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Abstract
Background  Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Lung adenocarci-
noma (LUAD) and squamous cell carcinoma (LUSC) are the most common subtypes of NSCLC. Despite genetic differences 
between LUAD and LUSC have been clarified in depth, the metabolic differences of these two subtypes are still unclear.
Methods  Totally, 128 plasma samples of NSCLC patients were collected before initial treatments, followed by determination 
of LC-ESI-Q TRAP-MS/MS. Differentially expressed metabolites were screened based on a strict standard.
Results  Based on the integrated platform of targeted metabolome and lipidome, a total of 1141 endogenous metabolites 
(including 809 lipids) were finally detected in the plasma of NSCLC patients, including 16 increased and 3 decreased endog-
enous compounds in LUAD group when compared with LUSC group. Thereafter, a logistic regression model integrating 
four differential metabolites [2-(Methylthio) ethanol, Cortisol, d-Glyceric Acid, and N-Acetylhistamine] was established 
and could accurately differentiate LUAD and LUSC with an area under the ROC curve of 0.946 (95% CI 0.886–1.000). 
The cut-off value showed a satisfactory efficacy with 92.0% sensitivity and 92.9% specificity. KEGG functional enrichment 
analysis showed these differentially expressed metabolites could be further enriched in riboflavin metabolism, steroid hor-
mone biosynthesis, prostate cancer, etc. The endogenous metabolites identified in this study have the potential to be used as 
novel biomarkers to distinguish LUAD from LUSC.
Conclusions  Our research might provide more evidence for exploring the pathogenesis and differentiation of NSCLC. This 
research could promote a deeper understanding and precise treatment of lung cancer.
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1  Introduction

Lung cancer is a malignant tumor with the highest morbid-
ity and mortality in the world, with five-year survival rate 
less than 20% (Bray et al., 2020; Herbst et al., 2018). Non-
small cell lung cancer (NSCLC) accounts for approximately 
85% of lung cancers. Among NSCLC, lung adenocarcinoma 
(LUAD) and squamous cell carcinoma (LUSC) are the most 
common subtypes (Ettinger et al., 2017). There are many dif-
ferences in their molecular structure, genetic characteristics 
and treatment methods, so it is very important to accurately 
distinguish between these two subtypes.

LUAD is an alveolar epithelial cell carcinoma from ade-
noid differentiation or mucus-producing cancer cells while 
LUSC is an epithelial basal cell carcinoma that shows kerati-
nization and intercellular bridges (Travis, 2020). Clinical 
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treatment strategy is quite different between LUAD and 
LUSC (Relli et al., 2019). Chemotherapy drugs (such as 
pemetrexed) are very effective in treating LUAD, but they 
are not recommended for LUSC patients. Besides, antiangio-
genic drugs are generally not available in treating LUSC due 
to frequent bleeding of this population. Driver gene targeted 
therapy is mainly adapted to LUAD whereas immunotherapy 
is more effective in treating LUSC (Minguet et al., 2016). 
Therefore, in order to obtain a satisfactory clinical outcome, 
a comprehensive examination and pathological classification 
is necessary before the treatment.

Tissue biopsy is the gold standard for clinical pathologi-
cal diagnosis and molecular typing of NSCLC. Initially, 
hematoxylin-eosin (HE) staining observation of tumor tis-
sues under an optical microscope was used to distinguish 
between LUAD and LUSC. However, it is difficult to make 
an accurate diagnosis when the tumor structure is unclear 
due to low differentiation, necrosis or serious extrusion. 
Nowadays, immunohistochemical method has been widely 
recommended in clinical practice to distinguish LUAD from 
LUSC by employing multiple sensitive markers [for exam-
ple, napsin-A (NAPSA), thyroid transcription factor-1 (TTF-
1) and tumor protein p63 (TP63)] (Ao et al., 2014; Schwartz 
& Rezaei, 2013; Zhan et al., 2015). Although genetic dif-
ferences between LUAD and LUSC have been clarified in 
depth, the metabolic differences of these two subtypes are 
still unclear (Wang et al., 2020).

