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Abstract
Introduction Methods for the automated and accurate identification of metabolites in 1D 1H-NMR samples are crucial, 
but this is still an unsolved problem. Most available tools are mainly focused on metabolite quantification, thus limiting the 
number of metabolites that can be identified. Also, most only use reference spectra obtained under the same specific condi-
tions of the target sample, limiting the use of available knowledge.
Objectives The main goal of this work was to develop novel methods to perform metabolite annotation from 1D 1H-NMR 
peaks with enhanced reliability, to aid the users in metabolite identification. An essential step was to construct a vast and 
up-do-date library of reference 1D 1H-NMR peak lists collected under distinct experimental conditions.
Methods Three different algorithms were evaluated for their capacity to correctly annotate metabolites present in both syn-
thetic and real samples and compared to publicly available tools. The best proposed method was evaluated in a plethora of 
scenarios, including missing references, missing peaks and peak shifts, to assess its annotation accuracy, precision and recall.
Results We gathered 1816 peak lists for 1387 different metabolites from several sources across different conditions for our 
reference library. A new method, NMRFinder, is proposed and allows matching 1D 1H-NMR samples with all the reference 
peak lists in the library, regardless of acquisition conditions. Metabolites are scored according to the number of peaks match-
ing the samples, how unique their peaks are in the library and how close the spectrum acquisition conditions are in relation 
to those of the samples. Results show a true positive rate of 0.984 when analysing computationally created samples, while 
71.8% of the metabolites were annotated when analysing samples from previously identified public datasets.
Conclusion NMRFinder performs metabolite annotation reliably and outperforms previous methods, being of great value in 
helping the user to ultimately identify metabolites. It is implemented in the R package specmine.

Keywords Metabolite annotation · 1H-NMR · Peak lists library

1 Introduction

Metabolomics is a recent omics technology with a wide 
range of applications, spanning from the study of human 
diseases, such as finding diagnostic and prognostic biomark-
ers, and predict treatment response, to nutrition and drug 
discovery (Alonso et al. 2015; Villas-Boas et al. 2007).

Several techniques are used in metabolomics, being 
Nuclear Magnetic Resonance (NMR) one of the most 

important. In NMR spectroscopy, the spectra obtained 
display chemical shifts on the x-axis and the intensity 
of those shifts on the y-axis. Some atomic nuclei (1H, 
13C, 15 N, e.g.) possess a magnetic moment (i.e., nuclear 
spin), which gives rise, upon a magnetic field, to differ-
ent energy levels and resonance frequencies. In order to 
correctly characterise and specify the location of NMR 
signals, usually their location in a spectrum is reported 
relative to a reference signal from a standard compound 
added to the sample, such as trimethylsilylpropanoic acid 
(TSP) or tetramethylsilane (TMS). Since the separation (or 
dispersion) of NMR signals is magnetic field dependent, 
an unambiguous location unit must be provided for the res-
onances of a set of nuclei. Thus, the frequency differences 
are corrected by dividing each resonance value by the 
NMR’s spectrometer frequency (400, 500, 600 MHz, e.g.). 
Since the resulting number is very small, it is multiplied 
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by  106, resulting in a locator number named the chemical 
shift (δ), with parts-per-million (ppm) as unit.

The most used atomic nucleus for the determination of 
the chemical shifts is hydrogen (1H-NMR), by virtue of 
being the most abundant in biological samples. Although 
equipment costs are high, NMR is a non-destructive tech-
nique and highly reproducible. It has been widely applied 
to obtain metabolic profiles of complex biological mix-
tures. In fact, each metabolite has a characteristic pattern 
of chemical shifts, i.e., chemical signature, due to its com-
position of the nuclei in question and placement of atoms 
in the molecule (Alonso et al. 2015).

The identification of the metabolites present in an NMR 
sample can be achieved by comparing the sample spectrum 
to a set of reference spectra. Each of these reference spec-
tra, ideally obtained under the same experimental condi-
tions of the sample’s spectrum, represents a metabolite. 
When some (ideally all) peaks of a reference spectrum 
match peaks of the sample, that metabolite can be consid-
ered as identified with high confidence. However, this is 
not a trivial task, especially if performed by hand. Among 
other difficulties, some of the peaks of a reference metabo-
lite can be shared with others, leading to false positives, 
and there can be a scarcity of metabolites with reference 
spectra acquired under the same exact conditions as those 
of the samples. In this sense, automated methods capable 
of performing such a task accurately are crucial.

Publicly available software tools that identify metabo-
lites from 1D 1H-NMR data are mainly focused on per-
forming metabolite quantification. To perform this task, 
these tools end up limiting the number of metabolites that 
can be identified. While some rely on the user to give a 
small list of metabolites whose quantification is intended, 
like Batman (Hao et al. 2012), others only contain NMR 
spectra obtained under one frequency, like ASICS (Lefort 
et al. 2019). Tools like Bayesil (Ravanbakhsh et al. 2015) 
are strict in the conditions in which the samples’ spectra 
must be collected so that the identification can be reliable 
and were only conceptualised to work with mammalian 
serum, plasma or CSF. Other interesting tools like MID-
Tool (Filntisi et al. 2017) do not seem to take into con-
sideration the conditions under which the spectra were 
acquired to filter the reference library according to the 
data to analyse. Finally, some of these tools do not give 
the users much liberty in choosing the best parameters 
for their specific case, and most only receive as input raw 
spectra, not allowing the users to provide lists of peaks, 
with the exception of MetaboHunter (Tulpan et al. 2011).

