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Abstract
Background In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal 
substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease 
prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is 
a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. It is a 
crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its 
application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology, 
and biomarker discovery.
Aim of review Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after envi-
ronmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify 
potential biomarkers and biological mechanisms.
Key scientific concepts of review This review focuses on the application of metabolomics to understand the biological effects 
of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers 
and toxicity mechanisms.

Keywords Metabolomics · Environmental exposure · Radiation exposure · Environmental pollutant exposure

Environmental exposure is a complicated and insidious 
threat, and there is extensive scientific research to prevent, 
diagnose, and treat its negative effects. As a tool to detect 
and analyze metabolites produced by cells and discover 
markers, metabolomics can rapidly promote the develop-
ment of environmental exposure research. The review com-
bined metabolomics and environmental pollutant exposure 

keywords to conduct comprehensive searches in CNKI, 
CBM, NCBI PubMed, and Google Scholar web scientific 
databases. Based on the research direction of the research 
group, many high-level reviews, experimental papers, 
and theoretical articles were accessed. Scientific research 
published from 2012 to 2022 on radiation, heavy metals, 
PM2.5, and persistent organic pollutants exposure factors 
was considered.

1  Metabolomics is viewed as a functional 
readout of biological samples

Metabolomics is an emerging experimental tool that has 
received attention in examining the biological effects of 
environmental contaminants on animals, plants, and micro-
organisms (Alseekh et al., 2021). Depending on the specific 
research objective and/or purposes, the proper metabolomics 
analysis methods can deal with the associated environmental 
exposure with less effort than traditional methods. The tools 
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for predicting and evaluating radiation damage are mainly 
classical cytogenetic experiments, such as micronucleus test 
and two-point chromosome test (Blumenthal et al., 2014; 
Dainiak et al., 2019). Metabolomics strategies can be mainly 
divided into complementary untargeted metabolomics and 
targeted metabolomics, which are commonly used simul-
taneously or sequentially (Fig. 1) (González-Peña et al., 
2019; Di Minno et al., 2021). Untargeted metabolomics is an 
exploratory analysis aimed at conducting a comprehensive 
qualitative and quantitative assessment of the dynamic alter-
ations of the metabolome to get diverse metabolic character-
istics of the control and experimental groups, and it is gen-
erally used to identify or screen new metabolic biomarkers. 
In contrast, the goal of targeted metabolomics is to conduct 
quantitative analysis or verification of specific metabolites 
(such as potential biomarkers) (Lopes et al., 2017). Gener-
ally, targeted metabolomics methods require higher analyti-
cal accuracy to accomplish complete quantitative accuracy. 
The development of metabolomics requires analytical tech-
nical support, and thus nuclear magnetic resonance (NMR) 
and mass spectrometry (MS) have become the main meth-
ods for metabolomics research (González-Peña et al., 2019). 
The former is a rapid, non-destructive separation technique 
that can measure the chemical and physical properties of 
molecules and detect metabolites that are difficult to ionize 
or derivate (Belhaj et al., 2021; Jacob et al., 2019; Nagana 
et al., 2017). The latter combines diverse chromatographic 
separation techniques, including gas chromatography-mass 
spectrometry (GC–MS), liquid chromatography-mass spec-
trometry (LC–MS), and capillary electrophoresis-mass 
spectrometry (CE-MS) with higher sensitivity and greater 

selectivity. GC–MS can specifically distinguish and detect 
volatile and hydrophilic low-molecular-weight metabolites 
(Alseekh et al., 2021; Misra, 2021). LC–MS is a practical 
metabolomic tool. It can detect metabolites with higher 
molecular weights and more complex chemical structures 
with suitable repeatability and high specificity (Beale et al., 
2018; Pautova et al., 2021). The emerging ultra-high per-
formance liquid chromatography-quadrupole time-of-flight 
mass spectrometry (UPLC-Q-TOF–MS) has present advan-
tages in capturing metabolite information accurately and 
rapidly (Zhou et al., 2018). The CE-MS separation tech-
nique that relies on the charge-to-size ratio is a powerful 
tool for analyzing charged metabolites and polar samples 
(Mever et al., 2019). Although the efficiency and sensitiv-
ity of CE-MS are higher than that of GC–MS and LC–MS, 
this method cannot be applied universally because of its 
poor reproducibility and technical challenges (Zhang et al., 
2021b). Low molecular weight metabolites such as amino 
acids, nucleic acids, organic acids, and lipids in biological 
samples can be captured and quantified by this series of 
technology platforms, which can enhance the utilization of 
biological samples and obtain the most comprehensive cel-
lular metabolism information (Antcliffe & Gordon, 2016; 
Au, 2018; Samczuk et al., 2018).