Metabolomics is an emerging discipline that character-
izes a comprehensive profile of endogenous metabolites in 
biological systems. In particular, metabolomics has been 
widely used in diagnosing diseases, understanding disease 
mechanisms, identifying novel drug targets and customizing 
drug treatments (Wishart, 2016). Metabolome represents the 
downstream output of the genome and proteome. In con-
trary to genome and proteome which indicate what may 
occur, metabolome reveals what is currently happening. In 
the field of precision medicine, metabolome can promote 
accurate diagnosis and personalized treatment by charac-
terizing metabolic phenotypes of a cell, organ or biological 
system. In the present study, we aimed to distinguish the 
metabolic phenotypes between LUAD and LUSC based on 
a comprehensive targeted metabolomic platform. The inves-
tigation and classification of metabolic phenotype of these 
two NSCLC subtypes will facilitate a deeper understanding 
and precise therapy of lung cancer.

2 � Methods

2.1 � Study participants

A total of 162 patients were initially enrolled from the 
cancer center of Wuhan Union Hospital, all of which were 

confirmed NSCLC patients. The heparin anticoagulated 
plasma samples were collected before treatments, centrifu-
gated at 3500 rpm for 10 min at 4 °C, followed by pipet-
ting supernatant plasma and immediately transferring to a 
− 80 °C freezer until metabolic analysis. The present study 
analyzed 128 plasma samples (28 LUSC and 100 LUAD 
patients) of them. The other patients were not included 
in this study because 21 of them were diagnosed as other 
subtypes such as poorly differentiated carcinoma and sar-
comatoid carcinoma and the pathological diagnosis of rest 
patients remained unknown. The pathological subclassifica-
tion of NSCLC patients were according to the acknowledged 
WHO guidelines (Osmani et al., 2018).

2.2 � Targeted metabolomic analysis

The plasma samples were thawed on ice and mixed by a 3 
volume of ice-cold methanol, the mixture was then whirled 
for 3  min and centrifuged with 12,000  rpm at 4 °C  for 
10 min. Then the supernatant was collected and centrifuged 
at 12,000 rpm at 4 °C for 5 min. Finally, the supernatant was 
collected again for LC-MS/MS analysis.

The sample extracts were analyzed using a liquid chroma-
tography-electrospray ionization tandem mass spectrometry 
(LC-ESI-MS/MS) system (Shim-pack UFLC SHIMADZU 
CBM A system, https://​www.​shima​dzu.​com/; MS, QTRAP® 
System, https://​sciex.​com/). The analytical conditions were 
as follows: UPLC: column, Waters ACQUITY UPLC HSS 
T3 C18 (1.8 μm, 2.1 mm × 100 mm); column temperature, 
40 °C; flow rate, 0.4 mL/min; injection volume, 5 µL; sol-
vent system, water (0.1% formic acid): acetonitrile (0.1% 
formic acid); gradient program, 95:5 v/v at 0 min, 10:90 
v/v at 11.0 min, 10:90 v/v at 12.0 min, 95:5 v/v at 12.1 min, 
95:5 v/v at 14.0 min.

LIT and triple quadrupole (QQQ) scans were acquired 
on a triple quadrupole-linear ion trap mass spectrometer 
(QTRAP), QTRAP® LC-MS/MS System, equipped with 
an ESI Turbo Ion-Spray interface, operating in positive and 
negative ion mode and controlled by Analyst 1.6.3 soft-
ware (Sciex). The ESI source operation parameters were 
as follows: source temperature 500 °C; ion spray voltage 
(IS) 5500 V (positive), − 4500 V (negative); ion source gas 
I (GSI), gas II (GSII) and curtain gas (CUR) were set at 
55, 60, and 25.0 psi, respectively; the collision gas (CAD) 
was high. Instrument tuning and mass calibration were per-
formed with 10 and 100 µmol/L polypropylene glycol solu-
tions in QQQ and LIT modes, respectively. A specific set of 
MRM transitions were monitored for each period according 
to the metabolites eluted within this period.