In this scenario, three new algorithms were designed, 
implemented and tested for their capacity to correctly annotate 
the metabolites present in 1D 1H-NMR synthetic samples, and 
also compared to publicly available tools. From these results, 
we selected the best performing algorithm, which we name 

NMRFinder, as the one that most reliably performs metabo-
lite annotation, showing better performance than the publicly 
available methods tested. NMRFinder allows matching the 
samples with all the reference peak lists in the library, regard-
less of whether the conditions under which these references 
were acquired are the same or not to those of the samples. This 
allows scoring the putative metabolites in the library according 
to several criteria: how many peaks match the samples, how 
unique their peaks are in the library and how close the spec-
trum acquisition conditions are to those of the samples. This 
way, the number of metabolites that could be left undetected 
decreases, without increasing the number of false positives.

Our method was tested by generating synthetic data simu-
lating the effects that several situations have on the capacity 
to correctly perform metabolite annotation: number of differ-
ent metabolites present in the samples, references missing for 
metabolites, missing peaks and peak shifts. Our method has 
shown a remarkable robustness even in the most extreme sce-
narios, and compared favourably to previously available meth-
ods. Our method was further validated with experimental data 
from several studies available in the MetaboLights (Haug et al. 
2020) database. Around 72% of the metabolites reported by 
the authors were annotated by our method, with an additional 
annotation of on average 311 metabolites, which are present 
in the respective organisms’ metabolome.

A vast, robust and up-do-date reference library has also 
been proven to be very important for correct metabolite iden-
tification and annotation. As such, we collected reference peak 
lists from several sources to populate our library. We were able 
to gather a total of 1816 references for 1387 different metabo-
lites across different acquisition conditions. We have more 
than 500 peak lists acquired with 400, 500 or 600 MHz NMR 
spectrometers, while solvents like water, chloroform  (CDCl3), 
and DMSO each have more than 100 references.

NMRFinder, together with the constructed library and the 
other algorithms developed in this work, were implemented in 
the latest version of the R package specmine, available through 
CRAN. This allows full reproducibility of our results, and also 
that the community can freely apply these new methods to 
annotate their data and thus aid in metabolite identification.

2  Materials and methods

2.1  Matching algorithms

Three different algorithms were tested to compare the capac-
ity for correctly annotating the metabolites present in 1D 
1H-NMR samples, so that an annotation method could be 
proposed. All these algorithms are based on evaluating how 
the peaks from a sample match the peaks of the different 
reference compounds in a library, by solely comparing the 
chemical shift values of those peaks. A peak from a sample 
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is considered to match a peak from a reference when the 
difference between the chemical shifts of those two peaks 
is less or equal to a tolerance value. For example, while the 
peaks 0.1 and 0.1 will always be considered a match, the 
peaks 0.1 and 0.12 are only considered a match if a peak 
tolerance of at least 0.02 is allowed. One peak in a sample is 
always allowed to match peaks from more than one reference 
metabolite. With this in mind, we next explain how the three 
different algorithms use these matches to score the presence 
of a reference metabolite in a sample.

2.1.1  Hypergeometric tests

We started by evaluating the use of hypergeometric tests 
as a way to annotate the metabolites present in a sample. 
These tests are often used to test which sub-populations are 
over- or under-represented in a population, by calculating the 
probability of having k successes caused by chance. In our 
case, we used the hypergeometric distribution to calculate 
the probability of a group of k peaks matching to a certain 
reference peak list being caused by chance (Eq. 1):

where N is the population size (i.e., number of different 
peaks in the library), K the number of success states in the 
population (i.e., peaks in the reference), n the number of 
draws in a trial (i.e., peaks in a sample), and k the number 
of observed successes (peaks in a sample that match the 
reference).

Thus, a P(X = k) value below a certain defined threshold 
denotes that the metabolite corresponding to the reference 
peak list in question is considered as being present in the 
sample. When repeating this process for all compounds in 
the reference library, these values are adjusted using the 
False Discovery Rate (FDR) approach, with the Benjamini 
& Hochberg method (Benjamini and Hochberg 1995).

The P(X = k) values are then transformed into a scale 
from zero to one, allowing to calculate an hypergeometric 
test score (Eq. 2) for each compound (HTS). This allows 
to assign normalised scores which may be integrated with 
other evidences of the presence of that same compound. All 
compounds with P(X = k) above a certain α are scored 0 in 
this score. The remaining get a score that approaches 1 as 
the P(X = k) value approaches 0.

(1)P(X = k) = f (k;N;K; n) =

(
K

k

)(
N−K

n−k

)
(

N

n

)

2.1.2  Hypergeometric tests with uniqueness scores

More compounds present in a sample most certainly result 
in more different peaks detected. This can cause an increase 
in the number of peaks that belong to more than one differ-
ent reference. This high peak overlap can hinder an algo-
rithm’s capacity to accurately identify or annotate the com-
pounds present, possibly increasing false positives. Thus, we 
decided to test if the algorithm could perform better when 
taking into consideration in the final score how much the 
peaks in each reference peak list overlap with other refer-
ences. Towards this end, we decided to implement a unique-
ness score.

For each peak p, we first define the uniqueness rate of that 
peak (Eq. 3) by dividing 1 by the number of references that 
peak belongs to (np), based on the reference library used.

