (HMDB) (Wishart et al., 2021), the 
RIKEN tandem mass spectral database (ReSpect) (Sawada 
et al., 2012), the monoterpene indole alkaloid database 
(MIADB) (Fox Ramos et al., 2019), the Critical Assessment 
of Small Molecule Identification (CASMI) contest librar-
ies (Schymanski & Neumann, 2013), European Molecular 
Biology Laboratory–Metabolomics Core Facility (EMBL-
MCF) (Phapale et al., 2021), the Pacific Northwest National 
Lab lipids library (Kyle et al., 2017), the National Institutes 
of Health natural products library (Huang et al., 2019), the 
Lichen Database (LDB) (Olivier-Jimenez et  al., 2019), 
fungal dereplication (El-Elimat et al., 2013), Chemicalsoft 
(Dresen et al., 2009), WEIZMASS (Shahaf et al., 2016), 
MSforID (Oberacher et  al., 2011), the reverse metabo-
lomics libraries (Gentry et al., 2021), and many others. 
Barring access restrictions, these spectral libraries are also 
often integrated into the previous spectral library aggre-
gation resources, such as GNPS and MoNA. In this case, 
the SPLASH (SPectraL hASH) mechanism, which assigns 
unambiguous, database-independent hashed identifiers to 
MS/MS spectra, can be a useful tool for provenance of spec-
tral data and detection of duplicate spectra that are shared 
across multiple data resources (Wohlgemuth et al., 2016), 
similar to how InChIKeys are used as chemical identifiers.

Several large proteomics spectral libraries exist as well. 
These include peptide MS/MS spectral libraries for multi-
ple organisms (human, mouse, rat, yeast, etc.) from NIST 
(https://​chemd​ata.​nist.​gov/​dokuw​iki/​doku.​php?​id=​pepti​
dew:​start), the ProteomeTools project of synthetic human 

Fig. 2   Advances in spectral libraries for LC–MS/MS based untar-
geted metabolomics. a The GNPS community spectral libraries (non-
commercial only) have grown from 23,790 MS/MS spectra in 2014 to 
586,647 MS/MS spectra in 2022 (September 2022). Concurrently, the 
number of library spectra that matched to public data has grown from 
4,727 MS/MS spectra in 2014 to 127,405 MS/MS spectra in 2022 
(22% of the publicly available library spectra have matches to experi-

mental MS/MS spectra in public data). b Fueled by growing spectral 
libraries, the MS/MS spectrum annotation rate for the GNPS continu-
ous identification mode as part of living data (M. Wang et al., 2016), 
which periodically reanalyses all public datasets on GNPS/MassIVE 
with the latest spectral libraries, has increased from 2% of MS/MS 
spectra on average in 2014 to 13% in 2022

https://chemdata.nist.gov/
https://mona.fiehnlab.ucdavis.edu/
https://mona.fiehnlab.ucdavis.edu/
https://www.mzcloud.org/
https://massbank.eu/MassBank/
https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:start
https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:start
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peptide MS/MS spectra (Zolg et al., 2017), and the MassIVE 
Knowledge Base (MassIVE-KB) of the human proteome (M. 
Wang et al., 2018a). Different strategies for compiling spec-
tral libraries are exemplified by the ProteomeTools (Zolg 
et al., 2017) and MassIVE-KB peptide spectral libraries (M. 
Wang et al., 2018a). On the one hand, ProteomeTools fol-
lowed the traditional approach to generate a spectral library 
by synthesizing unique tryptic peptides from the human 
proteome and acquiring MS/MS data on multiple instru-
ment platforms (Zolg et al., 2017). This was subsequently 
expanded to include additional tryptic peptides and modified 
peptides (Zolg et al., 2018), non-tryptic peptides (Wilhelm 
et al., 2021), and isobarically labeled peptides (Gabriel et al., 
2022) to currently consist of more than one million unique 
synthetic peptides and over 14 million MS/MS spectra. In 
contrast, MassIVE-KB employed a data-driven approach 
towards spectral library creation by re-analyzing hundreds 
of millions to billions of public MS/MS spectra on the Mas-
sIVE data repository using sequence database searching 
(M. Wang et al., 2018a). The most confidently identified 
MS/MS spectra and their peptide labels were then extracted 
to create the MassIVE-KB human peptide spectral library, 
which currently contains 2.5 million unique peptides and 6 
million MS/MS spectra (version 2.0.15). Although an equiv-
alent strategy to sequence database searching in proteom-
ics currently does not exist for metabolomics, approaches 
employed by ProteomeTools and MassIVE-KB demonstrate 
how alternative strategies can be used to create valuable col-
lections of reference MS/MS spectra. Furthermore, as it is 
not uncommon to observe peptides in metabolomics data, it 
is conceivable that proteomics libraries can be repurposed to 
also inform a subset of metabolomics data through creative 
use of algorithms that find analogs of peptides or peptidic 
molecules.