https://www.shimadzu.com/
https://sciex.com/
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2.3 � Targeted lipidomic analysis

The plasma samples were melted on ice, vortexed for 10 s 
and then centrifuged with 3000 rpm at 4 °C for 5 min. 50 µL 
of each sample was taken and homogenized with 1 mL mix-
ture (include methanol, MTBE and internal standard). The 
mixture was whirled for 2 min, followed by addition of 500 
µL water, and whirled again for 1 min. After centrifugation 
with 12,000 rpm at 4 °C for 10 min, 500 µL supernatant of 
each sample was taken and concentrated. Next, dissolve the 
extract with 100 µL mobile phase B, then stored in − 80 °C. 
Finally, take the dissolving solution into the sample bottle 
for LC-MS/MS analysis.

The sample extracts were analyzed using an LC-ESI-MS/
MS system (Shim-pack UFLC SHIMADZU CBM A sys-
tem, https://​www.​shima​dzu.​com/; MS, QTRAP® System, 
https://​sciex.​com/). The analytical conditions were as fol-
lows, UPLC: column, Waters ACQUITY UPLC HSS T3 
C18 (1.8 μm, 2.1 mm × 100 mm); column temperature, 
40 °C; flow rate, 0.4 mL/min; injection volume, 5 µL; sol-
vent system, water (0.04% acetic acid): acetonitrile (0.04% 
acetic acid); gradient program, 95:5 v/v at 0 min, 5:95 v/v 
at 11.0 min, 5:95 v/v at 12.0 min, 95:5 v/v at 12.1 min, 95:5 
v/v at 14.0 min. The subsequent MS detection is consistent 
with the above-mentioned targeted metabolomics analysis.

2.4 � Statistical analysis

The following results were obtained with R software. At 
first, the data of endogenous metabolites in terms of homo-
geneity and reproducibility was visualized by principal 
component analysis (PCA). Then, the orthogonal partial 
least squares discriminant analysis (OPLS-DA) was further 
applied to remove irrelevant variables. The variable impor-
tance in the projection (VIP) values of each metabolite were 
obtained to measure the contribution of the variable to the 
model. The validity of OPLS-DA model was judged by R2Y 
(the interpretability of the model for the categorical variable 
Y) and Q2 (predictability of the model).

The following data were analyzed using SPSS 23.0 soft-
ware (SPSS, Chicago, IL, USA). The levels of differential 
metabolites were expressed using violin plots (Fig. 4). A 
non-parametrical Kolmogorov-Smirnov test was used for 
confirming a normal distribution of the data. Differences 
between the two groups were examined using two-tailed 
independent samples T-test. P values were presented when 
variances were equal or inequal, in which a Levene’s test was 
used to assess variance homogeneity. The logistic regres-
sion analysis was performed to evaluate the diagnostic value 
of the combined biomarkers model. Model performance 
was assessed by the receiver operating characteristic curve 
(ROC).

The analysis of metabolic pathways was conducted by the 
Kyoto Encyclopedia of Genes and Genomes (KEGG, https://​
www.​kegg.​jp/) (Kanehisa & Goto, 2000). The enrichment of 
differential expression metabolites was visualized as bubble 
chart. The function of metabolites was assigned according 
to the Human Metabolome Database (HMDB, https://​hmdb.​
ca) (Wishart et al., 2009).

3 � Results

3.1 � Baseline of the study population

The clinical characteristics of the LUAD and LUSC patients 
were displayed in Supplementary Table 1. It was shown that 
LUSC patients were significantly older than LUAD patients 
(p < 0.001). Male accounted for a greater proportion in 
LUSC patients (86%) when compared with LUAD patients 
(64%). It was noteworthy that a large number of non-smok-
ers (54%) were diagnosed with LUAD while only 25% of 
LUSC patients has no smoking history. The two types of 
lung cancer patients have no significant difference on BMI 
and disease stage.

