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Abstract
Introduction While prediction of short versus long term survival from lung cancer is clinically relevant in the context of 
patient management and therapy selection, it has proven difficult to identify reliable biomarkers of survival. Metabolomic 
markers from tumor core biopsies have been shown to reflect cancer metabolic dysregulation and hold prognostic value.
Objectives Implement and validate a novel ensemble machine learning approach to evaluate survival based on metabolomic 
biomarkers from tumor core biopsies.
Methods Data were obtained from tumor core biopsies evaluated with high-resolution 2DLC-MS/MS. Unlike biofluid 
samples, analysis of tumor tissue is expected to accurately reflect the cancer metabolism and its impact on patient survival. 
A comprehensive suite of machine learning algorithms were trained as base learners and then combined into a stacked-
ensemble meta-learner for predicting “short” versus “long” survival on an external validation cohort. An ensemble method 
of feature selection was employed to find a reliable set of biomarkers with potential clinical utility.
Results Overall survival (OS) is predicted in external validation cohort with  AUROCTEST of 0.881 with support vector 
machine meta learner model, while progression-free survival (PFS) is predicted with  AUROCTEST of 0.833 with boosted 
logistic regression meta learner model, outperforming a nomogram using covariate data (staging, age, sex, treatment vs. non-
treatment) as predictors. Increased relative abundance of guanine, choline, and creatine corresponded with shorter OS, while 
increased leucine and tryptophan corresponded with shorter PFS. In patients that expired, N6,N6,N6-Trimethyl-L-lysine, 
L-pyrogluatmic acid, and benzoic acid were increased while cystine, methionine sulfoxide and histamine were decreased. 
In patients with progression, itaconic acid, pyruvate, and malonic acid were increased.
Conclusion This study demonstrates the feasibility of an ensemble machine learning approach to accurately predict patient 
survival from tumor core biopsy metabolomic data.

Keywords Metabolomics · Lung cancer · Survival prediction · Machine learning · Personalized medicine · Artificial 
intelligence
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BGAM  Boosted generalized additive model
BGLM  Boosted general linear model
BLR  Boosted logistic regression
EVTREE  Tree models from genetic algorithms
KNN  K-nearest neighbors
MANN  Model averaged neural network
MLP  Multi-layer perceptron
NB  Naïve Bayes
NNET  Neural network (single layer)
NNFE  Neural network with feature extraction
NSC  Nearest shrunken centroids
ORFSVM  Oblique random forest with SVM as splitting 
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RF  Random forest
RLR  Regularized logistic regression
RRF  Regularized random forest
SPLS  Sparse partial least squares
SVM  Support vector machines
SVMPoly  Support vector machine with polynomial 

kernel
WKNN  Weighted k-nearest neighbors

1 Introduction

The 5-year survival rate for lung cancer remains < 5% for all 
stages combined (Howlader et al. 2020, based on Novem-
ber 2020 SEER data submission, posted to the SEER web 
site, April 2021.), despite improvements in survival since 
the early 1990’s. Identification of patients likely to experi-
ence short or long survival has clinical utility by helping 
to minimize over- or under-treatment, potentially leading 
to improved clinical decision making. Staging relying on 
tumor (T) size, location of cancerous lymph nodes (N), and 
presence of metastasis (M) has been the gold standard for 
stratifying survival probability in the clinical setting (Lim 
et al., 2018), with mixed results. Linear methods such as 
Cox proportional hazards regression and logistic regression 
(e.g., nomograms) have seen routine use for diagnostic and 
prognostic applications (e.g., (Liang et al., 2015)). How-
ever, these linear methodologies may be unable to capture 
complex hidden features within high-dimensional data sets 
(Randall & Cable, 2016), leading to unreliable biomarker 
selection. In particular, nomograms applied to non-small cell 
lung cancer (NSCLC) and small cell lung cancer (SCLC) for 
predicting overall survival (OS) using clinical features such 
as pathologic stage, presence of lymph node metastasis and 
histology have yielded fair to poor accuracy, even with large 
sample sizes (Pan et al., 2017; Zhang et al., 2019).

More complex analyses such as machine learning have 
been employed to improve upon these linear methods, yield-
ing a variety of results that have yet to find clinical applica-
tion. A deep neural network (DNN) was combined with gene 
expression and clinical data in (Lai et al., 2020) to predict 
5-year survival of NSCLC patients (AUC = 0.8163, accu-
racy = 75.44%). In (She et al., 2020) a deep learning model 
trained and externally validated with patient clinical data 
outperformed prediction of lung cancer–specific survival 
via Cox proportional hazard regression (C statistic = 0.739 
vs. 0.716). A deep learning model using pretreatment and 
follow-up time series computed tomography (CT) images 
of NSCLC tumors was applied in (Xu et al., 2019) to pre-
dict survival. Another deep learning model was trained to 
extract prognostic information from pre-operative CT exami-
nations in (Kim et al., 2020). In (Doppalapudi et al., 2021), 
deep learning models (artificial neural networks (ANN), 

recurrent neural networks (RNN), and convolutional neural 
networks (CNN)) were applied to the SEER database to pre-
dict lung cancer survival, obtaining 71.18% accuracy when 
survival periods were segmented into three classes (less than 
6 months, 6–24 months, and over 24 months). An ensemble 
data mining approach was applied to the SEER database 
in (Agrawal et al., 2012) to predict survival for 6-month, 
9-month, 1-year, 2-year and 5-years.