Similarly, in untargeted metabolomics, each of the 
libraries provides complementary MS/MS data and pieces 
of information. For example, the commercial NIST small 
molecule spectral library predominantly contains human 
and plant metabolites, ReSpect contains plant metabo-
lites, and the commercial METLIN library historically 
contained a significant proportion of lipids and dipep-
tides (full details on the current composition after its 
explosive growth (Xue et al., 2020) are unknown as the 
library and information on the molecules that are part of 
the library have not been released publicly). The GNPS 
libraries historically focused on natural products, but they 
have since grown to include many major publicly avail-
able reference libraries, including lipids, drugs, pesticides, 
primary metabolites, food derived metabolites, common 
contaminants, and microbial metabolites. Furthermore, 
these libraries are exchanged with MoNA, MassBank EU, 
and other resources, such that they are not only leveraged 
in the GNPS analysis ecosystem but also by other analysis 

systems such as MZmine (Pluskal et al., 2010), MS-DIAL 
(Tsugawa et al., 2020), and others. This broad sharing of 
spectral libraries ensures that untargeted metabolomics 
analyses can be performed against the largest possible 
spectral libraries, irrespective of the analysis platform. It 
should be noted that some spectral libraries, such as NIST 
and METLIN, are exclusively obtained in a single lab 
under more consistent experimental conditions, whereas 
other spectral libraries, such as MoNA and GNPS, are 
aggregated from community contributions and contain 
data that has been acquired in multiple labs, using differ-
ent instruments, instrument platforms, and experimental 
protocols, and thus are more heterogeneous.

Some metabolomics spectral library resources do not 
only include direct experimental MS/MS data from pure 
reference compounds, but also MS/MS spectra that were 
obtained using computational tools. For example, the MoNA 
and HMDB spectral libraries are augmented with in silico 
MS/MS spectra that were simulated using e.g. LipidBlast 
(MoNA) (Kind et  al., 2013) and CFM-ID (HMDB) (F. 
Wang et al., 2021). Additionally, NIST provides smaller 
spectral libraries focused on specific types of molecules, 
such as oligosaccharides (Remoroza et al., 2018, 2020) and 
acylcarnitines (Yan et al., 2020), that were annotated using 
analog searching (Burke et al., 2017)—a strategy to iden-
tify structurally related molecules that differ by a modifica-
tion by using a very wide precursor mass window (on the 
order of 100 s Da)—rather than by measuring pure refer-
ence standards. GNPS contains secondary reference MS/
MS spectra that have been annotated by high-quality match-
ing against the NIST spectral library and “nearest neighbor 
suspect” MS/MS spectra (Bittremieux et al., 2022a) that 
were obtained by propagating annotations using molecular 
networking (Aron et al., 2020) across all public untargeted 
metabolomics data in the GNPS/MassIVE repository. By 
propagating annotations from existing spectral libraries to 
related MS/MS spectra it becomes possible to provide anno-
tations that would otherwise not be accessible to the com-
munity. Therefore, these strategies expand the set of putative 
annotations that can be obtained in untargeted metabolomics 
experiments. This is especially relevant for molecules for 
which pure standards are not available, because their struc-
tures have never been synthesized or isolated from biological 
material, or because they cannot be described as a structure 
(e.g. sodium formate clusters or a specific modification of 
unknown regio- or stereochemistry). However, because the 
MS/MS spectra are not directly measured from pure refer-
ence material, additional care should be taken when inter-
preting annotations that match such library spectra. In other 
words, the user has to verify whether the annotations match 
the data and whether they make sense in the context of the 
experiment before investing precious time and resources to 
perform additional validation experiments.
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Besides these traditional spectral libraries for untargeted 
metabolomics that focus on fragmentation data, other librar-
ies that include complementary information or for different 
data acquisition methods are starting to become available. 
For example, some spectral libraries contain LC retention 
time information as well (Stanstrup et al., 2015; Tada et al., 
2019), such as the METLIN small molecule retention time 
dataset (Domingo-Almenara et al., 2019). Additionally, 
with the increasing integration of ion mobility functional-
ity in modern mass spectrometry instruments, ion mobility 
libraries that contain reference collision cross section (CCS) 
measurements are emerging (Zheng et al., 2017; Hernández-
Mesa et al., 2018; Righetti et al., 2018; Picache et al., 2018; 
Schroeder et al., 2019; Z. Zhou et al., 2020). This avail-
ability of retention time and CCS reference measurements 
provides orthogonal information for metabolite annotation 
from untargeted MS/MS data. Additionally, spectral librar-
ies for alternative data acquisition methods exist. For exam-
ple, mzCloud organizes MSn spectra into “fragmentation 
trees,” and the METLIN-MRM spectral library is a mul-
tiple-reaction monitoring (MRM) transition repository for 
small-molecule quantitative mass spectrometry that contains 
MRM transitions for more than 15,500 unique molecules 
(Domingo-Almenara et al., 2018).