3.2 � Detection of endogenous metabolites in plasma 
of NSCLC patients

The present study was conducted based on an integrated 
platform of targeted metabolome and lipidome, which con-
tained more than 3000 characterized compounds (Supple-
mentary Table 2). A total of 128 plasma samples were tested 
in the present study, which were extracted by hydrophilic 
and hydrophobic methods, respectively, and each sample 
was then detected using UPLC-MS/MS in positive and nega-
tive modes (Fig. 1). Finally, 1141 compounds were detected, 
which were qualitatively and quantitatively categorized into 
32 types (Table 1).

In this study, quality control (QC) samples (a mixture 
of sample extracts) were inserted into the queue to moni-
tor the repeatability of the analytical method in every ten 
samples. The method stability was assessed by overlaying 
the total ion current diagrams (TIC diagrams) of different 
QC samples. The results showed that the curves of the TIC 
diagrams were highly overlapped, and the retention time and 
peak intensity were consistent, demonstrating that the signal 
was stable throughout the analysis process (Supplementary 
Fig. 1 A–D). In addition, PCA map was used to estimate the 
degree of variability and the overall metabolic difference. 
Our results showed that the QC samples were not separated 
from each other, indicating the stability of this analytic 
method (Supplementary Fig. 1E, F).

https://www.shimadzu.com/
https://sciex.com/
https://www.kegg.jp/
https://www.kegg.jp/
https://hmdb.ca
https://hmdb.ca
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3.3 � Identification of differential metabolities 
in LUAS and LUSC groups

The raw metabolomic and lipidomic data was displayed 
using an OPLS-DA score map, which showed clear distinc-
tion between LUAD and LUSC group (Fig. 2A). Subse-
quent permutation test of the generated model showed that 
R2X = 0.365, R2Y = 0.929, Q2 = 0.547 (Fig. 2B), confirm-
ing that this model was reliable with respect to prediction 
performance. Figure 2C showed the S-plot of OPLS-DA, 
in which the metabolites near the upper right and lower left 
corners indicated differential expression (red dots, VIP ≥ 1; 
green dots, VIP < 1)

Among the 1141 detected endogenous metabolites, we 
screened differential components based on both Fold Change 
(FC) variations and VIP values (FC>2/ < 0.5 and VIP > 1.0, 
Fig. 3A, B). The result of screening for differential metab-
olites was visualized in a volcano map (Fig. 3C). A total 
of 19 differential metabolites were identified, including 3 
down-regulated and 16 up-regulated differential metabo-
lites (Table 1). Moreover, the Pearson correlation analysis 
method is applied to perform correlation analysis on these 19 
metabolites (Fig. 3D). Several pairs of them showed strong 
correlation including 2-Hydroxybutanoic Acid/d-Glyceric 
Acid, cis-1-Pentadecenoic Acid (C15: 1)/2-(Methylthio) 
ethanol, Inosine/Hypoxanthine-9-β-d-Arabinofuranoside, 

Inosine/6-Methylnicotinamide, 6-Methylnicotinamide/ 
Hypoxanthine-9-β-d-Arabinofuranoside, 5-Aminosalicylic 
Acid/N-Acetylhistamine, 5-Aminosalicylic Acid/1,4-Dihy-
dro-1-Methyl-4-Oxo-3-Pyridinecarboxamide and Riboflavin/
Lumichrome.

3.4 � Identification of diagnostic efficacy 
of differential metabolites

As mentioned above, 19 differential metabolites were 
screened out between LUAD and LUSC groups (Fig. 4). We 
explored whether the demographic characteristics of patients 
had influences on the plasma metabolic profiles of them by 
plotting four heatmaps (Supplementary Fig. 2). It showed 
that the levels of 19 differential expressed metabolites were 
not affected by these factors remarkably, except that inosine, 
cis-1-pentadecenoic acid (C15: 1) and hypoxanthine-9-β-
d-arabinofuranoside seemed to fluctuate in a certain extent 
between different groups.