1 Identify the research subjects impacted by environmen-
tal exposure; 2 Collect readily accessible samples including 
plasma, serum, urine, saliva, tissue fluid, etc.; 3 Comprehen-
sively identify metabolites by untargeted metabolomics; 4 
Screen meaningful biomarkers; 5 Targeted metabolomics for 
qualitative and quantitative validation of biomarkers.

Fig. 1  Representative workflow of metabolomics
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2  Metabolomics contributes to an improved 
understanding of the mechanisms 
of action of different environmental 
stimuli

Presently, metabolomics is an advanced and promis-
ing omic technology. It can be used to obtain abundant 
amounts of information on the metabolic state of cells and 
provide vital data for studying biological effects, which 
has significant advantages in environmental monitoring, 
disease detection, diagnosis, treatment, and drug develop-
ment (Alonso et al., 2015; Klupczyńska et al., 2015; Lee 
et al., 2019). Similarly, metabolomics has become a sensi-
tive tool for measuring environmental exposures and bio-
logical responses, helping to comprehend the mechanism 
of action of specific environmental factors on the body, as 
well as diseases (Belhaj et al., 2021; Pernot et al., 2012). 
Metabolomics research aims to describe the effects of 
endogenous and exogenous factors on the metabolic char-
acteristics of the body and provides a new methodological 
framework for environmental exposure research (Pham 
et al., 2021; Tang et al., 2021). Numerous studies using 
metabolomics approaches have found that environmental 
exposures (e.g., physical radiation, air pollutants, heavy 
metals, and organic pollutants) stimulate metabolic dis-
turbances and induce chronic disease. (Fig. 2). As human 
exposure data, including data on pollutants, lifestyle fac-
tors, and behavior, are often limited or inadequate, the 
estimation of chronic disease risk is severely hampered. 
Metabolomics can characterize and quantify small mole-
cules in complex biological samples such as blood, urine, 
or tissue, describe the dynamic metabolic responses of 
living systems after environmental exposure stimuli, and 
trace related biomarkers and metabolic mechanisms (Kyr-
topoulos et al., 2013; Rinschen et al., 2019).

3  Metabolomics plays an important role 
in radiation exposure research

Radiation exposure is a typical environmental exposure. 
Long-term radiation exposure will produce complex biologi-
cal effects, causing severe damage to the body (Pan et al., 
2021; Singh et al., 2021). Numerous studies have shown that 
radiation exposure can damage the genetic material of cells 
and impact the metabolic activities within cells. It is neces-
sary to extract markers of radiation damage from biologi-
cal samples to help identify exposed individuals and detect 
both early and delayed systemic and tissue-specific damage 
(Menon et al., 2016; Reisz et al., 2014). Radiation metabo-
lomics provides meaningful interpretations of changes in 
radiation stress response metabolites and elucidates the 
effects of environmental radiation on human physiological 
states. It determines potential biomarkers and metabolic 
pathways and helps identify treatments for radiation expo-
sure injury (Fig. 3; Table 1) (Hu et al., 2012; Pannkuk et al., 
2017; Satyamitra et al., 2020).

Radiation exposure induces ionization of water molecules 
in cells, up-regulation of ROS levels in cells, enhanced oxi-
dative stress response, disturbance of metabolic functions, 
and DNA damage, which ultimately lead to apoptosis.

Receiving different types and doses of radiation can result 
in various adverse biological effects. Exposure to high doses 
of radiation will generate heavier unfavorable effects and pose 
a severe threat to organisms (Chen et al., 2021c). Jelonek and 
Pernot found that radiation damage is dependent on the dose 
and time of radiation exposure, and metabolomics can be used 
to screen the characteristics of metabolic molecules in differ-
ent periods to obtain time-dose-related biomarkers (Jelonek 
et al., 2017; Pernot et al., 2012). When plasma lipid metabo-
lism in mice was studied via γ-ray radiation, it was found that 
radiation can induce manifest changes in lipid metabolism 
and affect the process of lipid-mediated signal transduction 
(Ghosh et al., 2013). Epidemiological studies have shown that 