With the growing commodification of advanced instru-
mentation capabilities, there is a need for further expansion 
of alternative spectral libraries. Whereas most LC–MS/MS 
spectral libraries use collision-induced dissociation (CID) 
or higher-energy C-trap dissociation (HCD), various other 
fragmentation techniques, such as electron-induced disso-
ciation (X. Chen et al., 2018), ultraviolet photodissociation 
(Bowers et al., 1984), charge transfer dissociation (W. D. 
Hoffmann & Jackson, 2014), and others (Heiles, 2021), 
can now be used as well. Because different fragmentation 
techniques can result in dramatically different MS/MS frag-
mentation patterns, traditional spectral libraries might not 
be suitable for MS/MS spectral matching of such data and 
custom libraries will be needed. Even when using CID/HCD 
fragmentation, different instrument platforms or employing 
different collision energies can produce MS/MS data that 
exhibit dissimilar fragmentation behavior. Consequently, it 
is not always possible to get a spectral match when data is 
collected differently. Nevertheless, we recommend searching 
experimental MS/MS data against the broadest possible rel-
evant spectral libraries, irrespective of instrument platform 
details. Even if the MS/MS spectra differ to some extent, it 
can still be possible to obtain relevant matches, especially 
with modern algorithmic techniques that preprocess spectra 
to try to minimize the effects of experimental variability. 
Furthermore, some advanced MS/MS fragmentation strate-
gies might enable synergies between previously disparate 
library generation efforts. For example, CID spectra can 
contain a non-negligible number of radical fragment ions 

(K. Chen et al., 2008; Xing & Huan, 2022), and fragmenta-
tion mechanisms from electron-induced dissociation tech-
niques show significant similarity to fragmentation events 
under electron ionization, which is commonly used in gas 
chromatography mass spectrometry (GC–MS) (Ducati et al., 
2021). This suggests that it could be possible to repurpose 
the information content from large amounts of historical 
spectral libraries that have been generated for GC–MS.

The increasing availability of large-scale and open spec-
tral libraries is driving their growing role in computational 
mass spectrometry (Aksenov et  al., 2017; Stein, 2012; 
Tsugawa, 2018; Vinaixa et al., 2016). Whereas in untargeted 
metabolomics experiments, using all commercial and openly 
available spectral libraries, only 2% of MS/MS spectra 
could be successfully annotated by spectral library search-
ing less than a decade ago (M. Wang et al., 2016), in 2022 
the spectrum annotation rate for untargeted metabolomics 
on the GNPS platform has increased to 13% (Fig. 2b). This 
increase by up to an order of magnitude in the number of 
unique MS/MS spectrum annotations that can be obtained is 
essential in advancing the amount of biological knowledge 
that can be achieved using untargeted metabolomics, and 
has only been possible by tremendous and continued efforts 
of various stakeholders—both academic and industry—and 
the metabolomics community at large.

3 � Interpreting spectral library searching 
results

When interpreting spectrum annotations from spectral 
library searching, it is essential to have a clear understand-
ing of the information that mass spectrometry can and can-
not provide (Stein, 2012). For example, mass spectrometry 
may not always distinguish between isomeric molecules. 
Although the Metabolomics Standards Initiative provides 
guidelines to denote the level of identification rigor for 
reported metabolite identifications (Sumner et al., 2007), 
these do not fully capture the ambiguity related to isomers 
(e.g. using an ontology) and do not provide a system to build 
provenance into the confidence of spectrum annotations. 
Additionally, MS/MS spectra might not contain sufficiently 
discriminative information to annotate specific molecules if 
there are too few fragment ions or no unique fragment ions. 
Analyzing non-discriminative MS/MS spectra is equivalent 
to searching a genetic sequence database with a two-mer 
oligonucleotide, which would result in an excessive num-
ber of non-specific matches. Instead, when few ions are 
available or the sample contains multiple isomers, spectral 
library annotations might only go up to the molecular fam-
ily if fragment ions correspond to similar (sub)structures 
that are shared by related molecules. Therefore, it is recom-
mended that users do not restrict themselves to only the top 
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MS/MS match obtained using spectral library searching, but 
carefully consider lower ranked MS/MS matches that fall 
within the user defined inclusion criteria of acceptable errors 
of MS and MS/MS ions, and minimum number of match-
ing fragment ions. If there are multiple annotations with 
similar MS/MS match scores that correspond to isomeric 
molecules or belong to the same molecular family—which 
usually consists of isomeric structures—additional informa-
tion is needed to further refine the most likely candidate 
structures. At present, verifying such ambiguity often still 
involves careful manual investigation by expert users, iso-
lation and NMR confirmation, or purchase or synthesis of 
all possible structures to validate the assignments. In the 
future, we anticipate that a new generation of computational 
mass spectrometry tools that can directly communicate this 
information to the user will be developed, for example by 
rolling up spectrum annotations to the family level or indi-
cating spectral evidence of the (sub)structures that can be 
unambiguously explained. The goal of these tools should be 
to clearly communicate the maximum amount of knowledge 
that can be derived from the mass spectral data and then fol-
low up with additional experiments to differentiate among 
all possible annotations.

