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Abstract
Introduction The metabolomics quality assurance and quality control consortium (mQACC) evolved from the recognized 
need for a community-wide consensus on improving and systematizing quality assurance (QA) and quality control (QC) 
practices for untargeted metabolomics.
Objectives In this work, we sought to identify and share the common and divergent QA and QC practices amongst mQACC 
members and collaborators who use liquid chromatography-mass spectrometry (LC–MS) in untargeted metabolomics.
Methods All authors voluntarily participated in this collaborative research project by providing the details of and insights 
into the QA and QC practices used in their laboratories. This sharing was enabled via a six-page questionnaire composed 
of over 120 questions and comment fields which was developed as part of this work and has proved the basis for ongoing 
mQACC outreach.
Results For QA, many laboratories reported documenting maintenance, calibration and tuning (82%); having established 
data storage and archival processes (71%); depositing data in public repositories (55%); having standard operating proce-
dures (SOPs) in place for all laboratory processes (68%) and training staff on laboratory processes (55%). For QC, universal 
practices included using system suitability procedures (100%) and using a robust system of identification (Metabolomics 
Standards Initiative level 1 identification standards) for at least some of the detected compounds. Most laboratories used QC 
samples (>86%); used internal standards (91%); used a designated analytical acquisition template with randomized experi-
mental samples (91%); and manually reviewed peak integration following data acquisition (86%). A minority of laboratories 
included technical replicates of experimental samples in their workflows (36%).
Conclusions Although the 23 contributors were researchers with diverse and international backgrounds from academia, 
industry and government, they are not necessarily representative of the worldwide pool of practitioners due to the recruitment 
method for participants and its voluntary nature. However, both questionnaire and the findings presented here have already 
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informed and led other data gathering efforts by mQACC at conferences and other outreach activities and will continue to 
evolve in order to guide discussions for recommendations of best practices within the community and to establish interna-
tionally agreed upon reporting standards. We very much welcome further feedback from readers of this article.

Keywords Quality assurance · Quality control · Untargeted metabolomics · Metabolomics quality assurance and quality 
control consortium (mQACC) · LC-MS

1 Introduction

Untargeted metabolomics detects and identifies as many 
small molecules (typically compounds < 2000 Da) present 
in specimens as is technically possible for a given platform, 
usually in the range of 100s to 1000s. Often referred to as a 
discovery tool, untargeted metabolomics provides an open 
evaluation of detectable small molecules and can identify 
novel signatures of exposures or disease, in animals, plants 
and microbes and provide a route to understand biological 
processes at a mechanistic level. Unlike measures gener-
ated from genomics, small molecules represent the prod-
ucts of endogenous metabolism, in addition to products of 
environmental exposure (including lifestyle, diet, and other 
environmental exposures), individual-specific metabolism 
driven by underlying genetics, gut microbial influences, and 
the presence or absence of disease or pathological processes. 
Data derived from untargeted metabolomics have been used 
to interrogate the mechanisms underlying exposure-disease 
relationships and treatment or intervention effects as well as 
to understand the metabolic phenotype at the human popula-
tion level (Dunn et al. 2015; Ilhan et al. 2019; Gafson et al. 
2019; Chen et al. 2019; Bouhifd et al. 2013; Ramirez et al. 
2013; Crestani et al. 2019; Hollister et al. 2019; Hu et al. 
2019; Lains et al. 2019; Rangel-Huerta et al. 2019; Yu et al. 
2019; Cao et al. 2019; Shi et al. 2019; Kelly et al. 2019; 
Blacher et al. 2019; Wilmanski et al. 2019; Tang et al. 2019; 
Plaza-Diaz et al. 2019; de Groot et al. 2019; Wittemans et al. 
2019; Tziotzios et al. 2019; Burrage et al. 2019; McCullough 
et al. 2019; Olson et al. 2018; Zambrana et al. 2019; Sato 
et al. 2019; Rebholz et al. 2019; Isganaitis et al. 2019; Gan-
gler et al. 2019; Cirulli et al. 2019; Shin et al. 2014).

