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Abstract
Introduction  The mechanistic role of amyloid precursor protein (APP) in Alzheimer’s disease (AD) remains unclear.
Objectives  Here, we aimed to identify alterations in cerebral metabolites and metabolic pathways in cortex, hippocampus 
and serum samples from Tg2576 mice, a widely used mouse model of AD.
Methods  Metabolomic profilings using liquid chromatography-mass spectrometry were performed and analysed with Meta-
boAnalyst and weighted correlation network analysis (WGCNA).
Results  Expressions of 11 metabolites in cortex, including hydroxyphenyllactate—linked to oxidative stress—and phos-
phatidylserine—lipid metabolism—were significantly different between Tg2576 and WT mice (false discovery rate < 0.05). 
Four metabolic pathways from cortex, including glycerophospholipid metabolism and pyrimidine metabolism, and one 
pathway (sulphur metabolism) from hippocampus, were significantly enriched in Tg2576 mice. Network analysis identified 
five pathways, including alanine, aspartate and glutamate metabolism, and mitochondria electron transport chain, that were 
significantly correlated with AD genotype.
Conclusions  Changes in metabolite concentrations and metabolic pathways are present in the early stage of APP pathology, 
and may be important for AD development and progression.

Keywords  Network analysis · Dementia · Amyloid-beta · Oxidative stress · Lipids metabolism · Glutamate

1  Introduction

At least 50 million people globally have dementia, and Alz-
heimer’s disease (AD) is the most prevalent type of dementia 
(World Alzheimer Report 2018, 2018). Dementia is also the 
fifth leading cause of death worldwide (Masters et al., 2015). 
The current lack of disease modifying treatments may be 
because AD patients are diagnosed well into disease devel-
opment, and pathology is already advanced, and this cannot 

be reversed (Mehta et al., 2017; Petersen, 2009). Therefore, 
the ability to identify and treat AD patients in the preclini-
cal stage is critical to successfully interfere with AD devel-
opment and progression. By investigating the mechanisms 
associated with the presymptomatic stage of AD, potential 
therapeutic targets and/or biomarkers may emerge.

Recently, metabolomic analysis has become a promi-
nent tool for hypothesis generation and the study of mech-
anisms for a number of diseases and disorders (Dettmer 
et al., 2007; Nagana et al., 2013). This is mainly due to 
its unique ability to profile all the identifiable metabolites 
within the samples of interest and compare it to the refer-
ence samples (Birkemeyer et al., 2005). Liquid chroma-
tography-mass spectrometry (LC–MS) instrumentation 
in particular is rapidly improving and in the past decade, 
it has been shown that the data generated from LC–MS 
has higher quality, consistency and reproducibility than 
it has ever been (Aebersold & Mann, 2003; Kuhn et al., 
2012). Metabolomic analysis of blood samples may pro-
vide insights on the changes in metabolic processes that 
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are associated with AD. However, whole blood contains 
cellular metabolites which may overshadow changes in 
the non-cellular metabolite levels and therefore it is com-
mon for metabolomic study to investigate serum or plasma 
metabolite levels instead of whole blood (Chaleckis et al., 
2016). Additionally, recent technological advances com-
bined with novel methodologies in metabolomics have 
managed to overcome biological problems associated with 
blood-based samples such as high variability in the metab-
olite concentration, thus making LC–MS a technique that 
provides both high specificity and sensitivity for metabo-
lites (Anderson et al., 2004; Gonzalez-Dominguez et al., 
2017; Pernemalm & Lehtio, 2014).

