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Abstract

Background In recent years, studies have shown that exposure to environmental pollutants (e.g., radiation, heavy metal
substances, air pollutants, organic pollutants) is a leading cause of human non-communicable diseases. The key to disease
prevention is to clarify the harmful mechanisms and toxic effects of environmental pollutants on the body. Metabolomics is
a high-sensitivity, high-throughput omics technology that can obtain detailed metabolite information of an organism. Itis a
crucial tool for gaining a comprehensive understanding of the pathway network regulation mechanism of the organism. Its
application is widespread in many research fields such as environmental exposure assessment, medicine, systems biology,
and biomarker discovery.

Aim of review Recent findings show that metabolomics can be used to obtain molecular snapshots of organisms after envi-
ronmental exposure, to help understand the interaction between environmental exposure and organisms, and to identify
potential biomarkers and biological mechanisms.

Key scientific concepts of review This review focuses on the application of metabolomics to understand the biological effects
of radiation, heavy metals, air pollution, and persistent organic pollutants exposure, and examines some potential biomarkers

and toxicity mechanisms.

Keywords Metabolomics - Environmental exposure - Radiation exposure - Environmental pollutant exposure

Environmental exposure is a complicated and insidious
threat, and there is extensive scientific research to prevent,
diagnose, and treat its negative effects. As a tool to detect
and analyze metabolites produced by cells and discover
markers, metabolomics can rapidly promote the develop-
ment of environmental exposure research. The review com-
bined metabolomics and environmental pollutant exposure
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keywords to conduct comprehensive searches in CNKI,
CBM, NCBI PubMed, and Google Scholar web scientific
databases. Based on the research direction of the research
group, many high-level reviews, experimental papers,
and theoretical articles were accessed. Scientific research
published from 2012 to 2022 on radiation, heavy metals,
PM2.5, and persistent organic pollutants exposure factors
was considered.

1 Metabolomics is viewed as a functional
readout of biological samples

Metabolomics is an emerging experimental tool that has
received attention in examining the biological effects of
environmental contaminants on animals, plants, and micro-
organisms (Alseekh et al., 2021). Depending on the specific
research objective and/or purposes, the proper metabolomics
analysis methods can deal with the associated environmental
exposure with less effort than traditional methods. The tools
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for predicting and evaluating radiation damage are mainly
classical cytogenetic experiments, such as micronucleus test
and two-point chromosome test (Blumenthal et al., 2014;
Dainiak et al., 2019). Metabolomics strategies can be mainly
divided into complementary untargeted metabolomics and
targeted metabolomics, which are commonly used simul-
taneously or sequentially (Fig. 1) (Gonzalez-Pefa et al.,
2019; Di Minno et al., 2021). Untargeted metabolomics is an
exploratory analysis aimed at conducting a comprehensive
qualitative and quantitative assessment of the dynamic alter-
ations of the metabolome to get diverse metabolic character-
istics of the control and experimental groups, and it is gen-
erally used to identify or screen new metabolic biomarkers.
In contrast, the goal of targeted metabolomics is to conduct
quantitative analysis or verification of specific metabolites
(such as potential biomarkers) (Lopes et al., 2017). Gener-
ally, targeted metabolomics methods require higher analyti-
cal accuracy to accomplish complete quantitative accuracy.
The development of metabolomics requires analytical tech-
nical support, and thus nuclear magnetic resonance (NMR)
and mass spectrometry (MS) have become the main meth-
ods for metabolomics research (Gonzalez-Pefia et al., 2019).
The former is a rapid, non-destructive separation technique
that can measure the chemical and physical properties of
molecules and detect metabolites that are difficult to ionize
or derivate (Belhaj et al., 2021; Jacob et al., 2019; Nagana
et al., 2017). The latter combines diverse chromatographic
separation techniques, including gas chromatography-mass
spectrometry (GC-MS), liquid chromatography-mass spec-
trometry (LC-MS), and capillary electrophoresis-mass
spectrometry (CE-MS) with higher sensitivity and greater
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3. Untargeted metabolomics analysis
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selectivity. GC-MS can specifically distinguish and detect
volatile and hydrophilic low-molecular-weight metabolites
(Alseekh et al., 2021; Misra, 2021). LC-MS is a practical
metabolomic tool. It can detect metabolites with higher
molecular weights and more complex chemical structures
with suitable repeatability and high specificity (Beale et al.,
2018; Pautova et al., 2021). The emerging ultra-high per-
formance liquid chromatography-quadrupole time-of-flight
mass spectrometry (UPLC-Q-TOF-MS) has present advan-
tages in capturing metabolite information accurately and
rapidly (Zhou et al., 2018). The CE-MS separation tech-
nique that relies on the charge-to-size ratio is a powerful
tool for analyzing charged metabolites and polar samples
(Mever et al., 2019). Although the efficiency and sensitiv-
ity of CE-MS are higher than that of GC-MS and LC-MS,
this method cannot be applied universally because of its
poor reproducibility and technical challenges (Zhang et al.,
2021b). Low molecular weight metabolites such as amino
acids, nucleic acids, organic acids, and lipids in biological
samples can be captured and quantified by this series of
technology platforms, which can enhance the utilization of
biological samples and obtain the most comprehensive cel-
lular metabolism information (Antcliffe & Gordon, 2016;
Au, 2018; Samczuk et al., 2018).