Fig. 2  Adverse effects of 
environmental exposure on the 
organism
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exposure of the chest or the whole body to ionizing radiation 
can induce morbidity and mortality of cardiovascular diseases 
(Azimzadeh et al., 2017; Jones et al., 2019). Potential biomark-
ers calcium citrate and citrine were identified in the urine of 
mice exposed to different dose rates of cesium and strontium 
radiation in vitro and in vivo, suggesting that both the source 
of exposure and the radiation dose rate had a significant effect 
on the metabolic activity of the mice (Goudarzi et al., 2016). 
Radiation can cause significant changes in DNA damage meta-
bolic pathways in the body's tissues, interfere with the body's 
normal metabolic activities, and cause potential threats to the 
body (Ghaleb et al., 2022; Kumar et al., 2021). As blood cell 
metabolites, 2′ -deoxycytidine and choline can be used as 
effective markers of radiation exposure to evaluate exposure 
dose during accidental radiation events (Goudarzi et al., 2014). 
Although numerous meaningful biomarkers have been verified 
in recent studies, many challenges remain in applying them to 
medicine. For instance, it is difficult to find a single accurate 
biomarker with massive metabolite information. Additionally, 
verification analyses are required under different research con-
ditions and should be executed in the future to follow up on 
radiation exposure damage research.

4  The potential and usefulness 
of metabolomics approaches have been 
widely demonstrated in the heavy metal 
exposure field

Heavy metals can affect cell activity and lead to cell apop-
tosis or death. Long-term exposure can lead to acute or 
chronic tissue, organ damage, and even carcinogenesis 
(Kosakivska et al., 2021; Wang  et al., 2021). Metabo-
lomics can be used to evaluate the toxicity of heavy met-
als and develop new toxicity biomarkers through models 
constructed in the laboratory, which creates a new vision 
and approach for heavy metal exposure research (Table 2) 
(García-Sevillano et  al., 2015; Rodríguez-Moro et  al., 
2021). For non-occupationally exposed populations, diet 
is the main source of heavy metal exposure. (Hu et al., 
2021; Suomi et al., 2021). In humans, cadmium exposure 
can result in a variety of adverse effects, such as renal and 
hepatic dysfunction, damage to the adrenals and hemopoi-
etic system, and it can also cause neurotoxicity (Balali-
Mood et al., 2021; Satarug, 2018; Tinkov et al., 2018). 
For example, using UPLC-Q-TOF–MS to discover  the 

Fig. 3  Radiation induced metabolic disorder and apoptosis pathway
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dose-dependent toxicity of CdCl2 to PC-12 cells from a 
metabolomic perspective, and to identify key metabolic 
pathways and potential biomarkers of cadmium exposure 
(Zong et al., 2018). Similarly, mouse urine studies based 
on UPLC-MS technology have also identified dozens 
of potential biomarkers of cadmium exposure, such as 
guanidinosuccinic acid and phenylacetylglycine, which 
induce renal oxidative stress and interfere with amino acid 
metabolism, fatty acid metabolism, and energy metabolism 
(Chen et al., 2018; Zhang et al., 2019). Arsenic is a toxic 
heavy metal pollutant, and exposure can trigger metabolic 
disorders, immune dysfunction, oxidative stress, and even 

cancer (Chen et al., 2019; Ramsey et al., 2013; Xu et al., 
2019; Yu et al., 2016). There are shreds of evidence that 
arsenic exposure has toxic effects on various organ tis-
sues (liver, kidney, and the male reproductive system) 
(Guvvala et al., 2017; Li et al., 2017; Liu et al., 2020; 
Silva et al., 2017). LC–MS-based metabolomic studies 
found that GC-1spg and PC12 cells exposed to arsenic 
trioxide (ATO) induced metabolic disturbances, enhanced 
oxidative stress, cell membrane disruption, mitochondrial 
dysfunction, and autophagy (Chen et al., 2020; Qi et al., 
2021). A study on arsenic exposure and male infertility 
obtained carnitine, estrone, and LysoPC (10:0) a series of 

Table 1  Studies documenting the effects of radiation on the blood or urine of living organisms

Species Sample matrix Analytical platform Biomarker Related metabolic pathways Reference

Rat Urine and plasma GC–MS/LC–MS Histidine, leucine, isoleucine, 
lysine, and phenylalanine