Part of the challenge in finding a reliable method to 
improve upon current clinical measures is the identification 
of a consistent set of molecular signatures as biomarkers for 
the prediction of survival (Riley et al., 2009). In this regard, 
metabolomics holds promise as a method for generating 
high-dimensional molecular data, from which a more accu-
rate prognosis can be made (Collino et al., 2013). Although 
previous work has contributed to the understanding of 
lung cancer metabolism, the use of metabolomic data for 
survival prediction remains relatively unexplored (Bamji-
Stocke et al., 2018). We have recently shown that tumor core 
biopsy-derived metabolomic data is capable of discriminat-
ing patients based on therapy outcome (Miller et al., 2021), 
where a support vector machine (SVM) trained and vali-
dated on features selected by partial least squares discrimi-
nant analysis (PLS-DA) performed best at predicting disease 
control vs. progressive disease groups (AUC = 0.970).

This study implements and validates a novel ensemble 
machine learning approach to predict overall survival (OS) 
and progression-free survival (PFS) in lung cancer patients 
by analyzing tumor core biopsy-derived metabolomic 
data. Unlike samples obtained from biofluids, analysis of 
the tumor tissue itself is expected to accurately reflect the 
cancer metabolism and its impact on patient survival. Our 
hypothesis is that an ensemble machine learning analysis 
of metabolomic data from lung tumor core biopsies is able 
to predict short vs. long survival in terms of OS and PFS. 
We test this hypothesis by implementing a comprehensive 
suite of machine learning algorithms that are trained as 
base learners and then combined into a stacked-ensemble 
meta-learner for predicting “short” vs. “long” survival on 
an external validation cohort. Further, an ensemble method 
of feature selection is employed to identify a reliable set of 
biomarkers with potential clinical utility.

2  Methods

2.1  Data pre‑processing and statistical analysis

Metabolomic data from NSCLC patient tumor core biop-
sies were previously obtained from an ongoing study as 
described in (Miller et al., 2021), for which sample process-
ing and metabolite extraction, 2DLC-MS/MS analysis and 
data pre-processing, and organization of MS peak intensity 
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data were already performed. As reported previously, 2DLC-
MS/MS data of unlabeled samples were first matched to an 
in-house database that contains parent ion m/z, MS/MS 
spectra, and retention time of authentic standards (MSI 
Level 1 identification). Data without a match (MSI Level 2 
identification) were analyzed using Compound Discoverer 
software v2.0 (Thermo Fisher Scientific, Germany).

In the study in (Miller et al., 2021), informed consent was 
obtained to participate, and all specimens were collected fol-
lowing approved Internal Review Board protocols at Univer-
sity of Louisville Hospital (IRB 05.0523) and Norton Hos-
pital (IRB 18.0264) from patients with known or suspected 
NSCLC. Demographics including sex, race, age, personal 
history of malignancy, smoking history, and relevant fam-
ily history were recorded. Samples were collected by the 
clinical team, which was blinded to the data analysis. Only 
patients with confirmed primary histology of Non-small cell 
and histology subtypes of adenocarcinoma or squamous cell 
carcinoma were included. Data were split into internal and 
external validation sets while ensuring both data sets were 
balanced in terms of major clinical features such as age, 
gender, pathological staging, histology subtype, treatment 
versus non-treatment, status (alive/expired; progression/no 
progression) and survival outcome (short vs. long OS/PFS).

For this study, the MS data were log-transformed and 
imputed by probabilistic principal component analysis 
(PPCA) prior to analysis. Patients were categorized into 
“short” and “long” survival groups based on the mean 
OS and PFS across both data sets (29.21 months for OS; 
21.11 months for PFS). A preliminary step to handle miss-
ing values by removing metabolic features with more than 
50% was performed, resulting in a data set of approximately 
25% missing values. Imputation was chosen over limit of 
detection (LOD) substitution as it was clear that some data 
was missing at random (MAR) and some was missing not at 
random (MNAR). Further details on the data pre-processing 
can be found in (Miller et al., 2022), in which we showed 
that the missingness of the data (categorized as missing or 
not missing) was not significantly associated with the events 
of death or progression in this patient cohort.. Significant 
differences in relative abundance were evaluated either by 
an unpaired T-test assuming equal variance or unpaired Wil-
coxon rank-sum test, depending on normality of the data, 
and correlations between survival as a continuous outcome 
and metabolite levels were found via Pearson or Spearman 
method.