1 Identify the research subjects impacted by environmen-
tal exposure; 2 Collect readily accessible samples including
plasma, serum, urine, saliva, tissue fluid, etc.; 3 Comprehen-
sively identify metabolites by untargeted metabolomics; 4
Screen meaningful biomarkers; 5 Targeted metabolomics for
qualitative and quantitative validation of biomarkers.

4. Identification biomarkers

2. Sample collection

1. Environment exposure

Fig. 1 Representative workflow of metabolomics
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2 Metabolomics contributes to an improved
understanding of the mechanisms
of action of different environmental
stimuli

Presently, metabolomics is an advanced and promis-
ing omic technology. It can be used to obtain abundant
amounts of information on the metabolic state of cells and
provide vital data for studying biological effects, which
has significant advantages in environmental monitoring,
disease detection, diagnosis, treatment, and drug develop-
ment (Alonso et al., 2015; Klupczyriska et al., 2015; Lee
et al., 2019). Similarly, metabolomics has become a sensi-
tive tool for measuring environmental exposures and bio-
logical responses, helping to comprehend the mechanism
of action of specific environmental factors on the body, as
well as diseases (Belhaj et al., 2021; Pernot et al., 2012).
Metabolomics research aims to describe the effects of
endogenous and exogenous factors on the metabolic char-
acteristics of the body and provides a new methodological
framework for environmental exposure research (Pham
et al., 2021; Tang et al., 2021). Numerous studies using
metabolomics approaches have found that environmental
exposures (e.g., physical radiation, air pollutants, heavy
metals, and organic pollutants) stimulate metabolic dis-
turbances and induce chronic disease. (Fig. 2). As human
exposure data, including data on pollutants, lifestyle fac-
tors, and behavior, are often limited or inadequate, the
estimation of chronic disease risk is severely hampered.
Metabolomics can characterize and quantify small mole-
cules in complex biological samples such as blood, urine,
or tissue, describe the dynamic metabolic responses of
living systems after environmental exposure stimuli, and
trace related biomarkers and metabolic mechanisms (Kyr-
topoulos et al., 2013; Rinschen et al., 2019).

Fig.2 Adverse effects of
environmental exposure on the
organism

Metabolic disorders
Carcinogenicity
Neurotoxicity

3 Metabolomics plays an important role
in radiation exposure research

Radiation exposure is a typical environmental exposure.
Long-term radiation exposure will produce complex biologi-
cal effects, causing severe damage to the body (Pan et al.,
2021; Singh et al., 2021). Numerous studies have shown that
radiation exposure can damage the genetic material of cells
and impact the metabolic activities within cells. It is neces-
sary to extract markers of radiation damage from biologi-
cal samples to help identify exposed individuals and detect
both early and delayed systemic and tissue-specific damage
(Menon et al., 2016; Reisz et al., 2014). Radiation metabo-
lomics provides meaningful interpretations of changes in
radiation stress response metabolites and elucidates the
effects of environmental radiation on human physiological
states. It determines potential biomarkers and metabolic
pathways and helps identify treatments for radiation expo-
sure injury (Fig. 3; Table 1) (Hu et al., 2012; Pannkuk et al.,
2017; Satyamitra et al., 2020).

Radiation exposure induces ionization of water molecules
in cells, up-regulation of ROS levels in cells, enhanced oxi-
dative stress response, disturbance of metabolic functions,
and DNA damage, which ultimately lead to apoptosis.