In order to evaluate the diagnostic efficacy of these 
metabolites, ROC curves were plotted for each metabo-
lite or different groups of metabolites combinations 
which were based on logistic regression models. The 
Akaike Information Criterion (AIC) was used to screen 
the optimal combination, with the lower the AIC value 

Fig. 1   Therepresentative chromatograms of A metabolomic detection in positive mode; B metabolomic detection in negative mode; C lipidomic 
detection in positive mode and D lipidomic detection in negative mode
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representing the better the model effect. Among all the 
diagnostic models, a logistic regression model including 
four differential metabolites [2-(Methylthio)ethanol, Corti-
sol, d-Glyceric Acid, and N-Acetylhistamine] was selected 
due to its lowest AIC value (data not shown). This model 
was demonstrated to be an ideal diagnostic tool with an 
area under the ROC curve of 0.946 (95% CI 0.886–1.000). 
The cut-off value was calculated based on Youden’s J sta-
tistic abovementioned and showed a satisfactory efficacy 
with 92.0% sensitivity and 92.9% specificity (Fig. 5).

3.5 � KEGG functional enrichment analysis

In addition, we performed an enriched pathway analysis 
for the screened metabolites by using KEGG database. As 
shown in Supplementary Fig. 3, related pathways could be 
classified into metabolic pathways, vitamin digestion and 
absorption, riboflavin metabolism, glycerolipid metabo-
lism, ABC transporters, etc. (Supplementary Fig. 3A). 
According to the rich factors of KEGG pathway classi-
fication, these differentially expressed metabolites could 
be further enriched in riboflavin metabolism, steroid 

Table 1   The detected compounds and differentially expressed metabolites

The significantly expressed metabolites are upregulated or downregulated LUAD group compared with LUSC group, which are indicated by 
arrows

Category Detected Differentially expressed metabolites

Metabolomics Amino acid 97 /
Alcohol and amines 9 2-(Methylthio)ethanol↑, N-Acetylhistamine↓
Aldehyde/ketones/esters 4 /
Benzene and substituted derivatives 26 /
Bile acids (BA) 14 /
Carboxylic acids and derivatives 26 /
Heterocyclic compounds 24 4-Pyridoxic Acid↑, Lumichrome↑, 6-Methylnicotinamide↑

1,4-Dihydro-1-Methyl-4-Oxo-3-Pyridinecarboxamide↑
Hormones and related compounds 7 Cortisol↓
Nucleotides 39 Inosine↑, Hypoxanthine-9-β-d-Arabinofuranoside↑
Organic acid and its derivatives 68 d-Glyceric Acid↑, 2-Hydroxybutanoic Acid↑, Homo-

Gamma-Linolenic Acid↑, 5-Aminosalicylic Acid↑
Tryptamines/cholines/pigments 5 /
CoEnzyme and vitamins 11 Pantothenate↓, Riboflavin↓
Other 2 /

Lipidomics Carnitines (CAR) 38 /
Cholesteryl eters (CE) 15 /
Ceramides (Cer) 20 /
Coenzyme Q10 1 /
Eicosanoids 6 Thromboxane B3 (TxB3)↑
Free fatty acid (FFA) 22 /
Lysophosphatidic acids (LPA) 2 /
Lysophosphatidyl cholines (LPC) 26 /
Lysophosphatidyl ethanolamine (LPE) 17 /
LPG/LPI/LPS 3 /
Monoglyceride (MG) 2 /
Diglycerides (DG) 52 /
Triglyceride (TG) 199 TG (16:0/20:4/22:6)↑
Phosphatidic acid (PA) 3 /
Phosphatidyl choline (PC) 109 /
Phosphatidyl ethanolamine (PE) 63 /
Other phosphatidyl compounds 24 /
Sphingomyelin (SM) 30 /
Other lipids 177 Undecanedioic acid↑, cis-1-Pentadecenoic Acid (C15: 1)↓
Total 1141 19
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hormone biosynthesis, prostate cancer, etc. (Supplemen-
tary Fig. 3B).

