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Abstract
Introduction Globally, breast cancer (BC) is leading at the top of women's diseases and, as a multifactorial disease, there 
is the need for the development of new approaches to aid clinicians on monitoring BC treatments. In this sense, metabo-
lomic studies have become an essential tool allowing the establishment of interdependency among metabolites in biological 
samples.
Objective The combination of nuclear magnetic resonance (NMR) and gas chromatography–quadrupole mass spectrometry 
(GC–qMS) based metabolomic analyses of urine and breast tissue samples from BC patients and cancer-free individuals 
was used.
Methods Multivariate statistical tools were used in order to obtain a panel of metabolites that could discriminate malignant 
from healthy status assisting in the diagnostic field. Urine samples (n = 30), cancer tissues (n = 30) were collected from BC 
patients, cancer-free tissues were resected outside the tumor margin from the same donors (n = 30) while cancer-free urine 
samples (n = 40) where obtained from healthy subjects and analysed by NMR and GC–qMS methodologies.
Results The orthogonal partial least square discriminant analysis model showed a clear separation between BC patients and 
cancer-free subjects for both classes of samples. Specifically, for urine samples, the goodness of fit  (R2Y) and predictive 
ability  (Q2) was 0.946 and 0.910, respectively, whereas for tissue was 0.888 and 0.813, revealing a good predictable accuracy. 
The discrimination efficiency and accuracy of tissue and urine metabolites was ascertained by receiver operating charac-
teristic curve analysis that allowed the identification of metabolites with high sensitivity and specificity. The metabolomic 
pathway analysis identified several dysregulated pathways in BC, including those related with lactate, valine, aspartate and 
glutamine metabolism. Additionally, correlations between urine and tissue metabolites were investigated and five metabo-
lites (e.g. acetone, 3-hexanone, 4-heptanone, 2-methyl-5-(methylthio)-furan and acetate) were found to be significant using 
a dual platform approach.
Conclusion Overall, this study suggests that an improved metabolic profile combining NMR and GC–qMS may be useful 
to achieve more insights regarding the mechanisms underlying cancer.
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1 Introduction

Up to date, breast cancer (BC) is leading at the top of 
women’s illnesses after coronary diseases, accounting with 
around 2.1 million cases diagnosed in 2018 and expected 
to increase 1.1 million by 2040, according to GLOBO-
CAN series of the International Agency for Research on 
Cancer (IARC) (Bray et al., 2018). Being a multifactorial 
disease, with highly variable clinical behavior and response 
to therapy, it can be curable when detected in early stages. 
Although the extensive investigation on new therapy tar-
gets and diagnosis, there is the need for the development 
of new approaches to aid clinicians to monitor BC treat-
ments and follow-up together with the current diagnostic 
tools, namely mammography, ultrasound or tumor markers 
(Lavra et al., 2015). Nowadays, the available diagnostic tools 
have supported in BC detection leading to the improved of 
survival rates. In this regard, metabolomics (metabolomic 
profiling) studies have emerged as a powerful approach to 
study the metabolic changes in several diseases includ-
ing cancer (Chen et al., 2015; Dona et al., 2016; Gu et al., 
2011; Trifonova et al., 2013; Zhang et al., 2013). Moreover, 
metabolomics plays an important role in disease profiling 
being a promising approach for the pursuit of new biomark-
ers in biological matrices, such as cell extracts, tissues or 
biological fluids (Johnson et al., 2016). As a fast growing 
field that focus on the investigation of metabolites present 
in biological systems, it reflects the altered metabolism and 
the physiological status (Koek et al., 2011). Normally, these 