Receiving different types and doses of radiation can result
in various adverse biological effects. Exposure to high doses
of radiation will generate heavier unfavorable effects and pose
a severe threat to organisms (Chen et al., 2021c). Jelonek and
Pernot found that radiation damage is dependent on the dose
and time of radiation exposure, and metabolomics can be used
to screen the characteristics of metabolic molecules in differ-
ent periods to obtain time-dose-related biomarkers (Jelonek
et al., 2017; Pernot et al., 2012). When plasma lipid metabo-
lism in mice was studied via y-ray radiation, it was found that
radiation can induce manifest changes in lipid metabolism
and affect the process of lipid-mediated signal transduction
(Ghosh et al., 2013). Epidemiological studies have shown that
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Fig. 3 Radiation induced metabolic disorder and apoptosis pathway

exposure of the chest or the whole body to ionizing radiation
can induce morbidity and mortality of cardiovascular diseases
(Azimzadeh et al., 2017; Jones et al., 2019). Potential biomark-
ers calcium citrate and citrine were identified in the urine of
mice exposed to different dose rates of cesium and strontium
radiation in vitro and in vivo, suggesting that both the source
of exposure and the radiation dose rate had a significant effect
on the metabolic activity of the mice (Goudarzi et al., 2016).
Radiation can cause significant changes in DNA damage meta-
bolic pathways in the body's tissues, interfere with the body's
normal metabolic activities, and cause potential threats to the
body (Ghaleb et al., 2022; Kumar et al., 2021). As blood cell
metabolites, 2" -deoxycytidine and choline can be used as
effective markers of radiation exposure to evaluate exposure
dose during accidental radiation events (Goudarzi et al., 2014).
Although numerous meaningful biomarkers have been verified
in recent studies, many challenges remain in applying them to
medicine. For instance, it is difficult to find a single accurate
biomarker with massive metabolite information. Additionally,
verification analyses are required under different research con-
ditions and should be executed in the future to follow up on
radiation exposure damage research.

@ Springer
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4 The potential and usefulness
of metabolomics approaches have been
widely demonstrated in the heavy metal
exposure field

Heavy metals can affect cell activity and lead to cell apop-
tosis or death. Long-term exposure can lead to acute or
chronic tissue, organ damage, and even carcinogenesis
(Kosakivska et al., 2021; Wang et al., 2021). Metabo-
lomics can be used to evaluate the toxicity of heavy met-
als and develop new toxicity biomarkers through models
constructed in the laboratory, which creates a new vision
and approach for heavy metal exposure research (Table 2)
(Garcia-Sevillano et al., 2015; Rodriguez-Moro et al.,
2021). For non-occupationally exposed populations, diet
is the main source of heavy metal exposure. (Hu et al.,
2021; Suomi et al., 2021). In humans, cadmium exposure
can result in a variety of adverse effects, such as renal and
hepatic dysfunction, damage to the adrenals and hemopoi-
etic system, and it can also cause neurotoxicity (Balali-
Mood et al., 2021; Satarug, 2018; Tinkov et al., 2018).
For example, using UPLC-Q-TOF-MS to discover the
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Table 1 Studies documenting the effects of radiation on the blood or urine of living organisms

Species

Sample matrix

Analytical platform Biomarker

Related metabolic pathways

Reference

Rat Urine and plasma GC-MS/LC-MS

Plasma

Mice Plasma

Urine

Nonhu-
man pri-
mates

Serum

Human

LC-MS

UPLC/TOFMS

UPLC-MS

NMR

LC-MS

Histidine, leucine, isoleucine,
lysine, and phenylalanine

LysoPC(20:2), LysoPC(20:3),
PC(18:0/22:5), L-palmitoylcar-
nitine, N-acetylornithine and
butyrylcarnitine

Glycerophosphocholine,
phosphatidic acid, N-oleoyl
histidine and amino acid
methionine

Citric acid and a-ketoglutaric
acid,etc

Citrulline and calcitroic acid

Uric acid, 2-oxoadipic acid,
D-ribose, D-glucose, hippuric
acid, glutaric acid, taurine,
riboflavin, kynurenic acid,
xanthurenic acid, 5'-deoxy-
5'-methylthioadenosine, and
pantothenic acid