In the best case, a library MS/MS spectrum should be 
measured from only a single, pure reference compound. 
In practice, during large-scale spectral library generation 
efforts multiple reference compounds are measured simulta-
neously to minimize the data acquisition time that is needed. 
Although it is typically ensured that no near-isobaric com-
pounds are simultaneously measured during such multiplex-
ing of reference compounds to avoid potential confusion 
when annotating the library spectra, interference during MS 
data acquisition might still occur. Additionally, other typical 
quality considerations for mass spectrometry experiments 
(Bittremieux et al., 2018b), such as the presence of con-
taminants, carry-over, and other factors that can influence 
the data can impact spectral library generation.

However, it is also important to be mindful of the biases 
associated with using pure reference compounds to generate 
spectral libraries. First, this requires a physical specimen 
of the pure compound, obtained from commercial sources 
or through laborious purification of biological samples. 
Unfortunately the majority of biological molecules whose 
structures have been elucidated are not readily available for 
purchase. An example of this bias is the disproportionately 
large number of unique matches to medicines and drugs 
when analyzing human fecal samples, while there are much 
fewer matches to microbial metabolites, which are not well 
represented in reference spectral libraries. A second type 
of bias is via the adduct that is chosen for fragmentation. 
For example, protonated and sodiated adducts are most fre-
quently considered, with two thirds of positively charged 
MS/MS spectra in the MoNA and GNPS spectral libraries 

corresponding to protonated adducts (Fig. 3a-b). However, 
many other adducts can be formed as well, especially dur-
ing analysis of heterogeneous biological samples. Therefore, 
unless a complex background matrix is added to the pure 
standards, it is likely that an adduct that is observed in an 
experiment may not have been measured while generating 
library spectra from a reference compound. This is illustrated 

Fig. 3   Distribution of ion adducts in public spectral libraries. The 
majority of positive ion mode MS/MS spectra in MoNA (a) and 
GNPS (b) are protonated, while other adducts, in-source fragments, 
multiply charged species, and multimers are minimally represented. 
c Ion identity molecular networking was used to extract novel refer-
ence MS/MS spectra that exhibit overall broader coverage of different 
adducts, multimers, and in-source fragments (Schmid et  al., 2021). 
Note that these ion forms are found with a predefined inclusion list, 
rather than a comprehensive search for all ion forms that might be 
present in untargeted metabolomics data of a biological sample
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by the “ion identity molecular networking” approach, which 
was recently used to create a propagated spectral library that 
exhibits a broader coverage of different adducts, multim-
ers, and in-source fragments (Fig. 3c) (Schmid et al., 2021). 
Nevertheless, because ion identity molecular networking 
can only find predefined ion forms, and we generally do not 
know the distribution and diversity of all ion forms that exist 
yet, several unanswered questions remain. For example, how 
many ions are protonated, sodiated, or acetonitrile-ammonia 
ion forms? How many ions are magnesium adducts, heter-
odimers, or other ion forms that are currently not consid-
ered? To alleviate these biases, although this is typically not 
performed, library spectra could be acquired by running pure 
reference compounds with a more representative background 
or in a biological matrix and unbiased searches need to be 
performed to find all ion forms of the standards. Alterna-
tively, as is possible on the GNPS ecosystem, researchers 
that are experts in the biological systems under investigation 
can annotate experimental MS/MS spectra directly and add 
them to the reference libraries.

Another important, yet often overlooked aspect when 
evaluating spectral library searching results is the confi-
dence that is ascribed to the original library annotation. If an 
original library spectrum is incorrectly annotated, this error 
will propagate through all future studies that find a match 
to this library spectrum. Consequently, even when a match 
is obtained, the researcher should still make sure that this 
makes sense in the context of their experiment. Therefore, it 
is paramount that library spectra are of the highest possible 
quality and that their provenance is tracked, so that the end 
user can understand the origin of their spectral library anno-
tations. Having a clear understanding of the provenance of 
reference MS/MS spectra is especially relevant when spec-
tral libraries are crowd-sourced, with spectral data coming 
from heterogeneous sources with potentially differing qual-
ity levels, although mistakes have also been found in com-
mercial spectral libraries.

To assign quality levels to MS/MS library spectra, sev-
eral community resources, including GNPS and MoNA, 
use a rating system. For example, on GNPS, library spectra 
are categorized based on the source of the MS/MS spectra. 
“Gold” spectra are derived from synthetic samples that have 
been characterized using mass spectrometry and an orthogo-
nal analytical method, such as NMR or crystallography, and 
can only be contributed by privileged users; “silver” spectra 
are obtained from an isolated or lysate/crude sample with a 
scientific publication confirming the presence of the mol-
ecule in the sample; and “bronze” spectra are other experi-
mental MS/MS spectra that provide evidence for putative 
or partial annotations. Finally, there are “in silico” spectra 
that have been produced using computational approaches. 
The latter are not selected by default when performing spec-
tral library searching using GNPS, however, as we believe 