2.2  Machine learning methods (base learners)

Out of 44 total patients, 2/3 were kept for training as the 
internal validation set and the remaining 1/3 were reserved 
as the external validation set (Table 1). The data were ran-
domly split using function createDataPartition from caret 

package in R, where short vs. long OS was the grouping fac-
tor. The internal validation set was used for parameter tuning 
with each base learner using all possible combinations of 
10 values for each tuning parameter and Cohen’s kappa as 
the optimization metric for determining the optimal tuning 
parameter set for each individual model. Kappa represents 
classification accuracy for data with imbalanced classes 
and is a superior metric over accuracy alone. The approach 
used for estimating model performance within the internal 
validation set on unseen data was repeated k-fold cross-
validation where k = 5 and 10 resampling iterations were 
performed for each base learner. The same tuning process 
was applied to meta learners after formation of each stacked 
ensemble model. The receiver operating characteristic curve 
(ROC) was plotted from the sensitivity and false positive 
rate (1-specificity). The Area under the Receiver Operat-
ing Characteristic curve (AUROC) was then calculated for 
model evaluation. An AUROC of 1.0 represents a perfect 
prediction, while an AUROC of 0.5 is equivalent to random 
chance showing no discriminatory power of the model.

2.3  Feature selection and variable importance

For each predictive model, the relative contribution of each 
feature was determined from the variable importance scores 
which were calculated from the varImp function in the caret 
package. The variable importance scores were used to rank 
key features for each model during feature selection. Some 
prediction models such as Random Forest, Neural Network 
(single-layer), and Nearest Shrunken Centroids have specific 
variable importance methods used while other prediction 
models such as k-Nearest Neighbors and Naïve Bayes use a 
generic ROC curve analysis method. Forward feature selec-
tion was employed after ranking features from each model 
by re-training the models on every feature subset increment-
ing by one predictor.

2.4  Ranking of most important predictors

An ensemble feature selection method was used to determine 
the top key features from the variable importance ranking 
and classification performance in each predictive model. For 
each outcome, the highest AUROC from each predictive 
model was weighted with an AUROC of 1 being 1 and an 
AUROC of 0.5 or less being 0. Similar to Shahrjooihaghighi 
et al. (Shahrjooihaghighi et al., 2017) which found that 
ensemble approaches of feature selection outperformed indi-
vidual feature selection algorithms, we chose to maximize 
the stability (i.e., reliability) of biomarkers by finding the 
weighted sum of ranks by each variable importance feature 
selection method (a modified version of the Borda count), 
with weights assigned proportionally to the performance 
of each machine learning algorithm. All feature selection 
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methods were weighted proportionally by their performance 
with an AUROC of 1 weighted as one and an AUROC of 0.5 
or less weighted as zero. The ranked features were found by 
the weighted sum of ranks of all feature selection:

where R(fi) is the overall sum of ranks of feature i, wk is the 
weight coefficient assigned to method k,  ri,k is the rank of 
feature i by method k, and num is the total number of meth-
ods used to rank the features.

2.5  Ensemble machine learning method

After individual predictive models were trained using 
cross-validation, an ensemble machine learning approach 
was employed to arrive at the optimal predictive model 
(Fig. 1). Ensemble methods are powerful machine learn-
ing tools which combine the predictions of several base 

(1)R
(

fi
)

=
∑num

k=1
wkri,k

learning models. By taking advantage of the unique 
strengths present in each base learner, ensemble methods 
typically achieve better prediction accuracy than any sin-
gle base learner. Here, we employed a stacked generaliza-
tion technique using the caretEnsemble package. First, a 
list of models with each base learner is produced, and the 
models are then stacked into a meta-model which uses a 
base learner as the aggregating method (i.e. meta learner). 
We filtered the base learners by choosing only those that 
had a maximum AUROC of 0.7 or higher in the internal 
validation set results during feature selection. Using the 
key predictors identified by feature selection, the stacked 
ensemble models were trained and validated using forward 
feature selection where variable importance was calculated 
as in Eq. 1. The same models, including base-learners, 
meta-learner, feature subset and hyper-parameters were 
used when evaluating performance on both internal and 
external validation sets to ensure no data leakage from the 
external validation set.

Table 1  Patient population 
characteristics

(n = 31) (n = 13)
Internal validation set External validation set

Age at diagnosis
 Median age (range) 67 (50–95) 65 (42–85)

Gender
 Male 13 (41.9%) 5 (38.5%)
 Female 18 (58.1%) 8 (61.5%)

Stage
 I/II 14 (45.2%) 6 (46.2%)
 III/IV 17 (54.8%) 7 (53.8%)

Primary histology
 Non-small cell 31 (100%) 13 (100%)

Histology subtype
 Adenocarcinoma 26 (83.9%) 11 (84.6%)
 Squamous cell carcinoma 5 (16.1%) 2 (15.4%)

Treatment
 Treatment 28 (90.3%) 11 (84.6%)
 Non-treatment 3 (9.7%) 2 (15.4%)

Status
 Alive 21 (67.7%) 9 (69.2%)
 Expired 10 (32.3%) 4 (30.8%)
 No progression 18 (58.1%) 8 (61.5%)
 Progression 13 (41.9%) 5 (38.5%)

Survival categorization
 Short OS 20 (64.5%) 9 (69.2%)
 Long OS 11 (35.5%) 4 (30.8%)
 Short PFS 21 (67.7%) 7 (53.8%)
 Long PFS 10 (32.3%) 6 (46.2%)

Survival time in months
 Mean (range): overall 31.6 (0.69–101.91) 25.8 (2.23–62.96)
 Mean (range): progression-free 21.8 (0.69–76.37) 20.5 (2.23–52.71)
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2.6  Evaluation of covariates

A nomogram of patient covariate data (staging, sex, age, 
and treatment vs. non-treatment) was created to compare 
to the machine learning predictions of short versus long 
OS and PFS. For the nomogram, staging, age, sex and 
treatment versus non-treatment were the predictors, and 
an inverse logit transformation was used to transform the 
linear predictors to a probability (Zhang & Kattan, 2017).