studies are combined with analytical techniques being the 
most popular nuclear magnetic resonance (NMR) spectros-
copy and mass spectrometry (MS) that have gained attention 
in this field as strong tools for the identification of poten-
tial biomarkers in a variety of clinical fields (Bingol, 2018; 
Chen et al., 2015). Usually, MS includes a separation stage 
using liquid chromatography (LC) or gas chromatography 
(GC) and can discriminate between compounds based on 
mass-to-charge (m/z) ratio in charged particles. Regarding 
NMR, it is an appealing technique that allows the investiga-
tion of metabolism due to its advantages as non-destructive, 
non-invasive, highly reproducible, giving information about 
biological samples environment offering both qualitative 
and quantitative measure. When compared with NMR, MS 
exhibits a greater sensitivity, although sample preparation 
is laborious and dependent on metabolite chemical proper-
ties (Oakman et al., 2011). On the other hand, MS lacks 
accuracy and precision producing an enhanced resolution 
profile with several peaks. In addition, these platforms can 
be used together, often applied to complex samples and 
coupled with advanced chemometric tools integrating the 
datasets obtained by the analytical techniques. If used in 
combination, these techniques enable the identification of a 
more comprehensive panel of metabolites involved in meta-
bolic alterations and help unraveling the possible correla-
tions and the underlying mechanisms induced by a disease 
(Chen et al., 2015; Marshall & Powers, 2017; Robertson 
et al., 2011). A variety of studies have been conducted by 
NMR and direct analysis in real time (DART)-MS using this 
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approach to find serum biomarkers for BC (Gu et al., 2011). 
Another study was developed by Chen et al. (2015) that used 
the dual platform of NMR and MS methods to establish 
the urinary metabolomic profile of bipolar disorder (BD) 
subjects with a diagnosis purpose. Marshall et al. (2015) 
combined direct infusion electrospray ionization mass spec-
trometry (DI-ESI–MS) and NMR to analyze the impact of 
neurotoxins involvement in dopaminergic cell death which is 
relevant to Parkinson’s disease. Wei et al. (2013) combined 
NMR, liquid chromatography–mass spectrometry (LC–MS) 
and statistical analysis to predict the response to chemo-
therapy in the neoadjuvant setting using serum samples from 
28 patients with BC. In turn, Falegan et al. (2017) used urine 
and serum samples from renal cell carcinoma (RCC) patients 
with the aim of distinguishing between stages of the disease 
and also to make a distinction between benign renal tumors 
and RCC. In summary, multiplatform approaches are use-
ful tools to achieve a comprehensive analysis of the broad 
variety of metabolic alterations in cancer progression and 
development.

The current work describes the combination of NMR and 
GC–qMS based metabolomic analyses of urine and breast 
tissue samples from BC patients and cancer-free individu-
als combined with multivariate statistical tools in order to 
obtain a panel of metabolites together with their metabolic 
profiles that can discriminate malignant from healthy status, 
thus assisting in the diagnostic field.

2  Methods

2.1  Reagents and materials

All solvents and chemicals used in the experimental work 
were analytical grade.

For the NMR analysis, 3-(trimethylsilyl)propionic-
2,2,3,3-d4 acid sodium salt (TSP) and deuterium oxide 
 (D2O) were supplied by Acros Organics (Geel, Belgium) 
while potassium dihydrogen phosphate  (KH2PO4), sodium 
azide  (NaN3), phosphate buffer solution (PBS), potassium 

deuteroxide solution (KOD) were purchased from Panreac 
(Barcelona, Spain) and Sigma Aldrich (St. Louis, MO), 
respectively. Methanol (MeOH) and chloroform  (CHCl3) 
were purchased from Thermo Fisher Scientific (Waltham, 
Massachusetts).

For the GC–qMS analysis, sodium chloride (NaCl), 
hydrochloric acid (HCl) and 4-methyl-2-pentanol (internal 
standard, IS) were supplied by Panreac (Barcelona, Spain) 
and Sigma Aldrich (St. Louis, MO), respectively. The SPME 
holder for manual sampling together with 75 µm carboxen/
polydimethylsiloxane (CAR/PDMS) fiber was purchased 
from Supelco (Bellefonte, PA).