that such spectra should be used with extreme caution and 
generally only give insights into molecular families rather 
than specific identities. GNPS also allows users to update 
spectral library annotations if the original submission con-
tained limited details (e.g. someone may have denoted the 
spectrum as a saccharide but further insights revealed that 
the specific molecule is azithromycin, or the original sub-
mission did not include the molecular structure which was 
subsequently added) or to correct previously misassigned 
library spectra. In these cases, the GNPS system always 
retains a complete record of the full annotation history. 
Additionally, GNPS allows users to rate the quality of MS/
MS matches from spectral library searching using four star 
(correct), three star (likely correct, e.g. could also be iso-
mers with similar fragmentation patterns), two star (unable 
to confirm the annotation due to limited information), and 
one star (incorrect) ratings. MoNA assigns a five-star quality 
rating to all spectra based on the amount of metadata that 
was provided (ionization mode, instrument model, collision 
energy, liquid chromatography details, etc.), and top rated 
MS/MS spectra and a leaderboard of their submitting users 
are advertised on the MoNA homepage. Additionally, users 
can rate spectra as being either “clean” or “noisy.” These 
rating approaches allow users to manage expectations based 
on the evaluation of the library spectra so that they can make 
informed decisions based on the veracity of an MS/MS spec-
trum match, as well as provide feedback to help improve 
library annotations.

As an example of spectral library curation, a strategy 
for inter-library comparison was described to detect mis-
annotated outliers by visual inspection based on an extensive 
checklist of potential issues (Wallace et al., 2017). Manual 
quality annotations have limited scalability, however, as they 
depend on scarce expert user knowledge and require a sig-
nificant time investment. Because such domain experts often 
produce very trustworthy manual spectrum annotations and 
their expertise is not (yet) translated into community knowl-
edge, this represents a unique opportunity to further improve 
the quality of spectral libraries. Alternatively, some compu-
tational approaches for MS/MS spectral library assessment 
have been proposed, including spectral entropy. Entropy is 
often likened to the disorder of a system. For example, there 
are more disorderly states in which a deck of cards can occur 
in random order (high entropy) than those in which the deck 
occurs in sorted order (low entropy). Spectral entropy (Li 
et al., 2021) was recently proposed as a measure to assess the 
quality of MS/MS spectra, with lower-quality spectra receiv-
ing higher spectral entropies. For example, there are small 
differences in the spectral entropy distributions of the highly 
curated NIST spectral library and more heterogeneous spec-
tral libraries from MoNA and GNPS (Fig. 4). Nevertheless, 
we would argue against a simple maximum spectral entropy 
cut-off to determine whether MS/MS spectra are of sufficient 
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quality. There is a strong (nonlinear) relationship between 
spectral entropy and the number of fragment ions, with 
MS/MS spectra that contain only a few fragment ions get-
ting low spectral entropy scores (Li et al., 2021). Although 
such spectra might be arguably of higher quality and more 
“clean,” this could also indicate that some of the spectra 
with low spectral entropy contain insufficiently discrimina-
tive fragmentation information to achieve sensitive MS/MS 
annotation. Nevertheless, spectral entropy is an interesting 
criterion to support the automated quality assessment of MS/
MS spectra, which forms an open challenge that warrants 
additional research.

Besides the quality of the library spectra, the veracity of 
the matches between library spectra and experimental spec-
tra is also essential in determining whether to accept spec-
trum annotations. Typically, valid spectrum annotations are 
accepted based on common heuristics, such as a minimum 
cosine similarity threshold of 0.7 and minimum 6 matching 
peaks (M. Scheubert et al., 2017; Wang et al., 2016). How-
ever, such heuristics do not provide a statistical confidence 
estimate of the spectrum annotations, and as such, the num-
ber of false positives (i.e. incorrectly accepted high-scoring 
annotations) and false negatives (i.e. missed low-scoring 
annotations) are unknown. Although not widely used yet 
at this time, there are emerging strategies for estimating the 
false discovery rate of MS/MS spectrum annotations. For 
example, the Passatuto approach constructs a decoy library 
by modifying MS/MS library spectra based on re-rooted 

fragmentation trees to enable estimating false discovery rates 
using a target–decoy strategy (Scheubert et al., 2017). This 
allows the researcher to accept spectrum annotations with a 
controlled false discovery rate such that they can decide how 
many incorrect matches they are willing to include in their 
results. Although a few other methods to control false dis-
covery rates in metabolomics have been introduced (Palmer 
et al., 2016; X. Wang et al., 2018a, 2018b; Alka et al., 2022), 
none are currently routinely used. Statistical control of MS/
MS spectrum annotations is an important area of research to 
explore further and advance untargeted metabolomics into 
a highly scalable quantitative technique, and we anticipate 
that such tools will become routinely accessible in emerging 
MS/MS-based spectrum annotation software.