The uniqueness score of a reference compound c is then 
calculated as the mean of the uniqueness rate of all peaks in 
its peak list (Eq. 4):

where K is the number of different peaks in the reference, 
and pi the i-th peak in the reference of compound c. The 
greater the uniqueness value, the less overlap it has with 
other peak lists. In other words, a uniqueness score of 1 cor-
responds to a compound whose peaks in its peak list do not 
overlap with any other peak list in the library.

A combined matching score of a compound can be cal-
culated by averaging the hypergeometric test score and the 
uniqueness score (Eq. 5).

The closer to 1 the final score is, the more reliable is the 
identification of the metabolite in question.

2.1.3  Matched ratio scores with uniqueness scores

We also decided to explore how well the identification is 
accomplished by combining the uniqueness scores with a 

(2)HTS(c) =

⎧
⎪⎨⎪⎩

0,P(X = k) ≥ 𝛼

1 −
P(X = k)

𝛼

,P(X = k) < 𝛼

(3)Uniqueness peak rate(p) =
1

np

(4)Uniquenessscore(c) =

∑K

i=1
uniquenesspeakrate(pi)

K

(5)

Matchingscore(c) =

⎧
⎪⎨⎪⎩

0, HTS(c) = 0

uniquenessscore(c) + HTS(c)

2
, HTS(c) > 0



 S. Cardoso et al.

1 3

21 Page 4 of 12

score given by the ratio of peaks matched to the peak list of 
the reference compound, instead of using the hypergeomet-
ric tests. This third algorithm thus combines the uniqueness 
score (Eq. 4) with the matched ratio score (MRS), which 
gives the ratio between the number of peaks from the peak 
list of a reference compound c that matched with the peaks 
in the sample (nmatched(c)) and the total number of different 
peaks in that reference peak list (NR) (Eq. 6).

The combined score of a reference compound is, in 
this case, obtained by calculating the average between the 
matched ratio score and the Uniqueness Score (Eq. 7).

2.2  NMRFinder

After evaluating the alternatives above, we reached 
NMRFinder as our final method, where a sample is matched 
with each reference compound in the library at a time, 
regardless of whether the conditions under which the refer-
ences were acquired are equal or not to those of the samples. 
The matching score used is the combination of matched ratio 
scores with uniqueness scores from the previous section, as 
it was the best performing of the three alternatives.

After scoring a match between a reference compound 
and a sample, the compound is further scored regarding the 
conditions under which the reference spectrum was acquired 
as compared to the acquisition parameters of the sample. 
To do so, the user needs to define a score between 0 and 1 
for every possible value of the parameters NMR spectrom-
eter frequency (e.g. 400, 500 MHz) and solvent (e.g. water, 
DMSO, acetone) in the library. Higher values denote more 
“similarity” with the samples’ conditions. Default values are 
provided in our implementation. pH and temperature used 
for acquirement of reference spectra were not considered, as 
most of the references gathered from the various databases 
lacked information regarding these conditions and, when 
present, most were acquired under the same conditions (see 
Sect. 3.1).

The users also have the possibility to score each refer-
ence compound according to its presence or absence in the 
organism(s) or group(s) of organisms under study. This 
aims to ensure that metabolites not reported to be present 
in an organism/group of interest are less likely to be iden-
tified. The presence of a metabolite in an organism/group 
is assessed using the information in the KEGG database 

(6)MRS(c) =
nmatched(c)

NR

(7)

Matchingscore(c) =

⎧
⎪⎨⎪⎩

0, MRS(c) = 0

uniquenessscore(c) + MRS(c)

2
, MRS(c) > 0

(Kanehisa and Goto 2000). Considering that this database is 
likely incomplete regarding the metabolites present, the user 
has also the possibility to define a score for those metabo-
lites not present in the database and those not present in 
the specified organism(s)/group(s). The scores given to each 
organism/group should vary from 0 to 1.

The final score of a compound is the average of the 
matching score (MS) and the user given scores for frequency 
(freq_score—FS), solvent (solv_score—SS) and organism 
(org_score—OS) (Eq. 8).

There are two main reasons supporting the introduction of 
the condition scores: (i) allow matching of the samples with 
all the references in a library, regardless of the conditions, 
so that the uniqueness score can better rate the uniqueness 
of a reference peak list; and (ii) the closer the conditions are 
to those of the samples, the better the final score is, giving 
more confidence to the metabolite annotated.

When multiple peak lists acquired under different condi-
tions are available for a single metabolite, all of them are 
used in the annotation process, even if one of the peak lists 
has the same exact conditions as those of the sample(s). This 
allows to increase the chances of the metabolite not being 
incorrectly missed, but the user must have in mind that a 
single metabolite might be annotated more than once for 
the same data.

Finally, NMRFinder, being a method that only annotates 
the metabolites that might be present in the sample(s), will 
not report as unknown peaks that do not match any reference 
in the library metabolite.

2.3  Code implementation

The proposed 1D 1H-NMR annotation methods are imple-
mented in the R package specmine (Costa et al. 2016), avail-
able in CRAN. The results are returned to the user in the 
form of a data frame. For each reference peak list, the user is 
given the library’s name and identifiers of the corresponding 
metabolite, the final score and the score of each component 
used (matching score, frequency score, solvent score, organ-
ism score), the number of peaks matched and an identifier 
allowing to access more detailed results, which are stored 
in a list. The detailed results for each reference comprise the 
peaks of the reference that matched the sample, the peaks 
of the sample that matched the reference, and all the refer-
ence’s peaks.