2.2  Subjects and sample collection

2.2.1  Subjects

The healthy participants (for urine samples collection) for 
this study were recruited from Blood Transfusion Medi-
cine Service at Funchal Hospital and had no history of 
breast malignancy, or metabolic diseases such as diabetes, 
or hypertension. In addition, they were non-smoking and 
were not using medical drugs. The research was approved 
by the Ethics Committee of Funchal Central Hospital Dr. 
Nélio Mendonça (Approval no. S.1708625/2017) and has 
been performed in accordance with the ethical standards as 
laid down in the 1964 Declaration of Helsinki and its later 
amendments or comparable ethical standards. All the par-
ticipants were fully informed of the objectives of the study 
and signed the informed consent.

2.2.2  Urine samples

Urine samples (first morning urine) from BC patients (BC, 
n = 30, age range 44–85, average 67) were taken at the Hae-
mato-Oncology Unit from Dr. Nélio Mendonça Hospital, 
while the urine collection from healthy individuals (CF, 
n = 40, age range 43–80, average 64) (Table 1) was provided 
by the Blood Transfusion Medicine Service from the same 
Hospital.

Table 1  List of collected 
samples (tissue and urine) 
from breast cancer patients and 
cancer-free subjects

a The cancer-free tissue was obtained from the outside margin of breast cancer tissue

Samples BC urine BC tissue Cancer-free  tissuea Cancer-free urine

Number 30 30 30 40
Age (range, median) (44–85, 65) (44–85, 65) (44–85, 65) (43–80, 64)
Histological grade (num-

ber of samples)
IA (5)
IIA (10)
IIIA (1)
IIB (7) Not applicable
IIIB (5)
IIIC (2)
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Participants were instructed to collect the first morning 
urine (after the rejection of the first urine stream) into a ster-
ile cup. The collected urine from either patients or healthy 
volunteers (CF) were aliquoted into 4 mL glass vials and 
stored at − 80 °C for further analysis by GC–qMS and 
NMR. Prior to analysis, all urine samples were centrifuged 
at 4000 rpm (~ 2000×g) for 20 min at 4 °C, and the super-
natant used for the investigation. All the analyses were per-
formed in triplicate.

2.2.3  Tissue samples

Regarding the tissues, 30 samples from patients with breast 
cancer (BC, n = 30, age range 44–85, average 67), and 30 
samples from cancer-free tissue (CF, n = 30, age range 
44–85, average 67) without malignant infiltration were 
resected from the same donor. The resected samples were 
divided into the active carcinoma and cancer-free tissue out-
side the tumor margin and were immediately frozen in liquid 
nitrogen, in a total set of 60 samples. The tissues were stored 
at − 80 °C until extraction. Regarding tissue, the analysis of 
cancer and cancer-free tissue from the same subject can also 
aid to balance the effect of external interferents, such as diet 
or environmental exposure. These samples were obtained 
at the Pathologic Anatomy Unit of Hospital Dr. Nélio Men-
donça (Funchal, Portugal) according to Table 1. The resected 
BC tissues were classified using the TNM (tumor, node, and 
metastasis) staging approach which included five cases of 
stage IA, ten cases of stage IIA, one case of stage IIIA B, 
seven cases of stage IIB, five cases of stage IIIB and two of 
stage IIIC. BC has four stages, I, II III and IV. Stage I and 
II have subcategories A and B, while stage III can have A, 
B or C. The letters describe the size of the tumor and if the 
tumor has spread to the axillary lymph nodes or the lymph 
nodes near the breastbone.

2.3  Extraction of metabolites

2.3.1  HS‑SPME procedure for urine samples

The extraction procedure for urine samples was performed 
according to our previous study (Silva et al., 2019a, b, c). 
Prior to HS-SPME procedure, urines were thawed and then 
4 mL of urine was placed into 8 mL vials together with 
17% NaCl (w/v) and 100 µL of the, 4-methyl-2-pentanol 
(IS = 1.6  mg/L). The pH was adjusted to 2 with small 
amounts of HCl 5 M. Then, the vial was capped with a Tef-
lon (PTFE) septum using a screw cap and the CAR/PDMS 
fiber was introduced and exposed into the headspace during 
75 min at 50 °C at 800 rpm (0.5 mm × 0.1 mm bar) using a 
thermostatic magnetic stirrer plate mixer agitator. After this 
period, the fiber was removed from the vial and inserted into 
the GC injection port and the extracted metabolites were 

desorbed for 10 min at 250 °C. Each sample was analyzed 
in triplicate and blanks were performed before each analysis.