4 � Spectral libraries as a source of machine 
learning training data

Besides their primary function for spectrum annotation, 
spectral libraries are also an extremely valuable resource 
to develop machine learning approaches for the analysis 
of mass spectrometry data (Kelchtermans et al., 2014). In 
proteomics, the availability of high-quality spectral libraries 
that can be used as large-scale training data has spurred the 
development of several innovative deep learning tools. For 
example, Prosit is a deep neural network that was trained on 
the ProteomeTools library to learn peptide fragmentation 

Fig. 4   Spectral entropy distributions for the GNPS, MoNA, and 
NIST20 spectral libraries. GNPS consists of 497,137 MS/MS spectra 
from the “ALL_GNPS_NO_PROPOGATED” library (downloaded 
on 2022–09-08), MoNA contains 145,361 MS/MS spectra from the 
“LC–MS/MS Spectra” collection (downloaded on 2022–09-08), and 
NIST20 consists of 1,026,712 MS/MS spectra (high-resolution MS/
MS collection). Spectra were processed by removing noise peaks 

below 1% of the base peak intensity and normalizing fragment inten-
sities to sum to one. a There is a strong relationship between spec-
tral entropy and the number of fragment ions (Spearman correlation 
0.963). b Although the NIST20 library contains smaller molecules 
than GNPS and MoNA, the difference in entropy distributions cannot 
be directly explained by the weight of the molecules (Spearman cor-
relation 0.095)
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patterns and predict MS/MS fragment intensities with high 
fidelity (Gessulat et al., 2019). MS/MS spectra predicted 
by Prosit, as well as related tools that were developed in a 
similar fashion (Tiwary et al., 2019; Xu et al., 2020; X.-X. 
Zhou et al., 2017, p. 201), are now regularly used in lieu of 
experimental spectral libraries, for example, for the analysis 
of DIA data without the need to acquire a custom spectral 
library in advance. This illustrates how the important effort 
of synthesizing and measuring peptide standards provides 
continuing benefits outside of the original study by ena-
bling the development of deep learning methods that can be 
used to simulate highly accurate MS/MS spectra for novel 
peptides to complement experimental spectral libraries. 
Similarly, MassIVE-KB was recently used to develop the 
GLEAMS neural network that can efficiently process hun-
dreds of millions of MS/MS spectra at the repository scale 
to explore the dark proteome (Bittremieux et al., 2022b).

Small molecule spectral libraries are also used as the 
basis of computational tool and resource development in 
metabolomics (Krettler & Thallinger, 2021). For example, 
fragmentation patterns of acylcarnitines were derived from 
the NIST spectral library using the hybrid search strategy, 
which could then be used to extract and validate additional 
related acylcarnitine MS/MS spectra (Yan et al., 2020). The 
GNPS nearest neighbor suspect spectral library was created 
in a data-driven fashion by molecular networking of hun-
dreds of millions of public MS/MS spectra on the GNPS 
repository in combination with reference MS/MS spectra 
in the GNPS community spectral libraries, and is a unique 
resource that provides insights into common modifications 
that molecules can undergo (Bittremieux et al., 2022a). 
Additionally, high-quality annotated MS/MS spectra in open 
spectral libraries are increasingly being used to train and 
validate machine learning methods in metabolomics (Kret-
tler & Thallinger, 2021; Liu et al., 2021). For example, they 
can be used to learn relationships between MS/MS patterns 
and molecular (sub)structures (e.g. MS2LDA (van der Hooft 
et al., 2016), MESSAR (Liu et al., 2020)), develop machine 
learning-inspired spectrum similarity scores (e.g. Spec2Vec 
(Huber et al., 2021a), MS2DeepScore (Huber et al., 2021b), 
SIMILE (Treen et al., 2022)), simulate MS/MS spectra (e.g. 
CFM-ID (F. Wang et al., 2021)), and predict spectrum anno-
tations (e.g. CSI:FingerID (Dührkop et al., 2015), COSMIC 
(M. A. Hoffmann et al., 2021), MassGenie (Shrivastava 
et al., 2021)).

These are inspiring examples of computational advances 
that are beginning to define the next generation of metabo-
lomics analysis capabilities, which could not have been 
developed without the availability of comprehensive and 
high-quality open spectral libraries. Although these are 
already exciting advances in their own right, we believe that 
this is only the beginning of a more data-driven approach to 
computational metabolomics. Especially with the emergence 

and commodification of deep learning approaches, the avail-
ability of large training data is paramount to achieve opti-
mal performance. Deep learning is an extremely powerful 
class of machine learning models that especially excels in 
deriving complex patterns from massive amounts of data and 
discovering otherwise hidden data structures (LeCun et al., 
2015). However, care must be taken—as with any learning 
approach—that the analyses are reproducible and findings 
are carefully validated using follow-up studies (Gibney, 
2022). In other words, computational tools, including those 
based on statistics or machine learning, can help investiga-
tors formulate hypotheses, but it is critical that any discov-
eries made with such tools are confirmed using follow-up 
experiments designed to refute the hypotheses. However, 
as public spectral libraries continue to grow, we excitedly 
anticipate that this will further power the development of 
creative machine learning and other computational solutions 
to provide further tools in the researcher’s arsenal to under-
stand the rich data content that untargeted metabolomics 
provides.

5 � Discussion

Spectral libraries are essential knowledge bases that form a 
bridge between the past and future of metabolomics: they 
capture the historical achievements of the metabolomics 
community in structure elucidation to empower the next 
generation of biological insights. Currently there are two 
prevalent strategies towards spectral library dissemination: 
as a commercial product or freely available for public use. 
Although commercializing spectral libraries can be appeal-
ing to offset the significant costs associated with generating 
them, open spectral libraries that can freely be used and 
reused provide a larger community benefit to advance sci-
ence, by enabling biological discoveries and supporting the 
development of the next generation of computational and 
machine learning tools. We anticipate that with the ongoing 
shift towards open science and data FAIRness (Findable, 
Accessible, Interoperable, Reusable), open spectral librar-
ies will keep growing in the near future to form increasingly 
comprehensive resources for the metabolomics community.