Access to tissue samples at specific timepoints during AD 
development is also an important aspect for the investigation 
of metabolomic pathways that are associated with the patho-
genesis of AD. Currently, it is not possible to obtain sam-
ples from human patients because presymptomatic AD can-
not yet be diagnosed in humans (Weller & Budson, 2018). 
Metabolomic profiling of transgenic mouse models of AD 
can provide insights into changes in the metabolic pathways 
that are associated with specific AD pathology, such as APP 
overexpression (Wilkins & Trushina, 2017). Therefore, in 
this metabolomic analysis study, the Tg2576 mouse model 
of AD was utilised. Tg2576 is one of the most characterised 
mouse models of AD that display APP pathology (Hsiao 
et al., 1996) by overexpressing human APP with the Swed-
ish mutation (K760N/M671L). In this model, amyloid-β 
(Aβ) plaques are observed from approximately 9 months 
of age, while cognitive deficits appear from approximately 
10 months old (Hall & Roberson, 2012). Aged Tg2576 dis-
plays an array of symptoms that are relevant to clinical pro-
file of human AD patients (Van Dam & De Deyn, 2011). 
Here we chose to use 6-month-old Tg2576 mice, which 
are at a presymptomatic stage, to investigate metabolomic 
changes that are associated with early stages of AD devel-
opment. Cortex, hippocampus and serum samples were of 
particular interest. The cortex is one of the first brain regions 
to be affected by Aβ pathology (Calderon-Garciduenas & 
Duyckaerts, 2017; Thal et al., 2002), and so changes in the 
metabolomic profile that are associated with early stage of 
AD pathology should be observable in this region. Addi-
tionally, since hippocampus is highly involved with cogni-
tive functions and memory (Bird & Burgess, 2008)—classic 
symptoms of dementia—it would be interesting to study how 
human mutant APP overexpression pathology can affect the 
metabolomic profile in this area of the brain. We also chose 
to study serum in an attempt to identify potential metabo-
lomic biomarkers associated with early stages of AD.

In addition to metabolite analysis, we also explored the 
utilisation of Weighted Gene Coexpression Network Analy-
sis (WGCNA) in the context of metabolomic data. WGCNA 
is a powerful method that has been extensively used for 

transcriptomic analysis, however it can also be implemented 
for metabolomic characterisation (DiLeo et al., 2011; Fuku-
shima et al., 2011; Novais et al., 2019). This open source 
pipeline performs coexpression analysis using the tools and 
concepts of graph theory. Under the premise that strongly 
correlated metabolites are likely to be functionally asso-
ciated, WGCNA integrates the concentration variation of 
metabolites across samples into a network, which is then 
used to elucidate relationships between metabolite groups 
and sample traits. These metabolomic and network analy-
ses provide a global profiling of all identifiable metabolites 
in samples without observational biases that are typically 
associated with focused studies of metabolism.

2 � Methods

2.1 � Animals

Six-month-old mixed-sex Tg2576 mice and c57 × SJL (WT) 
littermates (n = 7/group) were obtained from our colonies at 
the Department of Medicine (Royal Melbourne Hospital), 
University of Melbourne, Parkville, Australia. All experi-
ments were conducted following approval from the Florey 
Neuroscience Institute Animal Ethics Committee (#15-003).

2.2 � Tissue collection

Mice were euthanised via lethal injection of pentobarbitone 
(80 mg/kg) (Provet, VIC, Australia) and cardiac puncture 
was performed to collect blood from each animal. The blood 
was allowed to clot in an anticoagulant-free tube for 15 min 
at room temperature and then centrifuged at 1500×g in 
20 °C for 10 min. The supernatant was then collected as 
serum and frozen with liquid nitrogen before being stored 
at − 80 °C until processing. The brains were rapidly dis-
sected into cortex and hippocampus and the samples were 
snap-frozen in liquid nitrogen before being stored at − 80 °C 
until processing.

2.3 � Materials

LC–MS-grade acetonitrile was from Burdick and Jackson 
(Muskegon, MI, USA). Reverse osmosis purified Milli-Q 
water used in LC–MS analysis was from Millipore water 
purification system (Merck, Darmstadt, Germany). Ammo-
nium carbonate and internal standards consisting of CHAPS 
(3-[(3-cholamidopropyl)-dimethylammonio]-1-propane-
sulfonate); CAPS (3-(cyclohexylamino)-1-propanesulfonic 
acid); PIPES (1,4-piperazinediethanesulfonic acid) and 
TRIS (2-amino-2-(hydroxymethyl)-1,3-propanediol) were 
purchased from Sigma Aldrich.
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2.4 � Sample preparation

Frozen brain samples were crushed into powder using a steel 
multisample biopulveriser (Daintree Scientific, Australia) 
and quickly weighed, while not allowing the samples to 
thaw. Then 20 µl of cold extraction solvent was added per 
1 mg of powdered tissue. The extraction solvent consisted of 
80% methanol and internal standards at 1 µM concentration. 
The samples were then sonicated for 30 min in an ice bath, 
followed by vortexing at 4 °C for 15 min. The samples were 
then centrifuged at 14800×g in 4 °C for 10 min. Finally, 
100 µl of the supernatant was transferred to LC–MS vials 
and stored at − 80 °C until further processing.