2.3.2  Urine samples by NMR

Urine samples were prepared according to our previous work 
(Silva et al., 2019a, b, c). Briefly, urine samples were thawed 
and centrifuged at 8000 rpm (~ 6000×g, for 5 min) to remove 
suspended cells and any proteins present in samples. Then, 
540 µL of urine was mixed with 60 µL of a buffer solution 
 (KH2PO4, 1.5 M in  D2O) containing 0.1% of TSP-d4 (used 
as chemical shift reference) and 2 mM  NaN3. The pH was 
adjusted to 7.00 ± 0.02 by adding small amounts of KOD.

2.3.3  HS‑SPME for tissue samples

The extraction was performed based on Silva et al. (2019a, 
b, c) method. Tissue samples were thawed and then portions 
of 100 mg were weighted into 20 mL vials together with 
17% NaCl (w/v), 1000 µL of ultrapure water and 100 µL of 
the 4-methyl-2-pentanol (Internal standard (IS) = 1.6 mg/L). 
The pH was adjusted to 2 with small amounts of HCl 5 M. 
Then, the vial was capped with a Teflon (PTFE) septum 
using a screw cap and the SPME fiber was introduced 
and exposed into the headspace during 75 min at 50 °C at 
800 rpm (0.5 mm × 0.1 mm bar). After this period, the fiber 
was removed from the vial and inserted into the GC injection 
port and the analytes were desorbed for 10 min at 250 °C. 
Each sample was analyzed in triplicate and blanks were 
performed before each analysis. In addition, the GC peaks 
obtained from ultrapure water were removed from analysis. 
A SPME extraction using the same procedure was performed 
using ultrapure water and the data regarding the peaks was 
removed from tissue analysis.

2.3.4  Tissue samples by NMR

The intact frozen tissues were weighed, and portions of 
100 mg were transferred into a glass vial. Then, 5 mL of 
PBS was added to remove any blood residues from the sam-
ples. After this, 5 mL of cold MeOH and  CHCl3 were added 
prior to homogenization and vortex. The vials were placed 
at − 20 °C and the vials were vortexed three times every 
10 min. After this procedure, the vials were centrifuged at 
4000×g for 15 min at 4 °C. The upper phase (methanol) 
containing the polar metabolites was transferred into another 
vial and the MeOH was removed under a nitrogen stream 
before lyophilisation. At the time of the NMR analysis, 540 
µL of  D2O was added to the obtained extract and mixed with 
60 µL of a buffer solution  (KH2PO4, 1.5 M in  D2O) contain-
ing 0.1% of TSP-d4 (used as chemical shift reference) and 
2 mM  NaN3. The pH was adjusted to 7.00 ± 0.02 by adding 
small amounts of KOD.
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3  Gas chromatography quadrupole mass–
spectrometry (GC–qMS) conditions