It is noteworthy that pathways with highest enrichment 
factors (steroid hormone biosynthesis and prostate can-
cer) were all due to the differential expression of cortisol. 
Therefore, we further studied cortisol related genes based 
on The Cancer Genome Atlas (TCGA) database via the 
website of Gene Expression Profiling Interactive Analysis 
(GEPIA, http://​gepia.​cancer-​pku.​cn) (Tang et al., 2017). The 
results showed that steroid hormone acute regulatory protein 
(StAR), a rate-limiting protein of cortisol production, was an 
important factor in LUAD and LUSC. Specifically, as shown 
in Supplementary Fig. 4A, StAR expression was downregu-
lated in LUAD tumor tissue when compared with adjacent 
normal tissue. On the contrary, the expression of StAR in 
LUSC tumor tissue was upregulated compared with the 
paired adjacent normal tissue. Moreover, StAR significantly 

differentiated the overall survival of both LUAD and LUSC 
(Supplementary Fig. 4C, E), where high expression of StAR 
predicted a better prognosis.

4 � Discussion

Lung cancer is one of the most prevalent malignant tumors 
worldwide, with NSCLC accounting for an estimated 
80–85% of those (Torre et al., 2016). Despite the remarkable 
progress acquired in the treatment of lung cancer in recent 
decades, the overall survival rate of this disease is still not 
satisfactory (2019). Accurate diagnosis of histopathological 
subtypes of NSCLC is of great significance for the precise 
lung cancer treatment. Currently, the gold standard for the 
diagnosis of adenocarcinoma and squamous carcinoma of 
NSCLC is liver biopsy. The difference between LUAD and 

Fig. 2   Allthe detected 1141 metabolites were shown as: A OPLS-DA score map, B permutation test and C S-plot ofOPLS-DA

http://gepia.cancer-pku.cn
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LUSC requires visual inspection by an experienced patholo-
gist. However, it is difficult to make an accurate diagnosis 
when the tumor structure is unclear. Therefore, comple-
mentary diagnostic biomarkers are still needed to assist 
NSCLC pathological typing and subsequent precise treat-
ment decisions.

Previous study had demonstrated that LUAD and LUSC 
were vastly distinct diseases at the molecular, pathologi-
cal and clinical levels (Relli et al., 2019). The differences 
between them have been discussed based on analyzing DNA 
methylation, RNA, miRNA expression and protein (Sun 
et al., 2017; Zhang et al., 2020). Fan et al. discussed the 
mRNA-related biomarkers as potential treatment strategies 
for LUAD and LUSC by analyzing TCGA database (Liao 

et al., 2020; Liao et al., 2020). Dong et al. demonstrated that 
DSG3 and KRT14 were differentially expressed between 
LUAD and LUSC patients by analyzing Gene Expression 
Omnibus (GEO) microarray data and 40 pairs of tumor tis-
sue samples (Dong et al., 2020). Zhang et al. had discovered 
that plasma circulating tumor DNA (ctDNA) was correlated 
to histology types in NSCLC patients, and then established 
a ctDNA-based histologic classification model with an 
accuracy of 90% (Zhang et al., 2019). Xiang et al. found 
that the plasma levels of homovanillic acid and serotonin 
hydrochloride were significantly different between patients 
with LUAD and LUSC, but further relationship remained 
unknown (Xiang et al., 2018). Despite the extensive stud-
ies aimed to discover differences between two kinds of 

Fig. 3   Allthe 19 differentially expressed metabolites were shown by: A fold change, B VIPvalues, C volcano map and D Pearson correlation 
analysis
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pathological subtypes on genetic and transcriptional aspects, 
there are still limited achievements in differentiating them on 
metabolic level. Therefore, it is necessary to conduct a com-
prehensive study of the metabolic characteristics of these 
two main subtypes of lung cancer, which will facilitate a 
deeper understanding and precise therapy of NSCLC.