2.7  Packages and libraries

All data analyses were conducted in the R programming lan-
guage version 4.1.0. The packages caret and caretEnsemble 
were implemented for data splitting, model hyperparameter 
tuning, and creating stacked ensemble models using func-
tions createDataPartition, train, caretList, and caretStack. 
Feature selection and EFS score calculation was imple-
mented via a custom written R script. Packge rms was 

Fig. 1  Diagram of machine learning workflow. Baser learners are 
trained on the internal validation set using fivefold cross validation 
with 10 resampling iterations on each feature subset. Feature selec-
tion is employed by base learner variable importance. After all 
base learners are trained and evaluated, a stacked ensemble model 
is evaluated after filtering base learners which did not achieve an 
 AUROCTRAIN of 0.7 or greater across all feature subsets in the inter-
nal validation data. The ensemble model is then evaluated on all fea-
ture subsets using an ensemble method of feature selection (Eq.  1). 
The classification model performance of all base-learners and 
meta-learners is evaluated across the feature subsets on the external 

validation data. EVTREE = tree models from genetic algorithms. 
RF random forest, NNET neural network (single layer), MLP multi-
layer perceptron, NSC nearest shrunken centroids, NB naïve Bayes, 
BGLM boosted general linear model, KNN k-nearest neighbors, 
SVM support vector machine, SPLS sparse partial least squares, 
BLR boosted logistic regression, RLR regularized logistic regres-
sion, NNFE neural network with feature extraction, WKNN weighted 
k-nearest neighbors, MANN model averaged neural network, 
RRF regularized random forest, BGAM boosted generalized addi-
tive model. ORFSVM oblique random forest with SVM as splitting 
model, SVMPoly support vector machine with polynomial kernel
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employed for creating the nomogram with functions lrm 
and nomogram.

2.8  Metabolic network visualization 
and quantitative enrichment analysis

Quantitative enrichment analysis (QEA) was performed 
on unlabeled metabolite dataset with (MetaboAnalyst 5.0, 
RRID:SCR_015539, www. metab oanal yst. ca/) (Chong et al., 
2018). The log transformed/imputed working dataset was 
used, obviating missing value estimation or normalization. 
KEGG database (RRID:SCR_012773, www. kegg. jp/) was 
accessed June 2022. Metabolic networks were visualized 
with (Cytoscape 3.8.2, RRID:SCR_003032, cytoscape.org/) 
and (MetScape 3.1.3, RRID:SCR_014687, metscape.ncibi.
org/) using imputed and log transformed metabolite intensity 
values for short vs. long survival classification.

3  Results

3.1  Patient population characteristics

Patient population characteristics are summarized in Table 1, 
showing the division between internal validation and exter-
nal validation datasets. A total of 44 patients, all of which 
had pathological staging information, were considered for 
analysis; 30 were alive and 14 had expired by the end of 
the respective follow-up period. Pathological staging cat-
egorized as stage I/II vs. stage III/IV was evenly distributed 
among all patients. The majority of patients received some 
form of treatment, either as chemotherapy, immunotherapy, 
surgery, or some combination. In the internal validation 
cohort, mean OS was 31.6 months, and mean PFS was 
21.8 months. Primary histology of all 31 internal validation 
patients was classified as non-small cell. Histology subtypes 
included 5 squamous cell carcinoma with the remaining 26 
adenocarcinoma. In the external validation cohort, mean OS 
was 25.8 months, and mean PFS was 20.5 months. Primary 
histology of all 13 external validation patients was classified 
as non-small cell. Histology subtypes included 2 squamous 
cell carcinoma with the remaining 11 as adenocarcinoma. 
Further details on patient information can be found in Sup-
plementary Table 1.

3.2  Classification results

Patients were stratified into “long” and “short” survival 
groups for classification by the mean OS and PFS across 
both data sets. The machine learning workflow is sum-
marized in Fig. 1. A heatmap of the log transformed and 
imputed 2DLC-MS derived metabolite intensity values for 
short vs. long OS and PFS is shown in Supplementary Fig. 1 

for the model internal validation (training) data and the 
external validation (test) data. PLS-DA score plots of short 
versus long overall and progression-free survivals based on 
the patient tissue-derived metabolomic data are in Supple-
mentary Fig. 2. Long and short survival groups were sepa-
rated but with some overlap for OS and PFS in the internal 
validation cohort. However, groups were well separated in 
the external validation cohort for both PFS and OS.