After the extraction procedure (for urine and tissue sam-
ples), the SPME fiber with the analytes was inserted into 
the injection port of an Agilent Technologies 6890 N Net-
work gas chromatograph system (Palo Alto, CA), where 
the analytes were desorbed at 250 °C for 10 min. The GC 
was equipped with a 60 m × 0.25 mm I.D. × 0.25 µm film 
thickness, BP-20 (SGE, Dortmund, Germany) fused sil-
ica capillary column and interfaced with an Agilent 5975 
quadrupole inert mass selective detector. The following 
oven temperature profile was set: (a) 5 min at 45 °C; (b) 
increase temperature until 150 °C, at a rate of 2 °C  min−1 
(hold for 10 min); (c) 150 °C for 10 min; (d) increase 
temperature until 220 °C, at a rate of 7 °C  min−1; and (e) 
220 °C for 10 min for a total GC run time of 87.5 min. 
The column flow was constant at 1.3 mL   min−1 using 
Helium (He, N60, Air Liquide, Portugal) as carrier gas. 
The injection port was operated in the splitless mode and 
held at 250 °C. For the 5975 MS system, the operating 
temperatures of the transfer line, quadrupole and ioniza-
tion source were 270, 150 and 230 °C, respectively, while 
electron impact mass spectra were recorded at 70 eV ioni-
zation voltage and the ionization current was 10 µA. Data 
acquisition was performed in the scan mode (30–200 m/z). 
The electron multiplier was set to the auto tune procedure. 
Metabolite’s identification was accomplished by manual 
interpretation through single ion monitorization (SIM) of 
spectra and matching against the Agilent MS ChemStation 
Software, equipped with a NIST05 mass spectral library 
with a similarity threshold higher than 80% and compari-
son with commercially available standards when available. 
The GC peak areas (relative peak areas) were obtained 
from the ratio between the area of each metabolite and the 
area of the IS. A series of  C8–C20 n-alkanes were analyzed 
using the same extraction procedure to establish the Kóvat 
indices (KI), and to confirm the identity of the metabolites 
by comparison with the values reported in the literature for 
similar columns. In addition, the extraction of the standard 
solution (containing one standard of each chemical fam-
ily) was performed each week and relative standard devia-
tions (RSD) were lower than 5%. This approach was used 
to evaluate the reproducibility of the GC–MS analyses. 
The analyses were performed in triplicate and the results 
expressed by mean ± standard deviation.

3.1  NMR measurements

NMR spectral acquisition was performed using a Bruker 
Advance II Plus NMR spectrometer equipped with a 

400 MHz magnet UltraShield™ 400 Plus at 300 K. All 
NMR spectra acquisition and pre-processing were per-
formed under the control of a workstation with TopSpin 
3.1 (Bruker BioSpin). Two different 1H-NMR spectra 
were acquired: a 1D 1H spectrum providing quantitative 
metabolite data for statistical analysis while 2D HSQC 
and 2D-Jres experiments supported in peak assignment 
and metabolite identification using the standard Bruker 
pulse programs. For each sample, a 1D nuclear overhauser 
enhancement spectroscopy (NOESY) pulse sequence 
(noesypr1d) was used, and solvent signal suppression was 
achieved by presaturation during relaxation and mixing 
time (SW 4807.692 Hz, TD 64 K data points, relaxation 
delay 5 s, 128 scans). The shimming was calibrated auto-
matically. Also, all spectra were processed using a line 
broadening (1.0 Hz) and baseline automatically corrected. 
The NMR spectrum of each sample was calibrated with 
reference to the TSP signal at δ 0.00 ppm. Spectral regions 
within the range of 0.94 to 10 ppm were analysed after 
excluding the sub-region δ 4.55–6.05 to remove variability 
arising from water suppression and possible cross-relax-
ation effect on the urea signal (for the case of urine sam-
ples) via solvent exchanging protons. Each sample analysis 
was performed in triplicate and the relative standard devia-
tion (RSD) was lower than 2%.

The analysis of NMR spectral data was performed using 
the Chenomx NMR Suite 8.2 (Chenomx Inc., Alberta, 
Canada) and relative concentrations were determined using 
the 400 MHz library from Chenomx NMR Suite 8.2, which 
compares the integral of a known reference signal (TSP) 
with signals derived from a library of compounds contain-
ing chemical shifts and peak multiplicities. In addition, the 
identification of metabolites was checked with the spectra 
library existing on Human Metabolome Database (Ellinger 
et al., 2013) and literature (Bouatra et al., 2013; Gramatyka 
et al., 2020; Jagannathan & Sharma, 2017; Li & Deng, 
2017). Regarding to the metabolites that were not available 
in the library, their identification was accomplished by run-
ning a standard solution and the relative concentration was 
calculated manually.