Due to the enormous potential of untargeted metabo-
lomics to enrich scientific research, investigators increas-
ingly include these data in their research. This has led to a 
rise in the number of laboratories and core facilities with 
untargeted metabolomics capabilities. However, the lack of 
clear standard operating procedures (SOPs), or recommen-
dations regarding untargeted metabolomics quality manage-
ment, including quality assurance (QA) and quality control 
(QC), has called into question the quality and integrity of 
metabolomics data (Bouhifd et al. 2015). Given the cur-
rent mandates for submission of data into public reposi-
tories according to the findable, accessible, interoperable 
and reusable (FAIR) principles for the benefit of the wider 

community (Wilkinson et al. 2016), the lack of clear quality 
management practice guidelines makes discerning valid and 
reliable data very difficult, if not impossible. The concern 
within the untargeted metabolomics community, and the 
agencies that fund them, is that data collected under poor 
quality management could generate biased results, waste 
valuable resources throughout the scientific process, halt 
progress, or even harm the field’s reputation for high qual-
ity science. This would be a great disadvantage considering 
the potential of metabolomics to substantially contribute to 
the advancement of scientific discovery.

Multiple organizations have set forth formal definitions 
for the terms quality management system (QMS), quality 
assurance (QA) and quality control (QC) including ISO 
(2015) and Eurachem (2016). For the purposes of this docu-
ment, mQACC used the following definitions which built on 
these formal definitions:

• Quality management system (QMS) is a management 
system to direct and control an organization with regard 
to quality where the organization can be small (e.g. an 
academic research group or start-up company) or large 
(e.g. a government organization or large pharmaceutical 
company).

• Quality assurance (QA) is part of a quality manage-
ment system that is focused on providing confidence 
that quality requirements will be fulfilled and includes 
practices focused on providing confidence that quality 
requirements will be fulfilled consistently over time. QA 
processes are performed independent of data acquisition 
processes and include, but are not limited to, training, 
calibrating instrument, writing SOPs and performing 
audits.

• Quality control (QC) is part of a quality management 
system that is focused on fulfilling quality requirements. 
Practices are focused on demonstrating that quality 
requirement(s) have been fulfilled. In general terms, most 
QC processes are performed during or after data acquisi-
tion in each study. Examples of QC processes include, 
but are not limited to, analysis of QC samples, analysis 
of sample blanks, and reporting of study-specific quality 
metrics.

Several initiatives have begun to address the lack of rec-
ommendations regarding untargeted metabolomics quality 
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management including the metabolomics standards initia-
tive in toxicology (MERIT), through the European centre 
for ecotoxicology and toxicology of chemicals (ECETOC); 
and the metabolomics standards initiative (MSI) through the 
international metabolomics society. These groups and others 
have convened to define and highlight quality management 
processes (Viant et al. 2019; Kirwan et al. 2018; Sumner 
et al. 2007; Dunn et al. 2017; Playdon et al. 2019; Dudzik 
et al. 2018; Bouhifd et al. 2015). Another such initiative was 
the “Think Tank on Quality Assurance and Quality Control 
for Untargeted Metabolomics Studies” sponsored by the US 
National Institutes of Health (NIH), where the inaugural 
meeting convened at the NIH in 2017 (Beger et al. 2019). 
Metabolomics practitioners from government, academic and 
industrial laboratories from around the globe were invited to 
discuss QA and QC practices in untargeted metabolomics. 
As such, participants represented a diversity of untargeted 
metabolomics research applications and regulated environ-
ments as well as repository providers. One of the outcomes 
of this Think Tank was the formation of the metabolomics 
quality assurance and quality control consortium (mQACC). 
The mission of mQACC is to communicate and promote the 
development, dissemination and harmonization of best QA 
and QC practices in untargeted metabolomics. The objec-
tives of mQACC that support the consortium’s mission are 
to: (1) identify, catalog, harmonize and disseminate QA/
QC best practices for untargeted metabolomics; (2) estab-
lish mechanisms to enable the metabolomics community 
to adopt QA/QC best practices; (3) promote and support 
systematic training in QA/QC best practices for the metabo-
lomics community; and (4) to encourage the prioritization 
and development of reference materials applicable to metab-
olomics research.