The user is able to set the condition scores and the value 
of tolerance in ppm to consider when matching two peaks, 

(8)

Finalscore(c) =

⎧
⎪⎨⎪⎩

0, MS(c) = 0

MS(c) + FS(c) + SS(c) + OS(c)

4
, MS(c) > 0
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eventually associating it to the NMR spectrometer’s digi-
tal resolution used to acquire the spectrum. The informa-
tion regarding the presence of metabolites in the organisms 
or groups of organisms is taken from the KEGG database 
through their KEGGREST R package (Tenenbaum 2016).

2.4  Methodology for assessing the performance 
of the algorithms

To assess the performance and limitations of the three algo-
rithms for scoring reference metabolites described in the 
previous section, we ran a series of computational experi-
ments to evaluate how correctly and precisely the algorithms 
could annotate the set of metabolites in different samples.

In the first set of experiments, so that the composition 
of the samples would be entirely known, and thus correctly 
evaluate the algorithms’ performance, we created synthetic 
datasets from reference peak lists. In these preliminary 
experiments, we restricted our library to peak lists whose 
spectra were acquired at a frequency of 500 MHz and using 
water as solvent, and only those known to be part of the 
human metabolism according to the KEGG database. We 
thus obtained a restricted library whose references had the 
same conditions of acquisition.

From this restricted library, 19 datasets were created, each 
containing samples with a given number of compounds, 
whose reference peak lists were used to create the respective 
sample peaks. The number of compounds varied from 10 in 
the first dataset to 190 in the last (increasing with a step of 
10 compounds). Each dataset contains 50 different replicates 
(samples), where the number of compounds is the same, 
but the metabolite composition differs, by being randomly 
chosen in each case. When joining the reference peak lists 
for the different compounds together in a sample, peaks with 
a ppm difference lower than 0.001 ppm were considered the 
same peak. The chemical shifts of these peaks were thus 
merged, and respective intensities summed. As the methods 
tested only aim at identifying or annotating the metabolites 
by solely analysing the chemical shifts, no changes in peak 
lists’ intensity were made to take into consideration metabo-
lites concentrations in the simulation of synthetic mixtures. 
The synthetic datasets are available in Online Resource 1.

Our three algorithms were then tested for metabolite 
annotation, using only the restricted library created. We 
also used these synthetic datasets to evaluate other tools 
publicly available and compare to the results of our algo-
rithms. We only chose those tools that are able to perform 
metabolite identification or annotation for 1D 1H-NMR data, 
and that can work with different acquisition conditions and 
take them into consideration when performing the identi-
fication or annotation. The only tool that filled all of these 
requirements, and that allowed a list of peaks as input, was 
MetaboHunter (Tulpan et al. 2011).

MetaboHunter is a web tool that performs metabolite 
annotation from spectral data points or peak lists. It pro-
vides three different algorithms: MH1: Highest number of 
matched peaks, MH2: Highest number of matched peaks 
with shift tolerance, MH3: Greedy selection of metabolites 
with disjoint peaks. Because the MH1 algorithm did not 
allow peak tolerances, we did not use this method in our 
comparisons. MH2 allows peak tolerances when calculat-
ing the significance score of the metabolites. MH3 is a 
greedy selection algorithm, developed to identify as little 
false positives as possible. After matching all references 
to the sample, it iteratively chooses the highest scored 
metabolite, i.e., the one with the highest number of peaks 
and whose peaks do not yet belong to previously selected 
metabolites.

When running MetaboHunter, we filtered its reference 
library to make the annotation as similar as possible to ours 
except for the scoring. We were able to choose the peak 
lists with the following options: ‘Solvent’ (Water) and ‘Fre-
quency’ (500 MHz). Because we filtered our library to only 
use peak lists of metabolites known to be present in human 
metabolism (using KEGG database), and MetaboHunter 
only groups the peak lists according to groups of species 
and not also by species, we could not filter the library to 
not contain metabolites not normally present in humans. 
Instead, the samples were matched using the group where 
Homo sapiens belongs to, by setting the type of metabolite 
to Mammalian. The tool further requires choosing between 
peak lists from the MMCD (Madison Metabolomics Con-
sortium Database) (Cui et al. 2008) or the HMDB (Human 
Metabolome Database) (Wishart et al. 2018) databases. We 
chose the HMDB database as all metabolites in the reference 
library for our experiments were extracted from the HMDB 
database. We also implemented the algorithms MH2 and 
MH3 to use them with our restricted library of reference 
peak lists. This allowed us to better compare the algorithms, 
as the differences observed in the results could be caused by 
the differing libraries and not by the algorithms.

Next, we used the full library of collected reference 
peak lists to further evaluate NMRFinder with the synthetic 
datasets.

We started by testing the effect of removing references 
that were used to construct the simulated datasets. For each 
sample, a certain percentage of the references used to con-
struct that said sample were randomly removed from the 
library prior to metabolite annotation. After each sample 
was analysed, references were added back to the library and 
the same process repeated to the next sample. Eleven differ-
ent levels of “missing” references (from 0 to 100%, increas-
ing with a step of 10%) were thus defined for each sample 
in the dataset including samples with 190 compounds. Of 
note, 100% of missing peak lists means that all references 
that were used to construct a sample were not present in the 
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library used for annotation of that sample, i.e., references not 
used to construct a sample were still present in the library.