There are still some challenges associated with generating 
and using spectral libraries in metabolomics, however. Many 
spectral libraries have a considerable amount of missing 
information. When compiling crowd-sourced spectral librar-
ies, there is a trade-off between requiring that all metadata 
has been unambiguously specified, which entails an addi-
tional time commitment and complexity for users submitting 
their data, and freely accepting contributions. The former 
results in a higher barrier towards contributing data to com-
munity spectral libraries, leading to smaller spectral librar-
ies, while the latter results in less defined spectral libraries. 
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As it is very challenging to completely eliminate all mis-
takes from spectral libraries, it is of the utmost importance 
to understand the provenance of spectral library matches. 
This allows the end user to make informed judgment calls 
to decide whether the matches should be followed up in sub-
sequent experiments. Popular community spectral libraries, 
such as GNPS and MoNA, address this dichotomy by using 
a multi-faceted ranking system to rate individual MS/MS 
spectra, contributing users, and MS/MS assignments. Fur-
thermore, a critical evaluation of any results by the user, 
irrespective of the spectral library source, is essential.

Despite their impressive growth in the past few years 
(Kind et al., 2018; Peisl et al., 2018; Stein, 2012; Vinaixa 
et al., 2016; Xue et al., 2020), spectral libraries still only 
cover a minor part of the known chemical space. For exam-
ple, PubChem (Kim et al., 2021) currently contains infor-
mation for 112 million unique compounds (September 
2022), whereas all metabolomics spectral libraries com-
bined account for less than 1% of those molecules. As spec-
tral library searching can only annotate known molecules 
with reference MS/MS spectra or related molecules using 
analog searching, “unknown unknowns,” where experi-
mental MS/MS spectra did not match any of the reference 
spectra included in the spectral library, cannot be identified 
(Stein, 2012). Some spectral library providers have started 
to integrate in silico MS/MS spectra alongside experimental 
MS/MS spectra to partially address this issue. Especially 
as spectrum prediction tools are getting increasingly bet-
ter, this could be a viable strategy to expand the coverage 
of spectral libraries. At present, however, we strongly urge 
caution when accepting annotations based on simulated 
spectra only. It is still easiest to assess whether an MS/MS 
spectrum match is acceptable based on the user’s search 
criteria through manual inspection of experimental MS/MS 
data. Rather than being able to simulate MS/MS spectra for 
all 112 million compounds in PubChem, we anticipate that 
in silico spectra could be a valuable addition for a subset 
of specific molecular families for which the performance 
and quality of spectrum prediction tools is well understood 
and has been carefully validated. For example, high-fidelity 
peptide mass spectra simulated by deep learning-powered 
spectrum prediction tools are being increasingly incorpo-
rated into various proteomics bioinformatics workflows 
(Gessulat et al., 2019), and the LipidBlast library, which 
consists of approximately half a million simulated MS/MS 
spectra, is available through MoNA to annotate lipids (Kind 
et al., 2013).

Furthermore, there is a mismatch between the com-
pounds included in spectral libraries and the MS/MS spectra 
observed in experimental data. For example, out of 586,647 
MS/MS spectra present in the GNPS community spectral 
libraries, 22% have been found in experimental datasets 
deposited to GNPS (Fig. 2a). This indicates that many of 

the compounds represented in reference libraries are not 
observed in metabolomics experiments, or that the library 
MS/MS spectra were created in a different fashion than for 
experimental data, such as when the preferred ion form is 
not included (Fig. 3). Notably, even as the public libraries 
have grown spectacularly over the previous decade, the rate 
of matched library spectra has remained relatively consist-
ent. This illustrates the previously described bias in the com-
mercial availability of pure reference compounds that are 
typically used for spectral library creation efforts. It also 
indicates that many relevant biological compounds are cur-
rently still missing from available spectral libraries, and that 
careful prioritization of the reference compounds to include 
is an important aspect of generating spectral libraries that 
provide maximum benefit.