Metabolomics and lipidomics (a subsection of metabo-
lomics) are emerging disciplines that characterize the com-
prehensive profile of endogenous metabolites in biological 
systems. As a high-throughput platform, metabolomics can 
capture metabolic variations that reflect the disease pro-
cess. In a recent published work of Kowalczyk et al., the 
differences in metabolic characteristics between patients 
with both early and late stages of LUAD and LUSC patients 
were explored. Their results showed that the levels of PC 

Fig. 4   Allthe 19 differentially expressed metabolites were displayed as violin plots. Thedata were analyzed by two-tailed unpaired Student’s t 
test and p values were shown in each plot

Fig. 5   A Cut-off value and B ROC curve of combined diagnos-
ticmodel integrating four differential expressed metabolites[2-
(Methylthio)ethanol, Cortisol, D-Glyceric Acid, and N-Acetylhista-
mine]
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15:0/22:6 and PC 18:1/22:6 were significantly different 
between LUAD and LUSC patients of early stage (Kowalc-
zyk et al., 2021). In contrast, more differential metabolites 
including deoxycholic acid, glycocholic aicd, linoleic acid, 
arachidonic acid, and kinds of phospholipids were discov-
ered in the comparison of plasma of LUAD, LUSC and large 
cell cancer (Kowalczyk et al., 2021).

Interestingly, the results of lipidome in the current study 
show that the difference in lipid profiles between LUAD 
and LUSC is very limited, as demonstrated by merely four 
differentially expressed metabolites out of 809 detected 
lipid compounds. In contrast, as many as 15 differentially 
expressed metabolites, which belong to organic acid, hor-
mones, nucleotides and others, were found even though only 
332 kinds of endogenous metabolites were discovered in the 
plasma of NSCLC patients. These results seem to be incon-
sistent with the findings of Kowalczyk et al. In their work, 
most of the differentially expressed metabolites belong to 
the lipids. The potential reason remains obscure, and the 
conflicting metabolic profiles are usually seen in discovering 
the differential metabolites of NSCLC subtypes. To the best 
of our knowledge, several studies have attempted to identify 
differential metabolites in plasma of NSCLC patients, and 
discovered specific plasma metabolomics profiles including 
organic acids, amino acids, fatty acids, lipids or carbohy-
drates, but the results of them are not always coherent among 
these different studies (Chen et al., 2018; Kumar et al., 2017; 
Ni et al., 2019; Puchades-Carrasco et al., 2016; Xiang et al., 
2018). We speculate that the population differences and dif-
ferent detection methods may lead to these inconsistent 
results. Nevertheless, in these studies, organic acids are usu-
ally screened out as the differential expressed metabolites. 
For example, linoleic acid is overexpressed in the plasma of 
LUAD patients when compared with LUSC counterparts 
both in our study and the work of Kowalczyk et al.

In the present study, 1141 metabolites were detected in 
the plasma of NSCLC patients. An OPLS-DA model based 
on all the metabolites levels revealed that LUAD patients is 
significantly different from that of LUSC, reflecting distinct 
metabolic profiles caused by two kinds of pathological con-
ditions. Further, 19 of the 1141 metabolites was selected as 
differentially expressed metabolites based on strict screen-
ing standards (both FC > 2/ < 0.5 and VIP > 1.0). As men-
tioned in the method section, all the enrolled patients were 
newly diagnosed NSCLC patients and has not received any 
treatment yet. Therefore, differences of these metabolites in 
two groups may not be related to drug treatment. In order 
to classify NSCLC pathological subtype more accurately, 
we tested different combinations of the 19 differentially 
expressed metabolites and identified the optimal combina-
tion containing four metabolites based on the AIC index. 
Finally, 2-(Methylthio)ethanol, cortisol, d-Glyceric Acid 
and N-Acetylhistamine were integrated to establish a potent 

diagnostic model. This integrated diagnostic model showed 
an efficient diagnostic ability to distinguish between LUSC 
and LUAD, with an area under the ROC curve of 0.946 (95% 
CI 0.886–1.000), as well as high sensitivity and specificity.