The maximum AUROC obtained from feature selection 
after internal cross-validation of all base learner models 
(Fig. 2) shows that the highest performance was obtained 
with NB (naïve Bayes) for OS  (AUROCTRAIN = 0.822) and 
SVMPoly for PFS  (AUROCTRAIN = 0.769). After filtering 
base learners with a max AUROC < 0.7, the AUROC with 
stacked ensemble meta learners (Fig. 2) increased for OS 
with NNFE yielding  AUROCTRAIN = 0.958, while for PFS 
the  AUROCTRAIN was 0.975 with BLR. Supplementary 
Fig. 3 further summarizes the AUROC obtained from all 
base learner models and stacked ensemble models during 
feature selection with predictions made on the external vali-
dation set.

ROC curves of optimal stacked ensemble meta learners 
with repeated internal cross-validation as well as external 
validation for prediction of “long” and “short” OS and 
PFS are further shown in Fig. 2. OS predictions achieved 
an  AUROCTRAIN of 0.908 with SVM meta learner on the 
internal validation set and an  AUROCTEST of 0.881 with 
SVM meta learner model on the external validation set, both 
utilizing the same feature subset of 18 metabolites. PFS 
predictions achieved an  AUROCTRAIN of 0.924 with BLR 
meta learner on the internal validation set and an AUROC of 
0.833TEST with BLR meta learner on the external validation 
set, both utilizing the same feature subset of 4 metabolites.

To compare to a linear prognostic model, a nomogram 
of covariate data (sex, age, staging) was implemented to 
predict short vs. long OS and PFS probability (Supplemen-
tary Fig. 4). The nomogram results (internal validation: OS 
AUROC = 0.749; PFS AUROC = 0.829; external validation: 
OS AUROC = 0.556; PFS AUROC = 0.738) were outper-
formed by the metabolomic-based ensemble machine learn-
ing approach (Fig. 2).

3.3  Key metabolites identified by variable 
importance

Top 25 key metabolic biomarkers identified by ensemble fea-
ture selection (EFS) are in Table 2. The EFS score was cal-
culated as a linear weighted sum of ranks of features identi-
fied by all base learners included in each meta model (Eq. 1). 
The top 18 metabolites were used in the optimal stacked 
ensemble model for predicting OS  (AUROCTEST = 0.881), 
while the top 4 metabolites were used for predicting PFS 
 (AUROCTEST = 0.833). Correlations were found via Pearson 

http://www.metaboanalyst.ca/
http://www.kegg.jp/
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or Spearman method, depending on normality of the data, 
between survival as a continuous outcome and metabolite 
level. Among the features included in the optimal meta 
model, those correlating with improved OS included uro-
canic acid, cysteine, levulinic acid, pyruvate, itaconic acid, 
and histamine, while glutamine correlated with improved 
PFS. In contrast, features correlating with decreased OS 
included guanine, creatine, leucine, adenosine, choline, 
acetyl-L-carnitine, malate, panthothenic acid, xanthine, 
uridine, hypoxanthine, and tryptophan, while leucine, tryp-
tophan, and adipic acid correlated with decreased PFS.

Figure 3 shows metabolites with a significant (p ≤ 0.05) 
or marginally significant (0.05 ≤ p ≤ 0.1) effect of group in 
terms of relative abundance (T-test or Wilcoxon rank-sum 
test) for short vs. long survival groups. Guanine, choline, 
and creatine were significantly increased for patients with 
shorter OS, while leucine and tryptophan were significantly 
increased for patients with shorter PFS (p ≤ 0.05). Addi-
tionally, leucine, acetyl-L-carnitine, adenosine, and malate 
trended higher for patients with shorter OS, while glutamine 

trended lower for patients with shorter PFS (p ≤ 0.1). In 
comparison, relative abundance analysis for event vs. non-
event groups is shown in Supplementary Fig. 5. In patients 
that expired, N6,N6,N6-Trimethyl-L-lysine, L-pyrogluatmic 
acid, and benzoic acid were increased while cystine, methio-
nine sulfoxide and histamine were decreased (p ≤ 0.05). Cre-
atine, creatinine, and malate also trended higher in these 
patients (p ≤ 0.1). In patients with progression, itaconic acid, 
pyruvate, and malonic acid were increased (p ≤ 0.05) while 
leucine and lysine trended lower (p ≤ 0.1).