An initial step to achieve these objectives was to summa-
rize the current quality management practices, both QA and 
QC, of laboratories that were willing and able to share them. 
The goals of this manuscript were to: (1) highlight com-
mon QA/QC practices as a framework for minimum require-
ments, (2) highlight the differences between laboratories in 
QA/QC practices and (3) report and discuss practices that 
are not currently routine in any lab. The differences found 
can indicate specific potential challenging areas within the 
community for establishing guidelines and can also serve to 
highlight areas that warrant further discussion and develop-
ment. Since QA/QC practices were recently detailed else-
where (Broadhurst et al. 2018; Viant et al. 2019; Dudzik 
et al. 2018), we focus here on identifying common practices 
and differences in QA/QC workflows across 23 laboratories 
and provide references for detailed descriptions of the prac-
tices themselves.

2  Methods

Members of the mQACC consortium and several non-mem-
ber contributors who utilized liquid chromatography-mass 
spectrometry (LC–MS) untargeted metabolomics were asked 
to voluntarily participate in a collaborative research project 
and took part by providing the QA and QC practices utilized 
in their laboratories, via a six-page questionnaire composed 
of over 120 questions and open comment fields. All individ-
uals who contributed their laboratory’s protocols are listed 
as authors. Representatives from participating laboratories 
filled out a questionnaire (Supplementary Material 1) and/
or submitted their relevant QA/QC standard operating pro-
cedures (SOPs). One laboratory submitted solely its QA/
QC SOP, which was then used to fill out the questionnaire 
as fully as possible by the primary author. The scope of the 
questionnaire was limited to LC–MS untargeted metabo-
lomics practitioners to ensure a manageable questionnaire 
length for participants. The questionnaire posed a series of 
yes/no questions on the use of specific QA/QC procedures, 
followed by more granular questions and open comment 
fields regarding the frequency and purpose of those prac-
tices for those who answered affirmatively. These data were 
used to determine the proportion of laboratories that used 
the various QA/QC practices, to quantify QC sample fre-
quency, and to summarize how the data from QC samples 
was utilized by the laboratory.

If a question was unanswered or the answer provided 
insufficient detail, it was considered “Not Specified” and 
was excluded from both the numerator and denominator in 
the calculation of percent use. We present the proportion 
of “Yes” responses out of the number of total responses 
to the question, in addition to the count. Contributors did 
not always answer all questions, and no criteria was used 
to exclude a participant based on a minimum percentage of 
responses. This led to instances of seemingly incongruent 
data where the denominators of different questions could 
be different. The difference in the denominator was solely 
a result of the number of laboratories choosing to or not 
to respond to each question. In specific cases, the num-
ber of non-respondents was highlighted. Instances where 
respondents noted that they were “In process” of develop-
ment of specific QA or QC practices were counted as a “no” 
responses.

3  Results

Twenty-three (23) laboratories chose to participate in 
the questionnaire. 70% of respondents (16/23) were from 
academic institutions, 17% (4/23) were from government 
institutions and 13% (3/23) were from industry. Sixteen 
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contributors represented institutions located in North Amer-
ica, six were from Europe, two were from Australasia, and 
one was from South America. The questionnaire data trans-
posed into an excel file and percent usage rates of all QA and 
QC practices can be found in Supplementary Material 2 and 
3, respectively. Seventeen (17) of the contributing laborato-
ries had a response rate of over 95% of the questions, and 
twenty (20) of the laboratories answered over 90% of the 
questions. There was one laboratory whose response rate 
was significantly lower than the other contributors having 
only answered 46% of the questions (Supplementary Mate-
rial 6). We could not assess the reasons why contributors did 
not answer any particular question, but it does appear to be 
more related to the individual filling out the questionnaire, 
rather than the question itself as the response rate per QA/
QC topic area was well conserved across the questionnaire 
(Supplementary Material 7).

3.1  General quality assurance (QA) practices

Quality assurance is the part of a quality management sys-
tem that ensures that a laboratory is be able to meet its qual-
ity objectives. Many QA activities are, therefore, related to 
assessing the workflow to identify areas where errors may 
occur and making sure processes are in place and adhered 
to that track and monitor the processes that are independent 
of data collection (Kauffmann et al. 2017). Various QA pro-
cedures were queried and organized into general categories 
as follows.