Taken together, in our study, the concentrations of plasma 
endogenous metabolites (such as alcohol/amines, hetero-
cyclic compounds, nucleotides, organic acid) differ much 
more significantly between LUAD and LUSC group when 
compared with lipids levels. According to the annotations of 
KEGG and HMDB databases, it is noteworthy that among 
the 19 differentially expressed metabolites, 4-Pyridoxic 
Acid, d-Glyceric Acid, Pantothenate, 2-Hydroxybutanoic 
Acid, Undecanedioic Acid, Inosine and Riboflavin (all of 
which are not belong to lipid compound) have been reported 
to related to colorectal cancer (Brown et al., 2016; Goedert 
et al., 2014; Ni et al., 2014; Sinha et al., 2016). However, 
their relevance to lung cancer remain unclear. Therefore, 
the physiological effects of these endogenous metabolites 
should attract the attention of NSCLC researchers.

Notably, KEGG functional enrichment analysis of the 19 
differential metabolites showed that cortisol was highly cor-
related with the pathways of maximum enrichment factor. 
Therefore, we further studied cortisol related genes using 
TCGA data and found that StAR expression might be an 
important factor in LUAD and LUSC. Abnormal expression 
of transporter proteins in cell membrane has already been 
demonstrated to be associated tumor progression and devel-
opment in lung cancer (Wang et al., 2017). Herein, StAR, 
as a membrane transporter protein, mediates the transport 
of cholesterol from outer to inner mitochondrial membrane, 
which is the initial and rate-limiting step of cortisol pro-
duction (Manna & Stocco, 2005). The production of cor-
tisol depends on StAR, and previous study demonstrated 
the increase of cortisol production in human adrenocortical 
cells was associated with elevated expression of StAR in 
human adrenocortical cells (Ping et al., 2012). Consistent 
with metabolomics data (the level of cortisol in the plasma 
of LUSC patients was significantly increased compared with 
LUAD patients), the expression of StAR in LUSC tumor tis-
sues was also upregulated compared with LUAD ones. StAR 
was significantly correlated with the prognosis of LUSC and 
LUAD patients (Supplementary Fig. 4). However, whether it 
is upregulated in the adrenocortical cells of LUSC patients 
remains to be further studied.

In addition, D-glyceric acid, an organic acid which was 
selected as a one of the discriminators of LUAD and LUSC 
in our study, is derived from the biosynthesis of glycerol 
(Habe et al., 2009). Aquaporin 3 (AQP3) is also a transporter 
of membrane, which delivers glycerol for synthesizing the 
lipid second messenger in the regulation of keratinocyte pro-
liferation and differentiation (Wang et al., 2017). The analy-
sis of TCGA data showed that AQP3 is over-expressed in the 
tumor tissues of LUAD patients compared with LUSC ones 
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(Supplementary Fig. 5). Interestingly, our findings reveal 
that the level of d-glyceric acid is significantly higher in the 
plasma of LUAD patients than that of LUSC counterparts, 
suggesting that the increased content of d-glyceric acid 
might be related with the over-expression of AQP3. How-
ever, the overall survival and disease-free survival of LUAD 
and LUSC subtype patients seemed not to be correlated with 
the expression of AQP3. The specific role of d-glyceric acid 
in the proliferation and differentiation of NSCLC need to be 
further explored.

Despite the interesting results, we have to admit that there 
exist some limitations in the present study. First, the sam-
ple size is too small and distributed unbalanced between 
LUAD and LUSC groups. Second, a validation set for the 
ROC curve is lack in our research. Third, this study did not 
include a group of healthy human plasma samples for com-
parisons with LUAD/LUSC patients. Last but not the least, 
tissue metabolomic analysis is lack here, which is crucial to 
identify potential biomarkers derived from the secretion of 
tumor tissues.

5 � Conclusions

In summary, the present study has plotted comprehensive 
metabolic profiles of LUAD and LUSC landscapes by 
employing a platform of targeted metabolome and lipidome. 
This investigation identifies novel endogenous metabolites 
that may be served as key small molecules in the develop-
ment and differentiation of NSCLC. However, more in-depth 
mechanism researches and larger cohort studies are needed 
to verify these small molecular differences and metabolic 
pathway abnormalities for clinical application to NSCLC 
precise diagnosis, treatment and prevention.
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