3.4  Metabolic pathway enrichment and network 
analysis

Top metabolic pathways identified in MetaboAnalyst 5.0 
by the chosen databases are shown in Fig. 4 and listed with 
associated statistics in Supplementary Table 2. Enrichment 
ratio was determined by relative abundance differences 
between “short” and “long” survival groups. Significant (p 
≤ 0.05) metabolic pathways identified by KEGG database 

Fig. 2  Maximum AUROC obtained from feature selection after exter-
nal test set validation of all base learner models and stacked ensem-
ble meta learners for Overall Survival and Progression Free Survival. 
Patients were stratified into “long” and “short” survival groups for 
classification by the prediction models. Base learners which achieved 
a max  AUROCTRAIN of 0.7 or above in the internal validation data 

(gray bars, top row) were selected for the stacked ensemble models 
(black bars, middle row). ROC curves of optimal stacked ensemble 
meta learners with repeated internal cross-validation (gray) and exter-
nal validation (black) for prediction of “long” and “short” OS and 
PFS are shown for each case (bottom row)
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by p-value were the following. For OS: glycine, serine and 
threonine metabolism; for PFS: valine, leucine and isoleu-
cine degradation, valine, leucine and isoleucine biosyn-
thesis, and tryptophan metabolism. Visualization of inte-
grated metabolic networks of metabolites with significant 

or marginally significant differences in relative abundance 
for short vs. long survival groups with OS (guanine, cho-
line, creatine, leucine, acetyl-L-carnitine, adenosine, 
malate) or PFS (leucine, tryptophan, glutamine) is in Sup-
plementary Fig. 6.

Table 2  Key metabolic biomarkers identified by ensemble feature selection (EFS), where the top 25 metabolites are shown.

Overall survival Progression-free survival

Rank

Included in 
optimal 
model Metabolite

Correlation 
coefficient

EFS 
score

EFS score 
(normalized)

Included in 
optimal 
model Metabolite

Correlation 
coefficient

EFS 
score

EFS score 
(normalized)

1 X ▼**Guanine −− 0.291 7.3 100.00% X ▼ †**Leucine −− 0.324 8.10 100.00%

2 X ▼†**Creatine −− 0.358 37.7 19.40% X ▲ *Glutamine 0.267 8.20 98.30%

3 X ▼*Leucine −− 0.422 45.7 16.00% X ▼ **Tryptophan −− 0.260 20.9 38.80%

4 X ▼*Adenosine −− 0.270 46.3 15.90% X ▼ Adipic acid −− 0.279 26.2 31.00%

5 X ▼**Choline −− 0.414 47.3 15.50% ▼ Levulinic acid −− 0.106 31.1 26.10%

6 X ▼*Acetyl-L-
carnitine −− 0.314 50.0 14.70% ▲ Glutamic acid 0.270 36.9 22.00%

7 X ▼†*Malate −− 0.219 59.4 12.40% ▼ N6,N6,N6-Trimethyl-L-
lysine −− 0.047 42.0 19.30%

8 X ▼Pantothenic 
acid −− 0.204 71.4 10.30% ▲ Methionine 0.088 43.9 18.50%

9 X ▲Urocanic acid 0.140 91.9 8.00% ▲ Serine 0.149 49.8 16.30%

10 X ▼Xanthine −− 0.313 93.3 7.90% ▼ N3,N4-Dimethyl-L-
arginine −− 0.060 51.2 15.80%

11 X ▲††Cystine 0.194 94.5 7.80% ▼ †Lysine −− 0.168 52.0 15.60%

12 X ▲Levulinic acid 0.035 96.9 7.60% ▼ L-pyroglutamic acid −− 0.045 52.1 15.60%

13 X ▼Uridine −− 0.256 101.1 7.30% ▲ N8-Acetylspermidine 0.071 52.9 15.30%

14 X ▲Pyruvate 0.102 104.5 7.00% ▲ Nicotinamide 0.021 58.6 13.90%

15 X ▼Hypoxanthine −− 0.282 111.5 6.60% ▼ Creatine −− 0.245 71.0 11.40%

16 X ▲Itaconic acid 0.149 130.3 5.60% ▲ ††Malonic acid 0.120 75.5 10.70%

17 X ▼Tryptophan −− 0.382 140.3 5.20% ▼ Malate −− 0.156 75.6 10.70%

18 X ▲††Histamine 0.044 150.9 4.90% ▲ Methionine sulfoxide 0.029 75.9 10.70%

19 ▼Fructose −− 0.203 153.6 4.80% ▲ Isoleucine 0.121 82.8 9.80%

20 ▼Lysine −− 0.211 154.2 4.80% ▼ Proline −− 0.094 88.2 9.20%

21 ▼Nicotinamide −− 0.184 155.9 4.70% ▲ Guanosine 0.015 88.5 9.20%

22 ▼Salicylic acid −− 0.057 157.3 4.70% ▲ Tyrosine 0.102 89.7 9.00%

23 ▼Lidocaine −− 0.051 163.1 4.50% ▼ Phenylalanine −− 0.061 99.8 8.10%

24 ▼Phenylalanine −− 0.154 163.5 4.50% ▲ Creatinine 0.037 100.4 8.10%

25 ▲Creatinine −− 0.043 171.7 4.30% ▲ Azelaic acid 0.095 105.6 7.70%

The EFS score is calculated as a linear weighted sum of ranks offeatures identified by all base learners. Higher ranks result in a lower score. 
Downward arrowsindicate an increase in the metabolite results in worse survival (negative correlation withsurvival), while upward arrows indi-
cate an increase in the metabolite results in better survival(positive correlation with survival). The top 18 metabolites were used in the optimal 
ensemblemodel for predicting short vs. long OS in the external validation set  (AUROCTEST=0.881) whilethe top 4 metabolites were used for 
predicting short vs. long PFS  (AUROCTEST=0.833)
*p ≤0.05;**p≤0.01. († indicates significance between event vs. non-event groups as in SupplementaryFigure 5; †p≤0.05; ††p≤0.01). (Color 
table online)
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Fig. 3  Relative abundance of metabolites identified as significant for 
“short” versus “long” OS and PFS by unpaired T-test assuming equal 
variance or Wilcoxon rank sum test, depending on normality of the 
data. Each box represents 1st and 3rd quartiles. Bands within repre-