Taurine

Taurine, citrate, a- ketoglutarate
(a-KG) and fumarate

L-carnitine, taurine, and hypox-
anthine

Oleic acid, a-linolenic acid,
a-glycerophosphorylcholine,
phenylalanine, and ubiquinone

Q2

Aminoacyl-tRNA biosynthe-
sis, the citrate cycle (TCA
cycle), alanine, aspartate and
glutamate metabolism, pheny-
lalanine metabolism, nitrogen
metabolism, glyoxylate and
dicarboxylate metabolism, and
valine, leucine and isoleucine
biosynthesis

Linoleic acid metabolism and
glycerophospholipid metabo-
lism pathways

Glycerophospholipid metabo-
lism, amino acid metabolism,
fatty acid metabolism

Fatty acid metabolism, amino
acid metabolism and the TCA
cycle

Vitamin D synthesis and catabo-
lism metabolic pathways

TCA cycle and energy metabo-
lism

Energy metabolism, TCA cycle,
gut flora metabolism

TCA cycle, taurine and hypotau-
rine metabolism, primary bile
acid biosynthesis

Lipid metabolism

Biosynthesis of unsaturated fatty
acid metabolism, linoleic acid
metabolism, amino acid and
purine metabolism, and taurine
and hypotaurine metabolism

Zhao et al. (2017)

Zhao et al. (2020)

Upadhyay et al.
(2020)

Goudarzi et al.
(2014)

Goudarzi et al.
(2016)

Laiakis et al. (2018)

Maan et al. (2020)

Tyagi et al. (2020)

Pannkuk et al. (2016)

Laiakis et al. (2017)

dose-dependent toxicity of CdCI2 to PC-12 cells from a
metabolomic perspective, and to identify key metabolic
pathways and potential biomarkers of cadmium exposure
(Zong et al., 2018). Similarly, mouse urine studies based
on UPLC-MS technology have also identified dozens
of potential biomarkers of cadmium exposure, such as
guanidinosuccinic acid and phenylacetylglycine, which
induce renal oxidative stress and interfere with amino acid
metabolism, fatty acid metabolism, and energy metabolism
(Chen et al., 2018; Zhang et al., 2019). Arsenic is a toxic
heavy metal pollutant, and exposure can trigger metabolic
disorders, immune dysfunction, oxidative stress, and even

cancer (Chen et al., 2019; Ramsey et al., 2013; Xu et al.,
2019; Yu et al., 2016). There are shreds of evidence that
arsenic exposure has toxic effects on various organ tis-
sues (liver, kidney, and the male reproductive system)
(Guvvala et al., 2017; Li et al., 2017; Liu et al., 2020;
Silva et al., 2017). LC-MS-based metabolomic studies
found that GC-1spg and PC12 cells exposed to arsenic
trioxide (ATO) induced metabolic disturbances, enhanced
oxidative stress, cell membrane disruption, mitochondrial
dysfunction, and autophagy (Chen et al., 2020; Qi et al.,
2021). A study on arsenic exposure and male infertility
obtained carnitine, estrone, and LysoPC (10:0) a series of
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potential biomarkers involved in oxidative stress, and lipid
metabolism, and may serve as an assessment marker for
arsenic-induced male dysfunction (Wu et al., 2021Db).

Heavy metal mercury is ubiquitous in the environment.
Mercury exposure may increase the expression of heat shock
proteins and oxidative phosphorylation genes, promoting
detoxification and energy metabolism (Jiang et al., 2021b).
In earthworms, low-dose mercury exposure can cause energy
metabolism disorders, amino acid metabolism disorders, and
osmotic pressure changes, resulting in toxic effects (Tang
et al., 2018). Chromium is a metal that is highly toxic to
organisms. Accumulation of hexavalent chromium in the
human body will inhibit growth, affect components of the
antioxidant system, and lead to DNA breakage and irrevers-
ible changes in chromosomes (Gutiérrez-Corona et al., 2016;
Ventura et al., 2021; Zhao et al., 2019b). The heavy metal
manganese is a neurotoxic heavy metal substance. Baker
(2017) used metabolomics technology to explore the bio-
markers in urine under manganese exposure, helping to bet-
ter understand the diagnosis and prognosis of manganese
exposure (Baker et al., 2017; Zhong et al., 2021). These
experimental studies have found that metabolomics methods
can provide convincible evidence for understanding the toxic
effects of heavy metal pollutants on organisms.