3.1.1  Review/Audits

Some QA activities involve reviewing processes and work-
flows with a focus on finding and mitigating potential sources 
of error. This can be done through a variety of processes 
including formal regulatory accreditation where external 
organizations such as the International Organization for 
Standardization (ISO) or the College of American Patholo-
gists (CAP) that provide established metrics for assessing a 
method and auditing the organization for compliance as part 
of accreditation. Only 10% (2/20) of respondents reported 
that their laboratories were fully regulated or were maintain-
ing accreditation from an external entity, which included one 
industrial and one academic laboratory. One additional labo-
ratory was in the process of accreditation, and another two 
laboratories were part of larger organizations that abided by 
set regulations (e.g. operating at good laboratory practices 
(GLP) standards or good clinical practices (GCP) standards), 
which were not directly incorporated by the laboratories. 
About a third (29%: 6/21) of responding laboratories utilized 
an independent QA group within their organization, and 27% 

(6/22) of responding laboratories reported regular laboratory 
audits by either internal or external reviewers.

Multiple rounds of data quality review and approval, 
ideally performed by staff not directly involved in the data 
acquisition, is generally considered a QA practice because 
reviewer(s) assess whether the initial data review and 
approval processes were performed according to estab-
lished quality management system specifications. Half 
(50%: 11/22) of responding laboratories reported having a 
formalized review process with multiple levels of approval, 
with review processes under development in two additional 
laboratories.

3.1.2  Traceability and trackability

Part of a quality system is the traceability/trackability of 
processes that track how a sample is handled or stored and 
whether there are any changes to or deviations from SOPs. 
Quality assurance establishes processes needed to easily 
track and periodically review these procedures for potential 
improvement. A third (32%: 7/22) of responding laboratories 
reported using sample tracking, management and chain of 
custody software (e.g. LIMS system). Half of respondents 
(50%: 11/22) reported having established a formal document 
control system with version control and approval processes 
(under development in one laboratory). Half (50%: 11/22) of 
responding laboratories had formal documentation control 
processes for tracking at least some laboratory phenomenon, 
such as deviations from SOPs, change control documentation 
(formal tracking, traceability and approval for any changes 
to methodology), incidents and corrective and preventative 
action plans (CAPAs: a formal process to track errors in 
process and put in place and report). Many (82%: 18/22) 
responding laboratories utilized logbooks or files to docu-
ment activities such as maintenance, calibration and tuning, 
while a third (32%: 7/22) also reported tracking/logging new 
mobile phase production lots/batches, new column installa-
tion and column lots/batch. Seventy-one percent (15/21) of 
the responding laboratories reported having an established 
data storage and archival process (under development in one 
laboratory). Over half (55%: 12/22) of responding labora-
tories reported uploading data into a public repository with 
three noting that this was only done for specific projects/
studies or when required by the publication journal or pro-
ject funding agency. This process was under development 
in two additional laboratories. Two thirds (68%: 15/22) of 
responding laboratories reported having SOPs in place for 
all laboratory processes, with SOPs under development for 
two additional laboratories (e.g. SOPs for sample handling, 
storage and shipping).
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3.1.3  Equipment testing and monitoring

As previously stated, QA activities ensure that a laboratory 
will be able to meet its quality metrics, though quality met-
rics can differ between laboratories. It is, therefore, impor-
tant to maintain established processes that demonstrate the 
functionality of the laboratory and equipment to perform the 
methods independent of actual sample analyses. Sixty-two 
percent (13/21) of responding laboratories reported having 
established systems to set and monitor laboratory atmos-
pheric conditions with six also reporting having established 
an automated alarm notification system that sent out alerts 
(e.g. emails, texts) to user-specified personnel if the labora-
tory conditions deviated outside of user specified set bounds. 
The majority (91%: 20/22) of responding laboratories 
reported having established systems to set and monitor cold 
storage temperature units with 16 laboratories also using an 
automated alarm notification system that sent out alerts (e.g. 
emails, texts) to user-specified personnel if the cold stor-
age units deviated from set parameters. Most (81%: 17/21) 
respondents reported having established new equipment and 
instrument qualifications to ensure instrument functionality. 
In addition to installation and operational qualifications, 12 
of these laboratories also established performance qualifica-
tions that had to be met. All responding laboratories (22/22) 
reported having established preventative maintenance (PM), 
calibration and tuning schedules for their LC and MS sys-
tems. Eighty-six percent (19/22) of responding laboratories 
had established calibration and/or maintenance schedules 
for some secondary equipment including pipettes and ana-
lytical weighing balances and 18% (4/22) of the respond-
ing laboratories reported comprehensive scheduled primary 
and secondary equipment maintenance and calibration pro-
cesses which further included centrifuges, drying apparatus, 
homogenization equipment, and water supply.