sent the median and x is the mean. Ends of whiskers are maximum 
and minimum, with points outside being outliers. “Long” survival 
groups are in green and “Short” is in yellow (*p ≤ 0.1, **p ≤ 0.05). 
Color figure online

Fig. 4  Quantitative enrichment analysis. Enriched metabolic pathways were found with MetaboAnalyst 5.0 using KEGG pathway database for 
OS and PFS (Color figure online). KEGG database was accessed June 2022
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4  Discussion

This study examined the hypothesis that an ensemble 
machine learning analysis of metabolomic data from lung 
tumor core biopsies is able to predict short vs. long sur-
vival in terms of overall survival (OS) and progression-
free survival (PFS). The study adhered to REMARK cri-
teria (McShane et al., 2005) to ensure the integrity of the 
modeling approach. An ensemble method of feature selec-
tion was employed to identify key metabolites associated 
with survival and that proved able to differentiate between 
short and long term survivals. A rigorous combination of 
feature selection and parameter tuning during training and 
validation of all base learner models and stacked ensemble 
meta-learners was performed to minimize model overfit-
ting (Fig. 1). The same models, including base-learners, 
meta-learner, feature subset and hyper-parameters were 
used when evaluating performance on both internal and 
external validation sets to ensure no leakage from the 
external data set. OS predictions achieved  AUROCTRAIN 
of 0.908 with SVM meta learner model on the internal 
validation set and  AUROCTEST of 0.881 with SVM meta 
learner model on the external validation set (Fig. 2), where 
the top 18 metabolites were selected as the feature sub-
set for training and validation (Table 2). PFS predictions 
achieved  AUROCTRAIN of 0.924 with SVM meta-learner 
model on the internal validation set and  AUROCTEST of 
0.833 with BLR meta learner model on the external valida-
tion set (Fig. 2), where the top 4 metabolites were selected 
as the feature subset for training and validation (Table 2). 
Interestingly, the meta-learners EVTREE, NSC, KNN, 
and KKNN consistently underperformed for predicting 
OS and PFS (Fig. 2). The meta-learners outperformed 
individual base learners for the maximum performance 
achieved across all feature subsets in the external valida-
tion set (Supplementary Fig. 3), at the cost of increased 
variance and slightly decreased average performance. 
Overall, high prediction accuracy was achieved during 
both internal cross-validation and external test set valida-
tion using SVM and BLR meta-learners for OS and PFS, 
respectively, demonstrating that tumor core biopsy derived 
metabolomic data is useful for survival prognosis even 
with a small sample size. For comparison to these results 
we evaluated the performance of a nomogram, a more tra-
ditional method commonly applied in clinical prognosis, 
using covariate clinical data as predictors (Supplementary 
Fig. 4). The nomogram significantly underperformed the 
metabolomic-based ensemble machine learning approach.

Guanine, choline and creatine were identified as signifi-
cant between long and short OS groups (Fig. 3) and were 
all included in the top 7 metabolites selected by the EFS 
score. Increased relative abundances of these metabolites 

were associated with shorter OS. Guanine can arise from 
guanosine through the action of phosphate alpha-D-ribo-
syltransferase as part of the general purine metabolism 
pathway (reaction R02147 (KEGG)) (Supplementary 
Fig. 6). Guanine and guanosine are integral components 
of various cellular proteins involved in cancer progres-
sion (Wang et al., 2021), and abundance of guanosine 
nucleotides has been observed in cancer (Huang et al., 
2021). Abnormal choline cellular metabolism leading to 
increased levels of choline-containing precursors is con-
sidered a hallmark of oncogenesis and tumor progression 
(Glunde et al., 2011). Malate, which is involved in both 
the TCA cycle and glycolysis/gluconeogenesis (Supple-
mentary Fig. 6), was marginally increased in patients with 
shorter OS (Fig. 3). Urinary malate dehydrogenase (MDH) 
has been discovered as a biomarker able to differentiate 
lung cancer patients from control subjects and increases 
with worsening disease stage (Ma et al., 2021). The same 
study also found increased expression of MDH in lung 
cancer tissue compared to normal lung tissue in a small 
patient cohort. It is difficult to link malate levels to MDH 
activity since malate is also involved in glycolysis and glu-
coneogenesis towards the production of pyruvate, although 
it is possible that increased malate seen in patients with 
short OS could be partially due to MDH expression. Fur-
ther study is needed to investigate the relationship between 
the metabolome and proteome in lung cancer patients.