5 Metabolomics has been increasingly
applied to the study of PM, ; exposure
damage to the body

The main harmful component of air pollution, particu-
late matter 2.5 (PM, s), is considered by the World Health
Organization to be a key indicator in evaluating the impact
of air pollution on human health (Vo et al., 2020). Human
epidemiological studies and controlled animal studies
indicated that PM exposure may increase oxidative stress
and metabolite changes, leading to various adverse health
consequences (e.g., cardiovascular disease, respiratory dis-
ease, cancer, central nervous system disease, and adverse
pregnancy outcomes) (Malley et al., 2017; Peixoto et al.,
2017; Schraufnagel et al., 2019a, 2019b; Turner et al., 2016).
Moreover, the severe metabolic disorder caused by PM, s
exposure can reduce the immune capacity of the body and
result in other poisonous substances having toxic effects on
the body (Bernatsky et al., 2016; Geng et al., 2021). Human
epidemiological studies and untargeted metabolomics
assessments have found that the mature mechanism of PM,
exposure is the differential response of metabolic pathways
associated with oxidative stress and inflammation (Table 3)
(Costa et al., 2017; Jin et al., 2021).

Metabolomics is applied to investigate the negative effects
of PM, 5 exposure on the metabolic activities of organisms

@ Springer

(Liu et al., 2021a). Different human blood metabolomics
studies have found that the metabolic pathways of glycer-
ophospholipids, sphingolipids and glutathione are severely
disrupted after long-term and short-term exposure to PM, s,
and phospholipid catabolic metabolism is an important
pathway of exposure injury. LysoPC (p-20:0) and LysoPC
(p-18:1 (92)) are the potentially effective biomarkers (Chu
et al., 2021; Nassan et al., 2021). Further studies in human
lung fibroblasts (HEL 299) found that PM, 5 could lead to
the reduction of mitochondria-related metabolites, trigger
the production of intracellular reactive oxygen species and
mitochondrial dysfunction, and induce a high level of apop-
tosis (Shon et al., 2020). Additionally, GC and LC- MS were
used to evaluate the changes in an acute exposure mouse
model, and significant changes were found in amino acid
metabolism, lipid metabolism, and glucose metabolism in
urine. Similar results were obtained using NMR (Du et al.,
2020; Zhang et al., 2018). Wang et al. established the time-
response relationship between PM, s and liver toxicity in
mice using LC-MS metabolomics, using different biomark-
ers to distinguish different stages of liver damage. 4-Pyridine
acid and succinate are markers of mild oxidative stress in
the liver, proline can indicate severe oxidative stress and
inflammation in the liver, and KYNA is a biomarker of
significant oxidative damage and inflammation in the liver
(Wang et al., 2021c). Exposure to environmental PM, 5 dur-
ing pregnancy or newborn period can also produce strong
neurotoxic effects. For mice in early stages of pregnancy,
exposure to PM, 5 can stimulate the dopamine pathway in
the brain, inhibit the glutamate pathway, and increase the
risk of diseases in the offspring (Church et al., 2018; Cui
et al., 2019). Additionally, studies have shown that when
mice are sub-chronically exposed to high concentrations of
PM, s, the richness and composition of intestinal and pulmo-
nary microbiota are significantly reduced, leading to glucose
metabolism disorder, and five reliable differential metabo-
lites (glutamate, glutamine, formic acid, pyruvate, and lactic
acid) are obtained (Ran et al., 2021; Wang et al., 2018).
Consequently, metabolomics can be a novel and promis-
ing method for assessing PM, s damage and elucidating its
mechanism of toxicity.

6 Metabolomics analysis can provide
scientific tools for exploring toxicity
and risk assessment of POPs

Persistent organic pollutants (POPs) are the most com-
mon endogenous and exogenous exposures. Because they
are highly resistant to metabolic degradation and readily
accumulate in adipose tissue, long-term exposure can lead
to neurodegenerative diseases, inflammation, hepatotoxic-
ity, nephrotoxicity, insulin resistance, allergy, metabolic
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Table 3 Summary of PM, 5 on oxidative stress injury and metabolic disorders in the body

Species Sample

Analytical technique Health outcome (biomarker)

Reference

Human Serum (healthy seniors: ~ UPLC-MS

male and female)