For serum samples, 25 µl was extracted with 100 µl of 
cold methanol containing 1 µM of internal standards. The 
samples were vortexed at 4 °C for 30 min, then centrifuged 
at 14800×g speed at 4 °C for 10 min. 100 µl of supernatant 
was transferred to LC–MS vials and the samples were stored 
at − 80 °C until the analysis. Blank samples were prepared 
so that background noise could be analysed. Pooled quality 
control sample was prepared by combining 5–10 µl of each 
sample for tissue and serum analysis separately.

2.5 � LC–MS metabolomic analysis

Details of the LC–MS metabolomic analysis and data pro-
cessing have been described previously (Creek et al., 2016). 
Briefly, LC–MS data was acquired on Q-Exactive Orbitrap 
mass spectrometer (Thermo Scientific, Waltham, Massachu-
setts, United States) coupled with high-performance liquid 
chromatography (HPLC) system Dionex Ultimate® 3000 
RS (Thermo Scientific). Chromatographic separation was 
performed on a ZIC-pHILIC column (5 µm, polymeric, 
150 × 4.6 mm, SeQuant®, Merck). The mobile phase (A) 
was 20 mM ammonium carbonate and (B) acetonitrile.

2.6 � Data processing

The acquired LC–MS data was processed in an untargeted 
fashion using open source software IDEOM (Creek et al., 
2012), which initially used ProteoWizard to convert raw 
LC–MS files to mzXML format and XCMS to pick peaks to 
convert to.peakML files. Mzmatch.R was subsequently used 
for the alignment of samples and the filtering (Scheltema 
et al., 2011). IDEOM interface in MS Excel (Creek et al., 
2012) was, again, utilised for feature identification, organisa-
tion and data quality evaluation.

2.7 � Raw data analysis and metabolomic profiling

Univariate and multivariate analyses were performed using 
Metaboanalyst 4.0 (Chong et al., 2018). The datasets were 
quantile normalised, log transformed (Durbin et al., 2002) 
and auto-scaled (van den Berg et al., 2006). These param-
eters ensured the best normal distribution for the data. For 
the univariate analysis, unpaired t-test was performed and 
fold-changes were calculated in order to identify the differ-
ences in abundance of each metabolite between Tg2576 and 
WT. The p-values acquired from the t-test were corrected for 
multiple comparisons with the Benjamini–Hochberg method 
(Benjamini & Hochberg, 1995), which yielded false discov-
ery rate (FDR). The significance threshold between groups 
was set to FDR < 0.05.

For the multivariate analysis, principle component analy-
sis (PCA) was performed to detect outliers and partial least-
square discriminant analysis (PLS-DA) was performed 
to identify metabolites that were driving the separation 
between the groups. A metabolite with variable importance 
in projection (VIP) scores of > 1 was considered to be an 
important feature. Leave-one-out cross validation (LOOCV) 
was performed to examine the fit quality of the model (West-
erhuis et al., 2008). In LOOCV, the difference between R2 
and Q2 values should be approximately less than 0.3 (Eriks-
son et al., 2013). A metabolite was deemed as significantly 
affected by genotype when its FDR < 0.05 and its variable 
importance in projection (VIP) score > 1.

2.8 � Pathway enrichment analysis

Pathway enrichment analysis was performed separately from 
the raw data analysis using the Metaboanalyst 4.0 online tool 
(Chong et al., 2018) with Mus musculus species (KEGG 
database) as reference (Kanehisa & Goto, 2000). The nor-
malised peak intensity data from the Tg2576 samples were 
compared to WT littermates. To be qualified as an important 
pathway, the metabolic pathway must have FDR < 0.05 and 
the pathway impact score > 0.2.