We then evaluated the effect that noise in chemical shifts 
has in NMRFinder’s metabolite annotation of the dataset of 
samples with 190 compounds each. To mimic the absence 
of peaks, we randomly removed from each sample a certain 
percentage (from 0 to 60%, increasing with a step of 10%) of 
peaks prior to annotation. Separately, peak shifts were also 
tested, by adding six different levels of peak shifts (from 0 
to 5) to the samples at a time prior to annotation. For exam-
ple, while in level 1 all peaks are randomly shifted with 0 
or 0.01 ppm with equal probabilities, in level 5 all peaks are 
randomly shifted with 0, 0.01, 0.02, 0.03, 0.04 or 0.05 ppm. 
Level 0 corresponds to no addition of peak shifts.

In a second set of experiments, we used real experimen-
tal data, gathered from the MetaboLights database (Haug 
et al. 2020). We evaluated if the best performing algorithm, 
NMRFinder, could annotate the metabolites reported by the 
authors and others not reported, by adding the condition and 
organism specific scores.

To evaluate and compare different algorithms we used 
receiver operating characteristic (ROC) curves. ROC curves 
are created by plotting the true positive rate (TPR), also 
known as sensitivity, over the false positive rate (FPR), 
also known as fall-out, through different levels of a deci-
sion. ROC curves thus help evaluating the performance of 
an algorithm by giving a visual representation of the cost/
benefit. The closer the curve is to the yy axis, the better the 
algorithm. The area under the ROC curve (AUC) is used to 
numerically represent this, i.e., the optimal AUC is 1. With 
this in mind, we evaluated the performance of the algorithms 
by looking into their ROC curves when varying the thresh-
old stating which the metabolites are considered identified.

3  Results

3.1  Reference library

Reference peak lists for metabolites were collected from 
databases such as the Human Metabolome Database 
(HMDB) (Wishart et al. 2018), Biological Magnetic Reso-
nance Data Bank (BMRDB) (Ulrich et al. 2007) and Spec-
tral Database for Organic Compounds (SDBS) (National 
Institute of Advanced Industrial Science and Technology 
2020) to populate our library. Some in-house peak lists were 
also produced and inserted into the library. We were able to 
gather a total of 1816 peak lists for 1387 different metabo-
lites across different acquisition conditions. Each list is com-
posed by the peaks’ chemical shift values and corresponding 
intensities. This library is provided with the R package spec-
mine, where the proposed 1D 1H-NMR annotation methods 
are implemented.

From these lists, over 700 compounds were acquired 
with a frequency of 400 MHz, 566 with 500 MHz and 532 
with 600 MHz (Figure S1(a) from Online Resource 2). We 
were only able to gather 1 peak list acquired with 700 MHz. 
Regarding the solvents, water and deuterated chloroform 
 (CDCl3) make up around 80% of the library (Figure S1(b) 
from Online Resource 2), with 51% using water and around 
29% using  CDCl3. Out of the 1816 references, 1015 were 
acquired with a pH between 7 and 8, while 753 lacked infor-
mation. Also, 1160 peak lists were acquired with 25ºC, but 
647 have no information on temperature of acquisition.

We evaluated the number of metabolites which have a 
peak at each ppm position (Figure S3 from Online Resource 
2). It is possible to realise that the spectral region between 
1 and 4 ppm contains the highest concentration of overlaps. 
The peak with the most overlap is 1.34 ppm, present in 112 
reference peak lists. Outside this region, only 33 other peaks 
are present in more than 30 reference peak lists. While the 
average overlap is 4.933, the median is 2.

There are 155 reference peak lists that totally overlap 
with 1 or more other compounds in the library that have 
the same or more number of peaks. From these, 84 only 
have one peak and 13 have two peaks. There are 10 com-
pounds (5 pairs) that have the same exact peaks: fumaric 
acid and maleic acid, L-lactic acid and D-lactic acid, FAD 
and FADH, D-lysine and L-lysine, and D-tagatose and 
L-sorbose. These compounds are, e.g., epimers (tagatose and 
sorbose) or enantiomers (L- and D- lactic acids, lysine), and 
are not discriminated. Each pair of compounds will always 
be inevitably annotated together.

Nevertheless, 3589 (out of 9081) peaks are only present 
in one reference list, which corresponds to 676 references 
that may be unequivocally annotated based on that peak. 
Still, only 27 references out of these 676 contain only peaks 
that do not overlap with any other peak list.

3.2  Evaluation of the metabolite annotation 
algorithms

3.2.1  Comparison of the matching algorithms

Metabolite annotation was conducted on all synthetic data-
sets for all the different matching algorithms evaluated. Due 
to how datasets were created, we allowed a peak tolerance 
of 0.001 ppm. At this stage, we only used as our reference 
library the peak lists whose acquisition conditions were 
the same as those used to create the datasets. As such, our 
library was composed by 198 references in total.

We also evaluated the evolution of the false and true 
positive rates with an increasing number of compounds in 
samples after calculating the best threshold score for each 
dataset of compounds, for each algorithm. The best score 
corresponds to the one whose difference between the TPR 
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and FPR is the largest. The results were summarised in 
Fig. 1; Table 1. Detailed results are given in Online Resource 
2 (Figures S4 to S8).

Overall, the highest and most constant TPR values along 
the datasets are given by the algorithm that uses hypergeo-
metric tests (Hyper), with a mean TPR of 0.709 across all 
datasets. However, the FPR is high in this algorithm, with 
values very close to 0.5 in most datasets. A lower rate of 
FPs would be more advised. When the uniqueness scores are 
used with the hypergeometric tests (Hyper_uniq algorithm), 
the AUC increases (Table 1). The average AUC across all 
datasets is 0.713 and the average FPR decreases to 0.272. 
This denotes that the uniqueness scores help to avoid false 
positives. However, the TPR decreases to 0.611, yet less than 
the decrease in FPR.