Human Plasma(men) UPLC-MS/MS

Systemic inflammation and
sphingolipid metabolism disorder
(L-serine, O-phosphoethanola-
mine, sphingasine, sphingomy-
elin, sphingosine, and ceramide)

Cardio-cerebrovascular diseases
(linolenic acid)

Zhao et al. (2022)

Nassan et al. (2021)

DNA damage and repair (8-OHdG)

Human Serum (women) LC-HRMS

Human Plasma (male and female) UPLC-MS

C57BL/6 J mice  Serum (male) LC-MS/MS

C57BL/6 N mice Serum (male) UPLC-MS

BALB/c mice Serum (female) NMR

Human Serum (pregnant women) UPLC-MS

BALB/c mice Serum (female) UPLC-MS

Oxidative stress and inflammation
(N-methyltryptamine, 1-methylni-
cotinamide, and methyl vanillate)

Cardiovascular diseases (LysoPC
(P-20:0), LysoPC (P-18:1(92)))

Lipid metabolism disorders and

myocardial alterations (PC, HCY,
LDH, and a-HBDH)

Pulmonary microbiota disorder and Li et al. (2020a)
inflammation (valine, acetic acid,
L-isoleucine, and valeric acid
etal.,)

Lung and intestinal damage, sys-
temic inflammatory (glutamate,
glutamine, formate, pyruvate and
lactate)

Oxidative stress and inflammation
(Linoleic acid, 12-oxo-LTB4 and
20-OH-LTE4)

Severe serum metabolic disorder
and respiratory injury (LysoPE,
LysoPC, LGPC, citric acid, and
PAF C-18 et al.)

Gaskins et al. (2021)

Chu et al. (2021)

Zhang et al. (2021c)

Ran et al. (2021)

Yan et al. (2019)

Zhao et al. (2019a)

diseases, and carcinogenesis (Ranjbar et al., 2020; Zwieretto
et al., 2020). The compounds 2,3,7,8-tetrachlorodibenzo-p-
dioxins (TCDD), 2,3,7,8-tetrachlorodibenzo-furan (TCDF),
and polychlorinated biphenyls (PCBs) are typical envi-
ronmental pollutants as well as aryl hydrocarbon recep-
tor (AHR) agonists (AHR activation regulates intestinal
microbial community structure and function) (Chen et al.,
2021b; Stedtfeld et al., 2017; Zhang et al., 2015a). Pres-
ently, many laboratories use metabolomics studies to reveal
and explain exposure-related metabolic disturbances and
their risks to chronic diseases, providing a scientific basis
for elucidating the toxicity mechanisms of environmental
pollutant exposure (Table 4) (You et al., 2022). The envi-
ronmental pollutant TCDD can cause cancer, reproductive
and developmental issues, damage to the immune system,
and interfere with the endocrine system (Gaspari et al.,
2021; Magbool et al., 2016; Patrizi B et al., 2018). Untar-
geted metabolomics was used to analyze inflammatory lipid
metabolites in mouse liver, serum, and urine to elucidate
the association between TCDD exposure and hepatotoxicity.
The results suggest that TCDD can activate the AHR and

induce the release of pro-inflammatory factors, which may
lead to the development of steatohepatitis (Doskey et al.,
2020). A study on acute exposure to TCDD in mice showed
that acute exposure to TCDD caused dysregulation of extra-
cellular signal-regulated protein kinases, metabolic distur-
bances of biologically active lipids, amino acids, etc., result-
ing in various organ damage and dysfunction (Dopkins et al.,
2021). TCDF is the most typical environmental pollutant of
the dioxins. When mice were exposed to TCDF, |H-NMR
analysis of their metabolism revealed that gluconeogenesis
and glycogenolysis were inhibited, which stimulated the syn-
thesis of liver fat and induced inflammatory reaction (Yuan
et al., 2020). Exposure to TCDF caused intestinal microflora
disorder, with increased production of lipopolysaccharide
and glutamate resulting in intestinal inflammation (Nichols
et al., 2019; Zhang et al., 2015b). Of PCBs, 3,3',4,4',5-pen-
tachlorobiphenyl (PCB126) is the most toxic. Long-term
exposure to low-dose PCB126 can cause an accumulation
of fatty acids (e.g., palmitic acid, palmitoleic acid, and lin-
oleic acid) in heart tissue, leading to cardiac hypertrophy.
The increase in collagen synthase and extracellular matrix