2.9 � Network analysis (WGCNA)

Weighted Correlation Network Analysis (WGCNA) is 
a systems biology methodology which can be used with 
metabolomics data to investigate the correlation between 
metabolites based on their abundance across the samples. 
This approach will identify previously unknown groups of 
metabolites that act in concert in the context of AD pathol-
ogy. For detailed description of the WGCNA package please 
refer to (Langfelder & Horvath, 2008). Using the general 
framework of WGCNA, correlation-based networks charac-
terising the metabolome of the Tg2576 and WT littermates 
were constructed. Briefly, the raw LC–MS peak intensity 
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values were quantile normalised and log transformed, fol-
lowed by auto scaling, and the zero values were omitted 
by replacing them with one-half of the detection threshold 
value. A dendrogram was created via hierarchical clustering 
of the samples in order to identify and remove outliers. A 
series of soft thresholding values were used to determine the 
optimal power at which the normalised data fit the scale-free 
topology model. Using a soft thresholding power of 7, an 
adjacency matrix was constructed reflecting the pair-wise 
correlation coefficients between all the detected metabo-
lites. The correlation network was then built based on the 
adjacency matrix, where each node corresponds to a single 
metabolite, and the edges between the nodes represent the 
correlation between the peak intensity values of the given 
metabolite across all samples. The metabolite modules 
were then identified through clustering analysis and path-
way enrichment analysis was performed. We also examined 
the sample trait correlation (Tg2576 vs WT) to the modules 
identified in the network.

3 � Results

3.1 � Raw data analysis

The normalised metabolomic data acquired from the cortex, 
hippocampus and the serum can be seen in Supplementary 
Figs. 1, 2 and 3. Multivariate analysis, in the form of unsu-
pervised principle component analysis (PCA) was performed 
on the normalised peak intensity data from each sample 
set. This allowed the visualisation and comparison of the 
individual Tg2576 and WT data from cortex, hippocampus 
and serum in order to identify outliers. Score plots from 
PCA identified one outlier from the cortex samples as can 
be seen in Fig. 1a—this sample was removed from subse-
quent analyses. Data from the hippocampus (Fig. 1b) and 
serum (Fig. 1c) showed appropriate data grouping, which 
indicated consistency in the metabolomic profiles of the 
samples within each group.

Supervised partial least-square discriminant analysis 
(PLS-DA) was performed to identify metabolites that are 
significantly different between groups. PLS-DA showed no 
overlap between Tg2567 and WT groups in all three sam-
ple types (Fig. 2). The results from PLS-DA were validated 
using leave-one-out cross validation (LOOCV) (Supplemen-
tary Fig. 4). The LOOCV successfully validated the PLS-
DA results from the cortex samples (Supplementary Fig. 4A 
and Supplementary Table 1). LOOCV indicated that the 
multivariate analysis results from hippocampus and serum 
samples had high risks of being overfitted (Supplementary 
Fig. 4B and C) and therefore these two sets of data could not 
be visualised via PLS-DA.

3.2 � Metabolomic profiling

In the cortex samples, PLS-DA identified 11 metabolites 
with VIP scores > 1 and FDR-adjusted p-value < 0.05 
(Table 1). Average fold-changes were also calculated for 
each metabolite. Average fold-change > 1 indicates an 
increase in the level of the metabolite, while fold-change < 1 
indicates decrease. The most significantly altered metabo-
lite was the 3–4-Hydroxyphenyllactate (FDR = 0.045 & VIP 
scores = 1.97), which was found to be decreased (average 
fold-change = 0.60) compared to the WT control. Levels of 
metabolites that are linked to the glycerophospholipids path-
way such as Phosphatidylethanolamine (44:3) (FDR = 0.045, 
VIP scores = 1.92 & average fold-change = 1.56) and 
Lysophosphatidylethanolamines (18:0) (FDR = 0.045 & VIP 
scores = 1.92, average fold-change = 1.30) were also signifi-
cantly increased compared to the controls.

3.3 � Pathway enrichment analysis

Four significantly enriched metabolic pathways, includ-
ing Glycerophospholipid metabolism (FDR = 0.0271 & 
Pathway impact = 0.560) and Glycerolipid metabolism 
(FDR = 0.0271 & Pathway impact = 0.374), were identified 
in the cortical samples of Tg2576 mice (Table 1 and Sup-
plementary Fig. 6). In addition, one significantly enriched 
pathway from the hippocampal samples was also identified, 
the sulphur metabolism pathway (FDR = 0.0237 & Pathway 
impact = 0.213). There were no significantly enriched path-
ways detected in the serum samples.