The algorithm using the matched ratio and uniqueness 
scores (Match_uniq) has the second best mean TPR, near 
the best one, 0.697. Moreover, the FPR is substantially 
lower when compared to the two algorithms mentioned pre-
viously, reaching a mean of 0.145. Indeed, the mean AUC 
value is clearly the best out of all algorithms tested, 0.835. 
This means that it is the algorithm that best balances the 
rate of metabolites correctly identified and those incorrectly 
identified.

As regards the MetaboHunter, the MH2 implemented 
with our reference library (MH2_ourLibrary) is the algo-
rithm that has the closest performance to that of Match_
uniq. In fact, the mean FPR across all datasets for algorithm 
MH2_ourLibrary is the same as that of Match_uniq. How-
ever, the average TPR is slightly smaller, leading to a smaller 
AUC.

The algorithm that clearly performs worst regarding TPR 
and AUC is the MH3 implemented with our reference library 
(MH3_ourLibrary). This denotes that the scoring is too 
restrictive and does not allow the annotation of a reasonable 

number of metabolites for posterior analysis of the samples 
in a biologically meaningful way. As mentioned here before, 
and also by the authors (Tulpan et al. 2011), this method was 
created to minimise FPs, which is supported by our results 
(the FPR is below 1%).

Finally, while MetaboHunter’s MH2 performs very 
closely to Match_uniq when using our library of refer-
ence peak lists, such performance decreases significantly 
when running the MH2 algorithm through MetaboHunter’s 
webtool (results present in Online Resource 2). Although 
MetaboHunter’s library used in this case was composed 
by 273 metabolites and ours was by only 198 metabolites, 
MetabHunter’s library comprises all mammalian metabolites 
and not just those from humans. Also, 35 out of the 198 
metabolites in our library are not present in MetaboHunter’s 
library. With this, approximately 82% of the library used in 
this case (only references for 500 MHz, water and human 
metabolism) overlaps with the MetaboHunter’s library. It 
is thus understandable why the MetaboHunter results are 
better when using our library (Figures  S9 to S12 from 
Online Resource 2). As we propose our method to have a 
new algorithm and a library as vast and complete as possi-
ble, our method outperforms MH2 slightly as regards to the 

Hyper Hyper_uniq Match_uniq MH2_ourLibrary MH3_ourLibrary

10 20 30 40 50 60 70 80 90 100110120130140150160170180190 10 20 30 40 50 60 70 80 90 100110120130140150160170180190 10 20 30 40 50 60 70 80 90 100110120130140150160170180190 10 20 30 40 50 60 70 80 90 100110120130140150160170180190 10 20 30 40 50 60 70 80 90 100110120130140150160170180190
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Fig. 1  Evolution of the area under the ROC curve (AUC), false (FPR) 
and true (TPR) positive rates through the increased number of com-
pounds that make up the samples in the datasets. Metric values for 
each dataset are the mean of each sample’s metrics. Hyper hyper-
geometric tests; Hyper_uniq hypergeometric tests with uniqueness 

scores; Match_uniq matched ratio scores with uniqueness scores; 
MH2_ourLibrary MetaboHunter’s MH2 algorithm implemented with 
our reference library; MH3_ourLibrary MetaboHunter’s MH3 algo-
rithm implemented with our reference library. The dashed grey line 
represents the value 0.6

Table 1  Mean across all datasets for the metrics area under the curve 
(AUC), true positive rate (TPR) and false positive rate (FPR), with 
respective standard deviation

Algorithms AUC TPR FPR

Hyper 0.667 ± 0.056 0.709 ± 0.015 0.393 ± 0.083
Hyper_uniq 0.713 ± 0.031 0.611 ± 0.062 0.272 ± 0.065
Match_uniq 0.835 ± 0.039 0.697 ± 0.055 0.145 ± 0.066
MH2_ourLibrary 0.797 ± 0.057 0.629 ± 0.048 0.145 ± 0.075
MH3_ourLibrary 0.157 ± 0.135 0.158 ± 0.135 0.0088 ± 0.0031
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algorithm, but considerably when it comes to the reference 
library.

3.2.2  Effect of missing references

As most metabolites do not have reference spectra for all the 
different conditions under which the NMR samples may be 
collected, we next evaluated the effect of not having all refer-
ences for those metabolites that are present in our samples. 
We defined 11 different levels of “missing” references (from 
0 to 100%), as explained in detail in Sect. 2.4. We used all 
reference peak lists in our library, regardless of acquisition 
conditions, to assess if the metabolites with no reference and 
that have an alternative peak list in other conditions could 
still be identified. This was performed using the best algo-
rithm NMRFinder, using the matched ratio and uniqueness 
scores (Match_uniq) combined with the condition scores 

(see Sect. 2.2). Several different combinations of frequency 
and solvent scores were tested (Online Resource 2).

Figure 2 shows the results for three situations: (1) using 
only as references those with the exact same condition as 
those of the samples (Specific References), (2) using all ref-
erences available in the library but giving a score of 1 to all 
conditions equal to those of the samples and a score of 0 to 
all others (Specific Scores), (3) using all references available 
in the library and the best combination of condition scores 
that are not the Specific Scores (Best Non-Specific Scores). 
The best combination was the one that had a higher differ-
ence between TPR and FPR. Detailed results are given in 
Online Resource 2.