4  Statistical analysis

Statistical analysis was performed using the web server 
Metaboanalyst 4.0 (Xia et al., 2016) using the mean values 
of the triplicate values obtained for each biological sample 
(urine and tissue) and analytical platform. First, data was 
transformed using cube root (e.g. cube root calculation of 
data values) and data autoscaling (e.g. mean-centered and 
divided by the standard deviation of each variable) proce-
dure. In addition, the t test was used to compare the means 
of samples between the groups under study (t test, p < 0.05). 



 C. L. Silva et al.

1 3

72 Page 6 of 11

Furthermore, the multivariate statistical analysis, namely the 
orthogonal projections to latent structures discriminant anal-
ysis (OPLS-DA) were applied on tissue and urine metabo-
lomic dataset to provide insights into the groups under study 
for each analytical platform. The metabolites with variable 
importance in the projection (VIP) scores higher than 1.6 
were considered significant and used for further analysis 
(Akarachantachote et al., 2014; Nguyen et al., 2019). The 
receiver operating characteristic curves (ROC) were also 
attained to verify which metabolites had the highest sensi-
tivity/specificity for a potential BC diagnosis. The selected 
metabolites with significance level of 0.05, were used for 
the metabolite set enrichment analysis (MSEA) to identify 
significant patterns of metabolite concentration changes. 
MSEA uses a collection of predefined metabolite pathways 
and disease states obtained from the HMDB. Furthermore, 
to inspect the correlations between urine and tissue metabo-
lites, samples from the same individuals were matched and 
the correlation matrices obtained for the results for each 
analytical platform (GC–qMS and NMR) separately. The 
matrices containing the mean values for each metabolite 
identified in samples and analyzed by each analytical plat-
form were generated by calculating the Pearson´s correla-
tion coefficient between each pair of variables from either 
NMR or GC–qMS. The results were generated and plotted 
using MATLAB R2018b Academic version (MathWorks, 
Natick, MA).

5  Results and discussion

5.1  Tissue and urine metabolomic pattern based 
on GC–qMS and 1H NMR spectroscopy

The analyses of urine and tissue samples from the same 
donors allowed the identification of 37 and 31 metabo-
lites using NMR method, while for GC–qMS, 114 and 
32 metabolites were identified, respectively (Supplemen-
tary Table S1 and S2). Prior to multivariate analysis, all 
datasets were scaled to unit variance so that each variable 
had the same weight and were used for further analysis (t 
test, p < 0.05). The combined datasets of tissue and urine 
samples composed of 30 metabolites (GC–qMS) towards 
24 metabolites (NMR) in tissue samples and 52 metabo-
lites (GC–qMS) towards 33 metabolites (NMR) in urine 
samples, were subjected to statistical analysis using the 
Metaboanalyst 4.0 (Xia et al., 2016) web server in order 
to obtain a preliminary information about data projection. 
OPLS-DA statistical analysis was generated to compare 
the metabolic profiles between BC patients and cancer-
free individuals, maximizing the class discrimination. 
The quality of the model was evaluated by goodness of fit 
 (R2Y) and predictive ability  (Q2) values, which gave the 
variance explained and predicted ability for the model, 
respectively, thus confirming that the model was effective 
with a good predictable accuracy.

Fig. 1  Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots between BC patients and cancer-free (CF) individuals for 
tissue (a) (R2Y = 0.888; Q2 = 0.813) and urine (b) (R2Y = 0.946 and Q2 = 0.910) samples obtained by NMR and GC–qMS analysis
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Figure 1a and b presents the results obtained for the 
multivariate analysis: OPLS-DA for tissue  (R2Y = 0.888; 
 Q2 = 0.813) and urine  (R2Y = 0.946 and  Q2 = 0.910) sam-
ples, respectively (Supplementary Fig. S1). As observed, 
the obtained OPLS-DA score plot showed a clear separa-
tion between BC patients and cancer-free subjects for both 
category of samples. In urine, α-hydroxyisobutyrate, glu-
tamine, betaine and hypoxanthine, were the metabolites with 
highest impact in group discrimination, whereas for tissue 
were lactate, glutamate, valine and taurine. Additionally, the 
metabolites from each biological matrix with VIP values 
higher than 1.6 were used for the pathway analysis to verify 
which pathways were the relevant involved in the pathology 
under study.