3.4 � Network analysis

In order to investigate the metabolite-group correlations, 
WGCNA was conducted on the metabolite peak intensity 
data from each of the three tissues types. By hierarchically 
clustering all samples from each tissue type into a sample 
tree, we identified and eliminated one WT sample from cor-
tical dataset (Fig. 3a), two samples (TG and WT) from hip-
pocampal dataset (Fig. 3b) and one WT sample from serum 
dataset (Fig. 3c) as outliers (Supplementary Fig. 7). The 
coexpression networks were then constructed and 12 mod-
ules were identified in the cortical dataset, 10 modules in 
hippocampal dataset and eight modules in serum dataset. In 
the cortical dataset, three modules were positively correlated 
with TG samples (p < 0.05), and one module was negatively 
correlated with TG samples (Fig. 4a). In the hippocampal 
dataset, one module was significatly positively correlated 
with the TG samples (Fig. 4b). Lastly, analysis of serum 
dataset revealed one module that was significantly negatively 
correlated with TG genotype (Fig. 4c). The modules were 
then functionally annotated by performing pathway enrich-
ment analysis of the member metabolites for each identified 
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module. The functional enrichment analysis revealed sig-
nificant enrichment in three pathways from the cortical data-
set (Table 2), two pathways from the hippocampal dataset 
(Table 2) and one pathway “aminoacyl t-RNA biosynthesis” 
(FDR = 0.0449) in the serum dataset.  

4 � Discussion

Currently, AD can only be diagnosed with certainty post-
mortem by staining the brain for Aβ plaques and neurofi-
brillary tangles (McKhann et al., 1984). Because of this, 
identifying early mechanisms and metabolic pathways that 
are associated with the pathogenesis of AD might enable 
patients to be diagnosed before substantial brain pathology 

emerges, potentially facilitating therapeutic intervention. 
Here, 6-month-old Tg2576 mice were used, as this age rep-
resents the presymptomatic stage of the Aβ pathology in AD 
(Hsiao et al., 1996). Metabolomic analysis was the chosen 
method for this investigation due to its ability to provide 
global profiling of the metabolites, pathway enrichment and 
network correlation between disease and control samples 
(Fiehn, 2002).

We identified metabolites and metabolic pathways that 
were altered in Tg2576 mice compared with WT mice, 
each of which may be related to mechanisms associated 
with the APP pathology in AD. Firstly, we observed that 
metabolites which are linked to oxidative stress were 
significantly altered by mutant APP overexpression phe-
notype. The metabolite level with the most pronounced 

Fig. 1   Identification of the outlier using the principle component 
analysis (PCA) on the metabolomic data acquired from the 6-month-
old Tg2576 and WT littermates. Principle component (PC) 1 and 2 
were plotted against each other as these two components represent the 

majority of the variances a PCA identified one WT sample to be an 
outlier from the cortex samples (red arrow). The metabolomic data 
collected from this mouse was removed from subsequent analysis. 
There were no outliers in the b hippocampus and the c serum samples
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difference was the hydroxyphenyllactate (KEGG ID: 
C03672). Hydroxyphenyllactate is classified as a phenolic 
compound and has been shown to exhibit anti-oxidant 
effects by reducing production of mitochondrial reactive 
oxygen species (Beloborodova et al., 2012; RiceEvans 
et al., 1997). We found a significant decrease in the level of 
hydroxyphenyllactate in Tg2576 mice. Npi-methyl-l-histi-
dine (KEGG ID: C01152), a derivative of l-histidine, was 
also decreased in the cortex of the Tg2576. This metabo-
lite is directly linked to the catabolism of carnosine (Kane-
hisa & Goto, 2000), and carnosine has been reported to 
exhibit antioxidant effects (Kohen et al., 1988). This could 
indicate a decrease in the synthesis of carnosine from 
l-histidine due to an early metabolic dysfunction in AD 
(Cararo et al., 2015; Fonteh et al., 2007), which may lead 

to an increase in oxidative stress. Finally, deoxyguanosine 
monophosphate (dGMP) (KEGG ID: C00362) was identi-
fied by the metabolomic analysis. Similar to hydroxyphe-
nyllactate and npi-methyl-l-histidine, dGMP also has a 
role in oxidative stress (Henle et al., 1996). Furthermore, 
dGMP is also involved in purine metabolism and purine 
metabolism disorder has been reported in AD (Ansoleaga 
et al., 2015). It was found that the level of dGMP decreases 
as the AD stage progresses (Ansoleaga et al., 2015). Since 
Hydroxyphenyllactate, npi-methyl-l-histidine and dGMP 
are all associated with oxidative stress, this may indicate 
that the increase in oxidative stress in the brain is one of 
the earliest events that occurs in the presymptomatic stage 
of AD. The role of oxidative stress in AD is supported by 
the current literature (Lin & Beal, 2006; Nunomura et al., 