Throughout all cases of missing references, using only 
the peak lists that were acquired under the same conditions 
as those of the samples (Specific References) leads to the 
worst results. This difference is more significant when there 
are fewer missing peak lists. Thus, allowing the comparison 

Fig. 2  Comparison of the TPR and FPR values between using Spe-
cific References (only the references with the exact same frequency 
and solvent conditions as those of the samples were used); Specific 
Scores (it uses all references in the library, and all reference condi-
tions equal to those of the samples have a score of 1 as those that that 
are not equal have a score of 0); and Best Non-Specific Scores (it uses 

all references in the library and the best combination of condition 
scores that is not the specific score). Each panel represents the results 
for a certain percentage of “missing” peak lists (from 0 to 100%). 
Only the specific peak lists regarding the compounds that make up 
the respective samples were considered for removal
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of the samples to all references in the library improves the 
correct annotation of metabolites, as it allows peak lists 
acquired under similar conditions, but not the same, to be 
correctly considered a match and to not leave a metabolite 
undetected. Also, the calculation of the uniqueness scores 
leads to a more precise score of the matches.

For samples with 0 and 10% missing references, the TPs 
are, on average, equal between the Specific Scores and Best 
Non-Specific Scores, while the number of FPs increases 
slightly. Thus, when the number of missing references is 
low, using the Specific Scores is better than giving some 
liberty in the condition scores (Best Non-Specific Scores). 
This low number of missing peak lists may allow the Specific 
Scores to be restrictive enough to lower the detection of FPs, 
but without losing the capacity of annotating the metabolites 
that are actually present.

In the samples with 30% or more missing references, it 
is possible to observe a slight increase in the identification 
capacity from the Specific Scores to the Best Non-Specific 
Scores. As expected, the increase of missing references 
decreases the capacity to detect the present metabolites. 
However, the Best Non-Specific Scores improves, even 
though slightly, the results. Also, it is only with the samples 
with 60% or more of missing peak lists that it is not possible 
to obtain more than 50% of the metabolites present with the 
Best Non-Specific Scores. The Specific Scores can only iden-
tify more than 50% of the present metabolites for samples 
with 40% or less of missing references.

As having a library with reference peak lists for all exist-
ing metabolites in all the different conditions of acquisition 
is a very difficult task, the use of condition scores shows to 
improve the annotation. However, this can only be of help if 
the metabolites present have alternative peak lists in other 
conditions. Regarding this case, only 91 out of the 198 refer-
ences used have alternative peak lists.

3.2.3  Effect of missing peaks and peak shifts

We next evaluated how much the annotation capacity of our 
algorithm is affected by the presence of missing peaks and 
peak shifts in the samples. These problems can happen very 
frequently in NMR samples due to physical or chemical 
variations during sample preparation or even spectra acqui-
sition. To address these, we modified the samples created 
originally so that they would contain such spectral variations 
and evaluated the effect on metabolite identification using 
our best algorithm NMRFinder (see Sect. 2.2). We used the 
Specific Scores defined in the previous case, which led to 
the best results. We only used the dataset of samples with 
190 compounds.

3.2.3.1 Effect of  missing peaks To mimic the absence 
of peaks, we randomly removed from each sample a cer-
tain percentage (from 0 to 60%) of peaks prior to anno-
tation. The results are provided in Table 2. As expected, 
the increase of missing peaks causes a decrease in TPR, 
while the FPR does not show a clear trend. Nevertheless, 
the TPR never falls below 0.9, showing that the algorithm 
has the capacity to overcome missing peaks without much 
effect on the annotation.

3.2.3.2 Effect of peak shifts To mimic peak shifts, these 
were added to each sample prior to identification. Six dif-
ferent levels of peak shifts were tested (see Sect. 2.4). In 
this case, we allowed a peak tolerance of 0.03 ppm when 
matching peaks. This value was set so that the existence of 
peak shifts is considered, but without being too loose that 
could potentially cause identification of too many FPs. 
The results were summarised in Table 3.

As expected, the increase in the level of peak shifts 
causes a decrease in TPR, while the FPR does not show a 
clear tendency. Peaks shifts, however, seem to affect more 
the capacity to correctly annotate the metabolites present 
than the absence of peaks. Indeed, the TPR falls below 
0.9 at level 3 or above, which corresponds to the tolerance 
given (0.03 ppm). Still, the TPR never falls below 0.88, 
accompanied by a very low value of incorrectly detected 
metabolites.

Table 2  Mean values of true positive (TPR) and false positive (FPR) 
rates across the samples for each percentage of missing peaks

% Missing Peaks TPR FPR

0 0.984 ± 0 0.0141 ± 0.000309
10 0.968 ± 0.000744 0.0156 ± 0.000817
20 0.969 ± 0.00629 0.0142 ± 0.000462
30 0.960 ± 0.00825 0.0133 ± 0.000809
40 0.948 ± 0.00571 0.0138 ± 0.00135
50 0.934 ± 0.0111 0.0137 ± 0.00102
60 0.903 ± 0.00440 0.0152 ± 0.00210

Table 3  Mean values of TPR and FPR across the samples for each 
level of peak shifts