Figure 2a and b includes the top ten metabolites with the 
highest importance in the projection which comprised most 
of the metabolites arising from the tissue analysis by NMR 
when compared with the VIP values from urine analysis 
that derived from the GC–qMS methodology. Moreover, the 
ROC (Fig. 2c, d) curves for each type of biological sample 
(urine and tissue) were created using the metabolites with 
higher VIP values as described previously. Figure 2c and 
d demonstrate the values obtained using the ROC curves 
given by the area under the curve (AUC). Regarding the 
results obtained, we can observe that in the case of tis-
sue (Fig. 2c) four metabolites, namely lactate, glutamate, 
o-phosphocholine and trimethylamine N-oxide (derived 
from NMR analysis) were enough to obtain an AUC of 

Fig. 2  Top ten significant features from tissue (a) and urine (b) samples based on variable importance in the projection (VIP) and receiver oper-
ating characteristic (ROC) curves for tissue (c) and urine (d) samples using the selected metabolites by VIP values
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0.864, whereas for urine an AUC of 0.931 was obtained 
using only three metabolites including glutamine, betaine 
and α-hydoxybutyrate (derived from NMR analysis) were 
sufficient to provide a good sensitivity and specificity to dis-
criminate BC against CFs. These results are in accordance 
with the described in literature, namely Xia et al. (Xia et al., 
2013) reported that an AUC between 0.9 and 1.0 is excellent 
and between 0.8 and 0.9 is good. Based on this classifica-
tion, the results obtained were very good (AUC = 0.864 and 
0.931, respectively).

To go further, the metabolic pathway analysis was per-
formed using a Metabolite Set Enrichment Analysis (MESA) 
in order to identify which pathways were affected in both 
cases.

This type of analysis is used as a mean to recognize bio-
logically meaningful patterns that are enriched in metab-
olomic data (Marco-Ramell et al., 2018; Xia & Wishart, 
2010). For the tissue analysis, the metabolic pathways 
mostly affected included those of lactate, valine, aspartate 
and glutamine whereas, for urine, only glutamine and hypox-
anthine metabolisms presented variations (Fig. 3a, b).

Finally, in order to check the possible correlations 
between urine and tissue metabolites, samples from the 
same individuals were matched and the correlation matri-
ces obtained for the results for each analytical platform 
(GC–qMS and NMR) are presented in Supplementary Fig. 
S2.

For this test, only the metabolites with correlation coef-
ficient higher than 0.6 and p < 0.05 were used. Using this 
criterion, in this case, no correlations were observed for 
tissue vs urine in NMR or tissue NMR vs urine GC–qMS. 
By observing Supplementary Fig. S2, we can perceive that 
only five metabolites (acetone, 3-hexanone, 4-heptanone, 
2-methyl-5-(methylthio)-furan and acetate) were found sig-
nificant as indicated in Table 2, being that the correlation 
level increases with the intensity of colour.

Regarding the possible origin of these metabolites, 
4-heptanone was already identified in urine samples from 
BC patients and cancer-free individuals being hypothesized 
that it arises from in vivo β-oxidation of 2-ethylhexanoic 
acid (EHA) from plasticizers, similar to formation of 3-hep-
tanone from valproic acid (Silva et al., 2012; Statheropou-
los et al., 2005). Acetate is a common metabolite found in 
most tissues and was also identified in biological speci-
mens such as urine, saliva or faeces. The main pathways 
where acetate is involved includes pyruvate, aminoacid and 
aspartate metabolisms (Gray et al., 2014). Also, 2-methyl-
5-(methylthio)-furan was identified in urine samples from 
cancer patients (Silva et al., 2012). However, to the best of 
our knowledge the possible origin of this metabolite is not 
yet reported in literature. Regarding acetone, their produc-
tion is closely related to the higher oxidation rate of fatty 
acids derived from decarboxylation of acetoacetate and the 
dehydrogenation of isopropanol (Erhart et al., 2009). The 