Fig. 2   Multivariate analysis using the partial least square-discri-
minant analysis (PLS-DA) on the peak intensity data. PLS-DA is a 
classification-based statistical model, which sharpens the separation 
between groups of observations. The PLS-DA scores plots show no 

overlap between the data collected from a cortex; b hippocampus 
and c serum samples of Tg2576 and WT groups, suggesting that the 
metabolomic profiles of the samples from Tg2576 are distinguishable 
from WT and therefore further analysis may be performed
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2001) and therefore increase in oxidative stress in the brain 
can be one of the earliest indicators of AD.

In addition to oxidative stress, six significantly altered 
metabolites that are related to lipid metabolism were also 
identified: three from the phosphatidylserine (PS) (KEGG 
ID: C02737) group; two from the phosphatidylethanolamine 
(PE) (KEGG ID: C00350) group; and one from the diglycer-
ide (KEGG ID: C00165) group. PS and PE metabolites are 
classified as phospholipids and are involved in many impor-
tant metabolic pathways such as glycine, serine, threonine 
and glycerophospholipid metabolism (Kanehisa & Goto, 
2000). In late-onset AD, changes in the level of PS metabo-
lites have been reported (Sarrafpour et al., 2019; Tokuoka 
et al., 2019; Wells et al., 1995), however these changes have 
not been previously observed in the presymptomatic stage of 
AD. In addition to their roles in metabolic pathways, PS also 
play important roles in neural transduction, being involved 
in signalling protein interactions, membrane-bound receptor 
modulation and regulation of exocytosis (Kim et al., 2014). 
PS can also increase the affinity of AMPA receptor in rat 
brain membranes (Baudry et al., 1991) and therefore the 
significant increase in the levels of PS detected here might 
indicate an increase in the membrane hyperexcitability in the 
presymptomatic stage of AD.

Lastly, metabolites that are associated with energy pro-
duction (Schooneman et al., 2013) including o-butanoyl-
carnitine (KEGG ID: C02862) and o-propanoylcarnitine 
(KEGG ID: C03017) were also identified here. These two 
metabolites are classified as acylcarnitine and changes in the 
level of acylcarnitines can be an indicator of metabolic dis-
orders (Koeberl et al., 2003; Millington & Stevens, 2011). It 
has been documented that metabolic dysfunction is a promi-
nent feature in the AD brain (Blonz, 2017) and disorders 
such as diabetes can be associated with AD (Craft, 2009).

Pathway enrichment analysis identified five pathways that 
were significantly enriched in AD compared to controls. The 
glycerolipid metabolism pathway and the glycerophospho-
lipid metabolism pathways were both enriched in the cortex 
of Tg2576 mice. This may be relevant to the glycerolipid 
& glycerophospholipid metabolic disorder which has been 
observed in AD patients (Wood, 2012). The enrichment in 
glycerolipid and glycerophospholipid metabolism pathways 
might occur because these two classes of lipids are the major 
constituent of neuronal and mitochondria membranes and 
in AD, both neurodegeneration (Masters et al., 2015) and 
mitochondrial dysfunction are present (Lin & Beal, 2006). 
This finding complements well with the results from indi-
vidual metabolites, as we identified six metabolites that are 
associated with lipid metabolism.