Level of peak shifts TPR FPR

0 0.984 ± 0 0.0141 ± 0.000309
1 0.911 ± 0.00607 0.0138 ± 0.00187
2 0.904 ± 0.0101 0.0141 ± 0.00105
3 0.896 ± 0.0136 0.0139 ± 0.000910
4 0.8897 ± 0.0136 0.0145 ± 0.00108
5 0.8861 ± 0.0124 0.0140 ± 0.00219
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3.3  Metabolite annotation with real datasets

We next tested our algorithm by performing annotation on 
publicly available datasets, stored in the MetaboLights data-
base (Haug et al. 2020). From the NMR studies available, 
29 were used. The studies had to satisfy two requirements 
to be considered in this analysis: (a) the format of the data 
files had to follow that of Bruker or Varian processed files, 
or be a list of identified peaks; (b) have available the list of 
identified metabolites by the authors (at least 10). Some of 
the studies separated the samples into different groups prior 
to identification. For these cases, we also separated the sam-
ples accordingly, totalling 35 different datasets. A full list of 
the datasets used, as well as the description of the processing 
steps performed on the data prior to metabolite annotation, 
are given in Online Resource 2.

The NMRFinder (see Sect. 2.2) was used, with a peak 
tolerance of 0.03 ppm. The scoring was similar to the one 
used in the previous sections (Specific Scores). In those situ-
ations where the organism studied was not present in KEGG, 
the smallest group of organisms in which that organism is 
inserted was used for organism scoring. The threshold score 
for annotation was set based on the best threshold obtained 
for the dataset including samples with 190 compounds in 
the case in Sect. 3.2.1. This best threshold, as explained in 
Online Resource 2, is the threshold in the ROC curves that 
corresponds to the one whose difference between TPR and 
FPR is larger. The value obtained was 0.578. However, for 
the annotation of the real datasets, we decided to be a little 
less strict and used the value 0.5. The full list of metabolites 
annotated by NMRFinder for each dataset is presented in 
Online Resource 3.

When reported metabolites were annotated by our 
method, we searched if the reference that allowed such 
identification had the exact same acquisition conditions 
as those under which the samples were obtained (Identi-
fied with specific references), or if it had not (Identified with 
alternative references). When a reported metabolite was not 
annotated, we also searched, in spite of that, if it had a peak 
list acquired under the same exact conditions (Not identified 
although with specific references) or a peak list acquired 
under other conditions (Not identified although with alter-
native references). In some cases, the reported metabolites 
were not present in our library (No references). These results 
were summarised in Fig. 3.

Regarding the datasets acquired with a frequency below 
700 MHz for 1D 1H-NMR spectra, our method annotated on 
average 71.8% of the metabolites reported by the authors. 
Furthermore, only an average of 40.8% of the reported 
metabolites would be annotated if only the metabolites 
with specific references were considered. Nevertheless, no 
reported metabolite with a reference acquired under the 
same conditions as those of the samples was left undetected. 

Although we only have one metabolite in our library with 
a peak list acquired with a frequency of 700 MHz, we were 
still able to annotate a mean of 55.1% of the metabolites 
reported by the authors. This was only possible through 
the references acquired under alternative conditions. These 
results show the relevance of using peak lists acquired under 
different conditions in the annotation of metabolites.

It is important to notice that our method’s inability to 
annotate some of the reported metabolites may be due to the 
processing of the raw spectra not being the exact same as 
that performed by the authors. In fact, some studies did not 
provide enough information on the data processing. Also, 
some studies were not completely clear about the condi-
tions under which the samples’ data were acquired. In both 
cases, such information could improve the understanding of 
the outcomes reported regarding the ability of the methods 
in annotating metabolites in chemically complex samples, 
for instance.

We next evaluated the metabolites that our method anno-
tated that were not reported by the authors (Figure S13 from 
Online Resource 2). These metabolites were separated into 
4 different categories, regarding if they were annotated 
with specific references or alternative ones, and if they are 
present or not in the organism according to KEGG. While 
the mean number of metabolites reported by the authors is 
39, we were able to additionally annotate, on average, 286 
new metabolites. Some were annotated through peak lists 
acquired under the same conditions as those of the sam-
ples, but mostly by references with alternative conditions 
regarding frequencies and solvents. Furthermore, an average 
of 96.6% of these metabolites are present in the respective 
organism/ group, according to KEGG. This shows that the 
additionally annotated metabolites have a good level of reli-
ability, although further validation is always necessary to 
consider a metabolite annotated by our method as identified.

4  Conclusion

Most public tools that identify or annotate metabolites from 
1D 1H-NMR data are mainly focused on performing metabo-
lite quantification. To perform such a task, these tools end 
up limiting the number of metabolites that can be identified 
and quantified. While some rely on the user to give a small 
list of metabolites present whose quantification is intended, 
others only contain spectra obtained under one frequency, or 
are even very strict in the conditions in which the samples’ 
spectra must be collected so that the identification can be 
reliable. Also, some tools do not give the users much liberty 
in choosing the best parameters for their specific case, and 
most only receive as input raw spectra.

To address these issues, we constructed a new method 
that annotates the metabolites that may be present from 
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reference peak lists with great reliability. Thus, the user 
has total liberty to decide, in the end, which metabolites 
should be considered identified, with NMRFinder serving 
as a useful and reliable starting point for the user to iden-
tify metabolites. This method was added to the R package 
specmine (Costa et al. 2016), together with other methods, 
allowing the user to choose and test which is more suitable. 
We not only provide the metabolite annotated and respective 
final score, but also the individual scores and the peaks that 
matched between the respective references and the samples.
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