Fig. 3  Summary plots for Metabolite Set Enrichment Analysis (MESA) overview of tissue (a) and urine (b) samples and respective pathways 
associated. The color of the bar indicates the degree of positive association with the corresponding phenotype
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main pathways associated and their origin arises from the 
synthesis and degradation of ketone bodies and propanoate 
metabolism through acetyl-CoA in the liver (Mediani et al., 
2018). In addition, the results obtained with this prelimi-
nary research suggest the possibility to identify endogenous 
metabolites using a dual platform to discover potential BC 
biomarkers and provides a way to investigate the related 
metabolic pathways to improve the BC diagnostic tools.

6  Conclusions

In this work, two analytical platforms, namely NMR and 
GC–qMS were used to explore urine and tissue samples. 
In this sense, using GC–qMS methodology it was possible 
to identify 128 metabolites from urine and tissue samples, 
where 115 arose from urine and 32 from tissue samples. 
Also, it was observed that 17 metabolites were common to 
both matrices namely, toluene, hexanal, d-limonene, 2-pen-
tylfuran, furfural, acetic acid, 2-ethyl-1-hexanol, benzal-
dehyde, 1-octanol, acetophenone, hexanoic acid, phenol, 
octanoic acid, 4-methyl-phenol, nonanoic acid, decanoic 
acid and p-tert-butyl-phenol. The metabolites with highest 
relative peak area identified in urine were 2-ethyl-1-hexanol 
and 4-methyl-phenol while in tissue were acetic acid and 
phenol. Concerning NMR analysis, a total of 49 metabo-
lites were recognized from which 31 derived from tissue 
and 35 from urine, having 19 common metabolites includ-
ing valine, 3-hydroxybutyrate, lactate, alanine, acetate, glu-
tamine, acetone, succinate, dimethylamine, choline, betaine, 
trimethylamine N-oxide, taurine, 4-hydroxyphenylacetate, 
glycine, mannitol, guanidoacetate, creatine, and hypoxan-
thine. The metabolites with highest concentration included 
citrate, betaine and hippurate in urine while in tissue were 
lactate and taurine.

This research also allowed the combination of NMR and 
GC–qMS based metabolomic analyses of urine and breast 
tissue samples from BC patients and cancer-free individuals 
tandem with multivariate statistical tools in order to obtain 
a panel of metabolites that can discriminate malignant from 

healthy status thus assisting in the diagnostic field. Moreo-
ver, using a dual platform approach (NMR and GC–qMS), 
we could enlarge the panel of identified metabolites showing 
a promising BC diagnostic tool. Overall, this study suggests 
that an improved metabolic profile combining NMR and 
GC–qMS may be useful to achieve more insights regard-
ing cancer mechanisms. Nevertheless, due to the challenge 
of identifying metabolites linked to BC, further studies 
are needed for a broader understanding of the mechanisms 
underlying BC.
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Table 2  Correlations obtained 
from tissue and urine samples 
by dual analytical platforms

Metabolite Sample Platform Metabolite Sample Platform Correlation 
coefficient

p value

Acetone Urine GC–qMS 1-pentanol Tissue GC–qMS 0.858 2.17E−12
3-hexanone Urine GC–qMS 1-pentanol Tissue GC–qMS 0.621 3.05E−10
4-heptanone Urine GC–qMS 1-pentanol Tissue GC–qMS 0.645 4.3E−12
2-methyl-5-

(methylthio)-
furan

Urine GC–qMS Decanal Tissue GC–qMS 0.906 1.25E−11

Acetate Urine NMR 1,6,7-trime-
thyl-naphtha-
lene

Tissue GC–qMS 0.656 2.09E−10
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