Aminoacyl-tRNA biosynthe-
sis, the citrate cycle (TCA 
cycle), alanine, aspartate and 
glutamate metabolism, pheny-
lalanine metabolism, nitrogen 
metabolism, glyoxylate and 
dicarboxylate metabolism, and 
valine, leucine and isoleucine 
biosynthesis

Zhao et al. (2017)

Plasma LC–MS LysoPC(20:2), LysoPC(20:3), 
PC(18:0/22:5), L-palmitoylcar-
nitine, N-acetylornithine and 
butyrylcarnitine

Linoleic acid metabolism and 
glycerophospholipid metabo-
lism pathways

Zhao et al. (2020)

Mice Plasma UPLC/TOFMS Glycerophosphocholine, 
phosphatidic acid, N-oleoyl 
histidine and amino acid 
methionine

Glycerophospholipid metabo-
lism, amino acid metabolism, 
fatty acid metabolism

Upadhyay et al. 
(2020)

Urine Citric acid and α-ketoglutaric 
acid,etc

Fatty acid metabolism, amino 
acid metabolism and the TCA 
cycle

Goudarzi et al. 
(2014)

UPLC–MS Citrulline and calcitroic acid Vitamin D synthesis and catabo-
lism metabolic pathways

Goudarzi et al. 
(2016)

Uric acid, 2-oxoadipic acid, 
D-ribose, D-glucose, hippuric 
acid, glutaric acid, taurine, 
riboflavin, kynurenic acid, 
xanthurenic acid, 5′-deoxy-
5′-methylthioadenosine, and 
pantothenic acid

TCA cycle and energy metabo-
lism

Laiakis et al. (2018)

NMR Taurine Energy metabolism, TCA cycle, 
gut flora metabolism

Maan et al. (2020)

Taurine, citrate, α- ketoglutarate 
(α-KG) and fumarate

TCA cycle, taurine and hypotau-
rine metabolism, primary bile 
acid biosynthesis

Tyagi et al. (2020)

Nonhu-
man pri-
mates

Serum LC–MS L-carnitine, taurine, and hypox-
anthine

Lipid metabolism Pannkuk et al. (2016)

Human Oleic acid, α-linolenic acid, 
α-glycerophosphorylcholine, 
phenylalanine, and ubiquinone 
Q2

Biosynthesis of unsaturated fatty 
acid metabolism, linoleic acid 
metabolism, amino acid and 
purine metabolism, and taurine 
and hypotaurine metabolism

Laiakis et al. (2017)
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potential biomarkers involved in oxidative stress, and lipid 
metabolism, and may serve as an assessment marker for 
arsenic-induced male dysfunction (Wu et al., 2021b).

Heavy metal mercury is ubiquitous in the environment. 
Mercury exposure may increase the expression of heat shock 
proteins and oxidative phosphorylation genes, promoting 
detoxification and energy metabolism (Jiang et al., 2021b). 
In earthworms, low-dose mercury exposure can cause energy 
metabolism disorders, amino acid metabolism disorders, and 
osmotic pressure changes, resulting in toxic effects (Tang 
et al., 2018). Chromium is a metal that is highly toxic to 
organisms. Accumulation of hexavalent chromium in the 
human body will inhibit growth, affect components of the 
antioxidant system, and lead to DNA breakage and irrevers-
ible changes in chromosomes (Gutiérrez-Corona et al., 2016; 
Ventura et al., 2021; Zhao et al., 2019b). The heavy metal 
manganese is a neurotoxic heavy metal substance. Baker 
(2017) used metabolomics technology to explore the bio-
markers in urine under manganese exposure, helping to bet-
ter understand the diagnosis and prognosis of manganese 
exposure (Baker et al., 2017; Zhong et al., 2021). These 
experimental studies have found that metabolomics methods 
can provide convincible evidence for understanding the toxic 
effects of heavy metal pollutants on organisms.