Higher relative abundance of leucine, acetyl-L-carnitine, 
adenosine and malate were marginally associated with short 
OS (Fig. 3). These metabolites were also within the top 7 
ranked metabolites selected by EFS score (Table 2). Leu-
cine is a branched-chain amino acid (BCAA); along with 
isoleucine and valine; these essential amino acids are needed 
by tumors for protein synthesis and oxidation for energy 
purposes (Ananieva & Wilkinson, 2018). Adenosine is 
known to accumulate in tumors, promoting angiogenesis 
and tumor growth and dampening the immune response 
(Spychala, 2000). Adenosine is also involved with produc-
tion of adenine through the action of phosphate alpha-D-
ribosyltransferase (reaction R01561 (KEGG)) (Supplemen-
tary Fig. 6). Leucine and tryptophan were selected within 
the top 3 most important metabolites for predicting short 
vs. long PFS by EFS score (Table 2), and increased rela-
tive abundance was associated with shorter PFS (Fig. 3). 
Significant metabolic pathways associated with PFS include 
valine, leucine, and isoleucine degradation/biosynthesis, and 
tryptophan metabolism (Supplementary Table 2). Trypto-
phan, an essential amino acid, has been recognized as an 
important compound in lung cancer (Li & Zhao, 2021) and 
is known to be involved with immune system suppression 
(Mellor & Munn, 2004; Munn et al., 2005; Pilotte et al., 
2012). Although decreased tryptophan in blood circulation is 
characteristic of lung cancer compared to healthy controls, it 
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has not been able to differentiate between early and advanced 
stage of lung cancer (Ren et al., 2011). Interestingly, our 
study shows that increased tryptophan levels were associ-
ated with shorter PFS (Fig. 3).Tryptophan, along with other 
essential amino acids, is obtained exclusively from the diet, 
which may represent a confounding variable when measur-
ing its abundance. In contrast, decreased relative abundance 
of glutamine was marginally significantly associated with 
shorter PFS (Fig. 3). Glutamine is a major carbon, nitrogen, 
and energy substrate in tumors (Jiang et al., 2019), known 
to be uptaken at higher rates by cancer cells (Gottfried et al., 
2012); lower abundance may indicate enhanced tumor cell 
proliferative activity along with immune system suppression 
(Sikalidis, 2015), both of which can lead to more aggressive 
cancer.

In addition to analyzing metabolites between short vs. 
long survival groups, we report relative abundance of sig-
nificant metabolites between event versus non-event groups 
(Supplementary Fig. 5). Interestingly, increased levels of 
several metabolites which were associated with short sur-
vival (guanine, choline, leucine, acetyl-L-carnitine, adeno-
sine) (Fig. 3A) or short progression (tryptophan, glutamine) 
(Fig. 3B) were not associated with events (OS or PFS) (Sup-
plementary Fig. 5). Leucine, which was increased for long 
PFS (Fig. 3), was marginally significantly associated with 
progression at lower levels (Supplementary Fig. 5). Discrep-
ancies like these may occur because events and length of 
time to events or censorship are not necessarily correlated. 
These results confirm the value of analyzing survival time 
length in addition to event occurrence, separately. Glycine, 
serine and threonine metabolism was the top and only sig-
nificant metabolic pathway for OS (Supplementary Table 2). 
Although glycine was not detected in our patient samples, 
metabolite hits relevant to this pathway include choline, 
creatine (Supplementary Fig. 6) and pyruvate. Glycine is 
associated with tumorigenesis and is an integral component 
of glutathione, and, therefore, required for cellular redox bal-
ance (Amelio et al., 2014; Jain et al., 2012). Glycine uptake 
and catabolism is known to promote rapid cancer cell pro-
liferation (Jain et al., 2012).

The results of this study demonstrate that short vs. long 
term survival of NSCLC patients can be predicted in an 
external validation cohort using an ensemble machine learn-
ing approach that analyzes metabolomic data extracted from 
patient tumor core biopsies, with the ultimate goal to help 
clinical decision-making. The approach resulted in higher 
accuracy predictions than traditional clinical methods such 
as nomograms based on patient covariate data (staging, age, 
and sex). A small sample size and potential confounding 
factors (differences in biopsy collection date relative to date 
of diagnosis, smoking status, and type and duration of treat-
ment) are potential limitations. Nevertheless, previous work 
has highlighted the predictive capability of metabolomic 

data in spite of such potential confounding factors, showing 
that adjusting for smoking status, cancer stage and age at 
diagnosis, and time between sample collection and diagnosis 
had minimal significant effect on metabolite hazard ratios 
associated with prostate cancer-specific mortality (Huang 
et al., 2019). The results imply some degree of overfitting 
due to slightly decreased classification performance on the 
external validation set (Fig. 2). However, adequate predictive 
performance of the proposed ensemble machine learning 
approach to analyze tumor core biopsy metabolomic data 
is shown with AUROC > 0.9 on internal validation data and 
AUROC > 0.8 on external validation data. Future work will 
evaluate the proposed approach with larger sample sizes and 
in the context of prospective evaluation, including prediction 
of event vs. censorship (death or progression).
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