Table 1   The list of differentially expressed metabolites and the significantly enriched pathways between Tg2576 and WT in cortex samples

(A) A metabolite was identified as significantly different when its FDR-adjusted p-value < 0.05 and variable importance in projection (VIP) 
score > 1. Average fold change was calculated to identify both the amplitude and the direction of the change in the metabolite levels in the 
Tg2576 group compared to the WT group. The metabolic pathway that is associated with each metabolite is also listed. (B) Metabolic pathways 
with an FDR-adjusted p-value < 0.05 and pathway impact score > 0.2 were identified as significantly enriched. This analysis identified four sig-
nificantly enriched metabolic pathways from the data acquired from the cortex samples

(A) Metabolite name Average fold 
change

p value FDR VIP score Associated pathway

3–4-Hydroxyphenyllactate 0.60 0.00025 0.045 1.97 Tyrosine metabolism
Phosphatidylethanolamine (44:3) 1.56 0.00048 0.045 1.92 Glycerophospholipids
Lysophosphatidylethanolamines (18:0) 1.30 0.00052 0.045 1.92 Glycerophospholipids
Phosphatidylserine (36:2) 1.25 0.00059 0.045 1.90 Glycerophospholipids
O-Propanoylcarnitine 0.71 0.00061 0.045 1.90 Oxidation of branched fatty acids
Npi-methyl-l-histidine 0.60 0.00066 0.045 1.90 Histidine metabolism
Phosphatidylserine (40:7) 1.28 0.00070 0.045 1.89 Glycerophospholipids
O-Butanoylcarnitine 0.65 0.00090 0.045 1.87 Fatty acyl carnitines
2′-Deoxyguanosine 5′-monophosphate 0.53 0.00097 0.045 1.87 Purine metabolism
Diglyceride (P-32:1) 1.91 0.0010 0.045 1.86 Diradylglycerols
Phosphatidylserine (44:12) 1.44 0.0011 0.045 1.86 Glycerophospholipids

(B) Metabolic pathway p value FDR Pathway 
impact 
score

Glycerophospholipid metabolism 0.000757 0.0271 0.560
Glycerolipid metabolism 0.00125 0.0271 0.374
Glycine, serine & threonine metabolism 0.00233 0.0379 0.366
Pyrimidine metabolism 0.00431 0.0467 0.464
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Another pathway that was highlighted by our analysis 
was the glycine, serine and threonine metabolism pathway. 
This pathway is involved in the energy production process 
in the brain as it can produce metabolic intermediates that 
can be directly utilised by glycolysis and the Krebs cycle 
(Kanehisa & Goto, 2000). AD has been linked to energy 
production deficiency (Blonz, 2017) and the results from our 
metabolomics analysis support the role of energy production 
deficits in the presymptomatic stage of AD. Furthermore, 
pyrimidine metabolism pathway was also identified as sig-
nificantly enriched and recently, the literature has associated 
pyrimidine metabolism with AD (Muguruma et al., 2020). It 
has been demonstrated that AD pathology could alter pyrim-
idine metabolism (Pesini et al., 2019) and indeed, pyrimi-
dine metabolism plays a big role in mitochondria (Wang, 
2016). Therefore, the impairment in pyrimidine metabolism 
might indicate mitochondrial dysfunction in AD (Murphy & 
Hartley, 2018).

In the hippocampus samples, sulphur metabolism path-
way was identified as significantly enriched. This discovery 
is supported by the current literature, which demonstrated 
that the disruption in sulphur metabolism is linked to AD 
(Griffin & Bradshaw, 2017; Townsend et al., 2004). It has 

been reported that the levels of sulphur-containing amino 
acids such as cysteine were increased in the hippocampal 
region of AD patients (Xu et al., 2016). Additionally, the 
increase in plasma homocysteine have been associated 
with AD (Townsend et al., 2004) and the rise in plasma 
homocysteine level may precede AD symptoms (Seshadri, 
2006). Here it can be seen that the results from the cortex 
and hippocampus are different. This is possibly because at 
6-month-old, the cortex of Tg2576 is more affected by APP 
overexpression than the hippocampus.

In agreement with the results from metabolite analy-
sis and pathway enrichment analysis, WGCNA identified 
mitochondrial dysfunction and glycerophospholipid metab-
olism to be positively correlated with AD genotype (cor-
tex, green and turquoise modules, Table 2). Mitochondrial 
electron transport chain is important for the production of 
adenosine triphosphate (ATP) and reactive oxygen species 
(ROS) (Zhao et al., 2019) and therefore, dysfunction in this 
pathway could indicate energy deficit and overproduction 
of ROS. Moreover, early APP pathology is associated with 
altered lipid metabolism as evidenced in this study. Metabo-
lites associated with glycerophospholipid metabolism path-
way were significantly different in Tg2576 mice compared 
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Fig. 3   Cluster dendrogram of all annotated metabolites identified in 
a cortex, b hippocampus and c serum of Tg2576. The metabolites 
were clustered into modules (colour coded) based on their abundance 
correlation across all samples in the dataset. The parameters of the 

adjacency matrix and the module detection were set as follows: soft 
thresholding power = 7; minimum module size = 10; and type of net-
work = signed
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to WT. Additionally, at the metabolic pathway level, glyc-
erophospholipid and glycerolipid pathways were identified 
as significantly enriched.