5  Metabolomics has been increasingly 
applied to the study of  PM2.5 exposure 
damage to the body

The main harmful component of air pollution, particu-
late matter 2.5  (PM2.5), is considered by the World Health 
Organization to be a key indicator in evaluating the impact 
of air pollution on human health (Vo et al., 2020). Human 
epidemiological studies and controlled animal studies 
indicated that PM exposure may increase oxidative stress 
and metabolite changes, leading to various adverse health 
consequences (e.g., cardiovascular disease, respiratory dis-
ease, cancer, central nervous system disease, and adverse 
pregnancy outcomes) (Malley et al., 2017; Peixoto et al., 
2017; Schraufnagel et al., 2019a, 2019b; Turner et al., 2016). 
Moreover, the severe metabolic disorder caused by  PM2.5 
exposure can reduce the immune capacity of the body and 
result in other poisonous substances having toxic effects on 
the body (Bernatsky et al., 2016; Geng et al., 2021). Human 
epidemiological studies and untargeted metabolomics 
assessments have found that the mature mechanism of  PM2.5 
exposure is the differential response of metabolic pathways 
associated with oxidative stress and inflammation (Table 3) 
(Costa et al., 2017; Jin et al., 2021).

Metabolomics is applied to investigate the negative effects 
of  PM2.5 exposure on the metabolic activities of organisms 

(Liu et al., 2021a). Different human blood metabolomics 
studies have found that the metabolic pathways of glycer-
ophospholipids, sphingolipids and glutathione are severely 
disrupted after long-term and short-term exposure to  PM2.5, 
and phospholipid catabolic metabolism is an important 
pathway of exposure injury. LysoPC (p-20:0) and LysoPC 
(p-18:1 (9z)) are the potentially effective biomarkers (Chu 
et al., 2021; Nassan et al., 2021). Further studies in human 
lung fibroblasts (HEL 299) found that  PM2.5 could lead to 
the reduction of mitochondria-related metabolites, trigger 
the production of intracellular reactive oxygen species and 
mitochondrial dysfunction, and induce a high level of apop-
tosis (Shon et al., 2020). Additionally, GC and LC- MS were 
used to evaluate the changes in an acute exposure mouse 
model, and significant changes were found in amino acid 
metabolism, lipid metabolism, and glucose metabolism in 
urine. Similar results were obtained using NMR (Du et al., 
2020; Zhang et al., 2018). Wang et al. established the time-
response relationship between  PM2.5 and liver toxicity in 
mice using LC–MS metabolomics, using different biomark-
ers to distinguish different stages of liver damage. 4-Pyridine 
acid and succinate are markers of mild oxidative stress in 
the liver, proline can indicate severe oxidative stress and 
inflammation in the liver, and KYNA is a biomarker of 
significant oxidative damage and inflammation in the liver 
(Wang et al., 2021c). Exposure to environmental  PM2.5 dur-
ing pregnancy or newborn period can also produce strong 
neurotoxic effects. For mice in early stages of pregnancy, 
exposure to  PM2.5 can stimulate the dopamine pathway in 
the brain, inhibit the glutamate pathway, and increase the 
risk of diseases in the offspring (Church et al., 2018; Cui 
et al., 2019). Additionally, studies have shown that when 
mice are sub-chronically exposed to high concentrations of 
 PM2.5, the richness and composition of intestinal and pulmo-
nary microbiota are significantly reduced, leading to glucose 
metabolism disorder, and five reliable differential metabo-
lites (glutamate, glutamine, formic acid, pyruvate, and lactic 
acid) are obtained (Ran et al., 2021; Wang et al., 2018). 
Consequently, metabolomics can be a novel and promis-
ing method for assessing  PM2.5 damage and elucidating its 
mechanism of toxicity.

6  Metabolomics analysis can provide 
scientific tools for exploring toxicity 
and risk assessment of POPs

Persistent organic pollutants (POPs) are the most com-
mon endogenous and exogenous exposures. Because they 
are highly resistant to metabolic degradation and readily 
accumulate in adipose tissue, long-term exposure can lead 
to neurodegenerative diseases, inflammation, hepatotoxic-
ity, nephrotoxicity, insulin resistance, allergy, metabolic 
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diseases, and carcinogenesis (Ranjbar et al., 2020; Żwierełło 
et al., 2020). The compounds 2,3,7,8-tetrachlorodibenzo-p-
dioxins (TCDD), 2,3,7,8-tetrachlorodibenzo-furan (TCDF), 
and polychlorinated biphenyls (PCBs) are typical envi-
ronmental pollutants as well as aryl hydrocarbon recep-
tor (AHR) agonists (AHR activation regulates intestinal 
microbial community structure and function) (Chen et al., 
2021b; Stedtfeld et al., 2017; Zhang et al., 2015a). Pres-
ently, many laboratories use metabolomics studies to reveal 
and explain exposure-related metabolic disturbances and 
their risks to chronic diseases, providing a scientific basis 
for elucidating the toxicity mechanisms of environmental 
pollutant exposure (Table 4) (You et al., 2022). The envi-
ronmental pollutant TCDD can cause cancer, reproductive 
and developmental issues, damage to the immune system, 
and interfere with the endocrine system (Gaspari et al., 
2021; Maqbool et al., 2016; Patrizi B et al., 2018). Untar-
geted metabolomics was used to analyze inflammatory lipid 
metabolites in mouse liver, serum, and urine to elucidate 
the association between TCDD exposure and hepatotoxicity. 
The results suggest that TCDD can activate the AHR and 