@ Springer
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protein induced by glycine and threonine up-regulation
indicates cardiac fibrosis (Wang et al., 2021a). Polycyclic
aromatic hydrocarbons (PAHs) are recognized as carcino-
gens. Recent epidemiological studies have demonstrated
links between cardiovascular disease, diabetes, and neuro-
degenerative diseases (Lu et al., 2021; Wu et al., 2021a). In
human and animal experiments, PAHs have been found to
cause oxidative stress and injury, protein biosynthesis disor-
ders, organ dysfunction, and metabolic disorders (Gao et al.,
2018). LC-MS-based untargeted metabolomics was used to
analyze urine samples from children and adolescents from
industrially polluted areas to explore the metabolic pathways
of pollutants associated with liver dysfunction and chronic
kidney disease. The study obtained a series of biomarkers of
lysophosphatidylcholine (LPCs), phosphatidylcholine (PCs),
and sphingomyelin to clarify their biological mechanism
(Chen et al., 2021a). The organic pollutant 2,2,4,4" -tetra-
bromodiphenyl ether (BDE-47) can cause obesity disease.
When mice are exposed to BDE-47 through a high-fat diet,
lipid metabolism disorders occur, and the accumulation of
saturated fatty acids and triglycerides in fat induces inflam-
mation and obesity (Yang et al., 2021a). In a separate study,
a mouse model of BDE-47 exposure showed that BDE-47
mainly affected glycerophospholipid metabolism in the
brain, and potential biomarkers were obtained, including
phosphatidylcholine, lysophosphatidylcholine, sphingomy-
elin, biogenic amines, and various amino acids (Li et al.,
2020a). Additionally, POPs can produce adverse biological
effects. Triphenyl phosphate (TPP) can affect glycolysis,
citric acid cycling, oxidative phosphorylation, and lipid and
protein metabolism pathways; induce apoptosis of normal
liver cells (L02); damage cell ultrastructure; and increase
reactive oxygen species (Wang et al., 2020). Triclocarban
(TCC) is an endocrine disruptor widely present in nursing
products, which can inhibit the activity of human soluble
cyclooxyhydrolase involved in the regulation of blood pres-
sure and inflammation and is a potential cause of colon
diseases (Zhang et al., 2020). Zhang et al. used untargeted
metabolomics to study the effects of Triclocarban exposure
on the liver and gut microbiota in mice. This study found
that Triclocarban exposure caused metabolic disturbances in
the liver microenvironment and enhanced oxidative stress in
mice. At the same time, Triclocarban derivatives interfered
with the composition of gut microbes and induced chronic
diseases such as colitis. (Li et al., 2018; Zhang et al., 2021a).
These studies revealed the mechanism of POPs toxicity to
the body and screened a series of meaningful biomarkers.
Existing research and data prove that metabolomics is an
effective means to find environmental exposure disease-
related biomarkers to elucidate the mechanism of action.

7 The potential for efficient and sensitive
analysis of metabolomics is a boon
for scientific research

Metabolomics aims to comprehensively monitor the level
of metabolite changes induced by endogenous and exog-
enous factors in living systems, screen significantly differ-
ential metabolites, and obtain potential biomarkers (Wang
et al., 2021b). It has been widely used in disease diagnosis,
nutrition, new drug research and development, drug toxic-
ity assessment, environmental toxicology, systems biology,
and other research fields (Fu et al., 2022; Steuer et al., 2019;
Tran et al., 2020). Metabolomics-based toxicity studies of
environmental pollutants can provide new insights into the
impact of environmental exposures on human health and
enhance the study of pathogenic mechanisms of environ-
mental pollutant exposures. We reviewed biomarkers and
pathogenesis associated with exposure to various environ-
mental pollutants from a metabolomic perspective. The
findings enhanced our understanding of the biological
effects of exposure to environmental pollutants. However,
there are still many gaps in the research on metabolic dis-
orders and signaling disorders caused by environmental
pollutants exposure, which cannot fully meet our needs
for disease prevention and treatment. Most metabolomics
studies are still in the stage of biomarker discovery using a
large amount of sample data, lacking targeted validation of
potential biomarkers and exploration of metabolic pathways.
Metabolomics can be combined with advanced sequenc-
ing technologies to screen and validate biomarkers associ-
ated with specific environmental exposures and diseases,
providing new ideas and insights for exploring pathogenic
mechanisms.
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