Alanine, Aspartate and Glutamate metabolism (cor-
tex, yellow module, Table 2) has also been identified to 
be negatively correlated with AD genotype. While alanine 
and aspartate are very important in the CNS, there is no 
clear evidence of their association with the pathogenesis of 
AD (Ellison et al., 1986; Kori et al., 2016). On the other 
hand, changes in glutamate levels are known to be highly 
associated with AD, motivating the use of memantine as 
a therapeutic option, which targets the glutamatergic path-
way (McShane, et al., 2019). This finding is very important 
because it implies that the change in the level of glutamate 
in AD may happen during the presymptomatic stage of AD. 

Therefore, pathways that regulate glutamate homeostasis in 
the brain, such as the glutamate-glutamine cycle (Danbolt, 
2001), may have the potential to be an early pharmacologi-
cal target for the treatment of AD. The current literature 
would suggest that astrocytic glutamate transporters such 
as glutamate transporter 1 might be such candidate for drug 
target (Fontana, 2015).

Finally, aminoacyl-transfer RNA biosynthesis and 
phenylalanine, tyrosine and tryptophan biosynthesis were 
identified as signinficantly positively correlated with AD 
samples (hippocampus, green module, Table 2). Changes 
in the level of aminoacyl-transfer RNA has been associ-
ated with AD and mild cognitive impairment (MCI) in 
the literature (Ding et al., 2005; Xu et al., 2019). Simi-
larly, changes in the levels of phenylalanine, tyrosine 

Fig. 4   The relationship between sample traits and modules in a cor-
tex, b hippocampus and c serum datasets. The number in each mod-
ule represent the positive or negative Pearson correlation, with the 
associated p-value in brackets, between the module eigengene (ME) 

and Tg2576 samples. The green, turquoise, brown and yellow mod-
ules in the cortex, the green module in hippocampus and the blue 
module in the serum were significantly correlated with the AD geno-
type

Table 2   The metabolic 
pathways in the (A) cortex and 
the (B) hippocampus that are 
significantly correlated to the 
AD genotype as calculated by 
WGCNA

The significance threshold was set to FDR < 0.05

Module colour Metabolic pathway p value FDR

(A)
 Green Mitochondria electron transport chain 0.00042 0.041
 Turquoise Glycerophospholipid metabolism 0.00044 0.037
 Yellow Alanine, aspartate and glutamate metabolism 0.000063 0.0053

(B)
 Green Aminoacyl-tRNA biosynthesis 0.00022 0.019
 Green Phenylalanine, tyrosine and tryptophan biosynthesis 0.00089 0.037
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and tryptophan biosynthesis have also been reported in 
AD (Griffin and Bradshaw, 2017). These results suggest 
that pathways involving amino acid metabolism could 
be affected early in the APP pathology. The functional 
annotation of the modules identified by WGCNA as well 
as pathway enrichment analysis was limited by the small 
size of metabolite databases and ambiguities in identifiers/
aliases for particular isomers of a given metabolite as well 
as the small sample size of this study.

5 � Conclusion

We have identified several metabolites that are linked to 
lipid metabolism and oxidative stress which are affected 
early in disease development in the Tg2576 mouse model 
of AD which exhibits mutant human APP overexpression 
pathology. Additionally, we report here that pathways such 
as Alanine, Aspartate and Glutamate metabolism are asso-
ciated with AD and these findings can be the future basis 
of research in this area. However, we found no significant 
change in the metabolomic profile of the serum samples. 
This might mean that any metabolite change in the serum 
may not be detectable in the early stage of APP pathology. 
The results from this investigation have identified potential 
targets for future research focusing on metabolic distur-
bances. This might lead to new approaches to diagnose and 
treat patients in the presymptomatic stage of AD. It also 
allowed for new hypotheses on the mechanisms and path-
ways involved in the pathogenesis of AD to be generated 
and provided more insights into the current hypotheses.
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