induce the release of pro-inflammatory factors, which may 
lead to the development of steatohepatitis (Doskey et al., 
2020). A study on acute exposure to TCDD in mice showed 
that acute exposure to TCDD caused dysregulation of extra-
cellular signal-regulated protein kinases, metabolic distur-
bances of biologically active lipids, amino acids, etc., result-
ing in various organ damage and dysfunction (Dopkins et al., 
2021). TCDF is the most typical environmental pollutant of 
the dioxins. When mice were exposed to TCDF, 1H-NMR 
analysis of their metabolism revealed that gluconeogenesis 
and glycogenolysis were inhibited, which stimulated the syn-
thesis of liver fat and induced inflammatory reaction (Yuan 
et al., 2020). Exposure to TCDF caused intestinal microflora 
disorder, with increased production of lipopolysaccharide 
and glutamate resulting in intestinal inflammation (Nichols 
et al., 2019; Zhang et al., 2015b). Of PCBs, 3,3′,4,4′,5-pen-
tachlorobiphenyl (PCB126) is the most toxic. Long-term 
exposure to low-dose PCB126 can cause an accumulation 
of fatty acids (e.g., palmitic acid, palmitoleic acid, and lin-
oleic acid) in heart tissue, leading to cardiac hypertrophy. 
The increase in collagen synthase and extracellular matrix 

Table 3  Summary of  PM2.5 on oxidative stress injury and metabolic disorders in the body

Species Sample Analytical technique Health outcome (biomarker) Reference

Human Serum (healthy seniors: 
male and female)

UPLC-MS Systemic inflammation and 
sphingolipid metabolism disorder 
(L-serine, O-phosphoethanola-
mine, sphingasine, sphingomy-
elin, sphingosine, and ceramide)

Zhao et al. (2022)

Human Plasma(men) UPLC-MS/MS Cardio-cerebrovascular diseases 
(linolenic acid)

DNA damage and repair (8-OHdG)

Nassan et al. (2021)

Human Serum (women) LC–HRMS Oxidative stress and inflammation 
(N-methyltryptamine, 1-methylni-
cotinamide, and methyl vanillate)

Gaskins et al. (2021)

Human Plasma (male and female) UPLC-MS Cardiovascular diseases (LysoPC 
(P-20:0), LysoPC (P-18:1(9z)))

Chu et al. (2021)

C57BL/6 J mice Serum (male) LC–MS/MS Lipid metabolism disorders and 
myocardial alterations (PC, HCY, 
LDH, and α-HBDH)

Zhang et al. (2021c)

C57BL/6 N mice Serum (male) UPLC-MS Pulmonary microbiota disorder and 
inflammation (valine, acetic acid, 
L-isoleucine, and valeric acid 
et al.,)

Li et al. (2020a)

BALB/c mice Serum (female) NMR Lung and intestinal damage, sys-
temic inflammatory (glutamate, 
glutamine, formate, pyruvate and 
lactate)

Ran et al. (2021)

Human Serum (pregnant women) UPLC-MS Oxidative stress and inflammation 
(Linoleic acid, 12-oxo-LTB4 and 
20-OH-LTE4)

Yan et al. (2019)

BALB/c mice Serum (female) UPLC-MS Severe serum metabolic disorder 
and respiratory injury (LysoPE, 
LysoPC, LGPC, citric acid, and 
PAF C-18 et al.)