An emerging approach towards creating comprehensive 
metabolomics knowledge bases is to expand upon traditional 
spectral libraries by integrating controlled and structured 
metadata information alongside the mass spectral data. “Ref-
erence data-driven metabolomics” uses not only annotated 
MS/MS spectra, but also all unannotated spectra in combi-
nation with metadata-annotated source data (e.g. were the 
samples derived from foods, personal care products, medi-
cations, etc.) as a pseudo spectral library (Gauglitz et al., 
2022). This strategy was exemplified by linking approxi-
mately 100,000 MS/MS spectra to 3,600 foods. A key aspect 
of this approach is that the foods are organized in a hier-
archical ontology to enable granular downstream analyses 
of the food origins. For instance, an example path in the 
food hierarchy consists of “fruit → citrus → lemon → pink 
lemon.” This enables performing analyses akin to micro-
biome science, in which the data may be interpreted at the 
class, genus, species, or even strain level depending on the 
research question at hand. Although this approach does not 
produce exact molecular identities, it provides essential 
insights into the origin of the data by matching against the 
reference source data, such as food. Reference data-driven 
metabolomics using the GNPS platform can increase the 
number of interpreted MS/MS spectra by up to an order of 
magnitude, and it has been used to obtain empirical assess-
ments of dietary patterns from untargeted metabolomics 
data (Gauglitz et al., 2022). Metadata-driven analyses can 
be broadly applied beyond diet readouts to also investigate 
other exposures (e.g. medications, personal care products, 
agrichemicals), disease phenotypes, organ system distribu-
tions, taxonomic matching, and many other uses. The key 
aspect that empowers reference data-driven metabolomics 
is that the spectral data are linked to controlled and curated 
metadata to be used as a pseudo-reference library. A less 
flexible but related metadata system is available for GC–MS 
data using BinBase, which covers a limited set of metadata 
(Lai et al., 2017).
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Although applied to proteomics, a related approach con-
sists of “spectral archives,” which include MS/MS spectra 
that have been repeatedly observed, irrespective of whether 
they could be annotated (Frank et  al., 2011). Spectral 
archives can be built by large-scale clustering of MS/MS 
spectra across multiple datasets or in an entire repository 
(Bittremieux et al., 2022b; Frank et al., 2008; Griss et al., 
2013, 2016). In this fashion, commonly observed spectra 
can be grouped and unannotated spectra can be linked across 
multiple experiments to find correlations with identified 
compounds (Stein, 2012).

There are also challenges associated with the ever-
increasing size of spectral libraries. First, this makes it 
more difficult to process the data, and better compute 
infrastructure and optimized algorithms are necessary to 
process large spectral libraries (Bittremieux et al., 2019, 
2018a). Cloud-based solutions, such as the GNPS analysis 
platform, have the potential to be extremely scalable while 
hiding this complexity from the user. For example, GNPS 
allows users to query their data against 1.2 billion open 
MS/MS spectra using the Mass Spectrometry Search Tool 
(MASST) to discover public datasets that contain similar 
MS/MS spectra (M. Wang et al., 2020; West et al., 2022). 
Developing and maintaining such platforms requires suit-
able, continued investments and a team willing to maintain 
the resources for the benefit of the community. The same 
is also true for MetaboLights (Haug et al., 2013), Metab-
olomics Workbench (Sud et al., 2015), HMDB (Wishart 
et al., 2021), MetaboAnalyst (Pang et al., 2022), MZmine 
(Pluskal et al., 2010), MS-DIAL (Tsugawa et al., 2020, p. 
4), and other popular untargeted metabolomics resources. In 
response, to overcome some of these challenges, subscrip-
tion models or commercial libraries such as NIST, mzCloud, 
or METLIN Gen2 continue to be needed. Second, interop-
erability of various tools and resources is important. There 
currently does not exist an official data standard for spectral 
libraries yet. Frequently used spectral library file formats 
include the mzML (Martens et al., 2011), mzXML (Pedri-
oli et al., 2004), Mascot Generic Format (MGF), and the 
NIST MSP formats. Unfortunately, some of these formats 
are only loosely defined, change over time, often without 
explicit versioning, and spectrum metadata can be encoded 
in various non-standardized ways, limiting the usability and 
portability of such spectral library files. The Proteomics 
Standards Initiative of the Human Proteome Organization 
(HUPO-PSI) (Deutsch et al., 2017), which has previously 
developed fundamental mass spectrometry data standards 
such as the mzML peak file format (Martens et al., 2011), 
is currently working on a specification for spectral libraries 
(https://​github.​com/​HUPO-​PSI/​mzSpe​cLib/). Although the 
HUPO-PSI primarily develops data standards for proteom-
ics, many of their efforts are relevant for any application 
of biological mass spectrometry. The HUPO-PSI working 

groups are open to any community contributions, and inter-
ested parties are encouraged to engage in the development of 
this nascent spectral library format to ensure its full compat-
ibility with applications in metabolomics.

In conclusion, we want to re-emphasize the exciting times 
ahead for spectral libraries in metabolomics. The community 
has become increasingly aware that capturing metabolomics 
knowledge in the form of reference MS/MS spectra acceler-
ates discoveries. Existing spectral libraries have grown tre-
mendously in the past few years, and we expect this growth 
to continue. Bigger libraries, especially those that are freely 
available for community use, will enable researchers to get 
more and better annotations from their data and achieve 
important biological insights. Additionally, it will be possi-
ble to develop increasingly powerful machine learning algo-
rithms by training them on large spectral libraries. As some 
of these machine learning tools will improve the annotation 
rate in metabolomics and derive more value from existing 
and new data, this will make it possible to annotate new 
high-quality MS/MS spectra for inclusion in the next itera-
tion of spectral libraries. As such, the growth of open spec-
tral libraries and development of machine learning tools will 
proceed in lockstep to power a virtuous cycle and advance 
metabolomics in the upcoming years.
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