Zhao et al. (2019a)
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protein induced by glycine and threonine up-regulation 
indicates cardiac fibrosis (Wang et al., 2021a). Polycyclic 
aromatic hydrocarbons (PAHs) are recognized as carcino-
gens. Recent epidemiological studies have demonstrated 
links between cardiovascular disease, diabetes, and neuro-
degenerative diseases (Lu et al., 2021; Wu et al., 2021a). In 
human and animal experiments, PAHs have been found to 
cause oxidative stress and injury, protein biosynthesis disor-
ders, organ dysfunction, and metabolic disorders (Gao et al., 
2018). LC–MS-based untargeted metabolomics was used to 
analyze urine samples from children and adolescents from 
industrially polluted areas to explore the metabolic pathways 
of pollutants associated with liver dysfunction and chronic 
kidney disease. The study obtained a series of biomarkers of 
lysophosphatidylcholine (LPCs), phosphatidylcholine (PCs), 
and sphingomyelin to clarify their biological mechanism 
(Chen et al., 2021a). The organic pollutant 2,2,4,4′ -tetra-
bromodiphenyl ether (BDE-47) can cause obesity disease. 
When mice are exposed to BDE-47 through a high-fat diet, 
lipid metabolism disorders occur, and the accumulation of 
saturated fatty acids and triglycerides in fat induces inflam-
mation and obesity (Yang et al., 2021a). In a separate study, 
a mouse model of BDE-47 exposure showed that BDE-47 
mainly affected glycerophospholipid metabolism in the 
brain, and potential biomarkers were obtained, including 
phosphatidylcholine, lysophosphatidylcholine, sphingomy-
elin, biogenic amines, and various amino acids (Li et al., 
2020a). Additionally, POPs can produce adverse biological 
effects. Triphenyl phosphate (TPP) can affect glycolysis, 
citric acid cycling, oxidative phosphorylation, and lipid and 
protein metabolism pathways; induce apoptosis of normal 
liver cells (L02); damage cell ultrastructure; and increase 
reactive oxygen species (Wang et al., 2020). Triclocarban 
(TCC) is an endocrine disruptor widely present in nursing 
products, which can inhibit the activity of human soluble 
cyclooxyhydrolase involved in the regulation of blood pres-
sure and inflammation and is a potential cause of colon 
diseases (Zhang et al., 2020). Zhang et al. used untargeted 
metabolomics to study the effects of Triclocarban exposure 
on the liver and gut microbiota in mice. This study found 
that Triclocarban exposure caused metabolic disturbances in 
the liver microenvironment and enhanced oxidative stress in 
mice. At the same time, Triclocarban derivatives interfered 
with the composition of gut microbes and induced chronic 
diseases such as colitis. (Li et al., 2018; Zhang et al., 2021a). 
These studies revealed the mechanism of POPs toxicity to 
the body and screened a series of meaningful biomarkers. 
Existing research and data prove that metabolomics is an 
effective means to find environmental exposure disease-
related biomarkers to elucidate the mechanism of action.

7  The potential for efficient and sensitive 
analysis of metabolomics is a boon 
for scientific research

Metabolomics aims to comprehensively monitor the level 
of metabolite changes induced by endogenous and exog-
enous factors in living systems, screen significantly differ-
ential metabolites, and obtain potential biomarkers (Wang 
et al., 2021b). It has been widely used in disease diagnosis, 
nutrition, new drug research and development, drug toxic-
ity assessment, environmental toxicology, systems biology, 
and other research fields (Fu et al., 2022; Steuer et al., 2019; 
Tran et al., 2020). Metabolomics-based toxicity studies of 
environmental pollutants can provide new insights into the 
impact of environmental exposures on human health and 
enhance the study of pathogenic mechanisms of environ-
mental pollutant exposures. We reviewed biomarkers and 
pathogenesis associated with exposure to various environ-
mental pollutants from a metabolomic perspective. The 
findings enhanced our understanding of the biological 
effects of exposure to environmental pollutants. However, 
there are still many gaps in the research on metabolic dis-
orders and signaling disorders caused by environmental 
pollutants exposure, which cannot fully meet our needs 
for disease prevention and treatment. Most metabolomics 
studies are still in the stage of biomarker discovery using a 
large amount of sample data, lacking targeted validation of 
potential biomarkers and exploration of metabolic pathways. 
Metabolomics can be combined with advanced sequenc-
ing technologies to screen and validate biomarkers associ-
ated with specific environmental exposures and diseases, 
providing new ideas and insights for exploring pathogenic 
mechanisms.
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