3.1.4  Staff training and proficiency testing

In addition to processes that demonstrate the ability of 
equipment to meet quality metrics, laboratory staff can also 
be assessed for their ability to meet quality metrics through 
training and proficiency testing. Over half (55%: 12/22) of 
responding laboratories reported having established formal 
or semi-formal training processes for staff and 27% (6/22) 
reported also conducting proficiency testing, albeit with 
varying degrees of formality. Three laboratories conducted 
specific and routine proficiency testing of staff annually.

3.2  General quality control (QC) practices

3.2.1  Use of a system suitability procedure

System suitability procedures determine whether instrumen-
tation and methods are performing to a defined, appropriate 
and acceptable level before acquisition of project samples 
(Viant et al. 2019; Broadhurst et al. 2018). All respond-
ents (23/23) reported using a system suitability procedure 
to establish instrument and method readiness. Over 90% 
of responding laboratories reported that system readiness 
was defined by the correct retention time (RT) of standards 
within acceptance criteria (22/22), correct mass accuracy 
of defined compounds within acceptance criteria (23/23) 
and sensitivity within acceptance criteria (22/23) (Fig. 1a). 
Sixty-four percent of responding laboratories (14/22) also 
reviewed chromatographic peak width as part of determin-
ing instrument readiness. Over 70% of laboratories also 
required instrument stability over several injections (17/23) 
and reviewed peaks observed in blank samples (18/23). The 
specific acceptance criteria that each laboratory used was 
not evaluated in this questionnaire.

Different types of samples were used to determine instru-
ment readiness. Forty-three percent (9/21) of responding 
laboratories reported assessing system suitability with sole 

Fig. 1  System suitability user metrics. a Parameters assessed to determine instrument readiness. b Percentage of different sample types used for 
system suitability testing
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use of a solution of authentic chemical standards of varying 
complexity, which ranged from a small number of chemi-
cal standards to a mixture of over 40 chemical standards 
(Fig. 1b); 10% (2/21) of responding laboratories reported the 
sole use of a biological sample spiked with chemical stand-
ards; 48% (10/21) of responding laboratories reported using 
multiple sample types for system suitability assessment 
including various combinations of a solution of chemical 
standards (10/10), a biological sample spiked with chemical 
standards (9/10) and a non-spiked biological sample (2/10).

3.2.2  Use of quality control samples

3.2.2.1 Blanks Process/extraction blanks A process or 
extraction blank (Broadhurst et al. 2018; Viant et al. 2019) 
is defined as a blank sample (for example, an aliquot of 
water) passed through the analytical process including the 
extraction and instrument analysis followed by compari-
son to a biological sample’s data. Most (86%: 19/22) of the 
responding laboratories reported analyzing process/extrac-
tion blanks with every study. With regards to frequency of 
use, 58% (11/19) of responding laboratories analyzed these 
blanks at multiple points throughout a batch, specifically one 
or two blanks at the beginning and end of each batch, and 
additional blanks analyzed intermittently placed throughout 
the batch at approximately every 10 to 20 injections. The 
remaining 42% (8/19) of responding laboratories analyzed 
one or two process/extraction blanks per batch. Questions 
were also asked, in the questionnaire, to elucidate the use 
of the blank data. The majority of responding laboratories 
(86%: 19/22) reported using the process/extraction blanks 
data to assess carryover in the methods, particularly during 
method development (Fig. 2a). Two thirds (66%: 15/22) of 
responding laboratories reported using process/extraction 
blanks data to identify contaminants in the processes arising 
from storage and handling. Most (71%: 15/21) responding 
laboratories used the process/extraction blank data to filter 
or remove peaks detected in the experimental samples, of 
which one laboratory used background subtraction method-

ology and the remaining laboratories filtered peaks based 
on blank levels by using a defined “must exceed” ratio of 
the experimental peak intensity to blank peak intensity. Of 
those laboratories that chose to set a defined “must exceed” 
ratio, seven reported using a minimum 3:1 experimental-to-
blank ratio for inclusion of peaks; four laboratories used a 
10:1 ratio; one laboratory used a 5:1 ratio and one labora-
tory used a conservative 20:1 ratio (Fig. 2b).

System suitability sample/solvent blank with standards 
Most (70%: 16/23) laboratories reported injecting a system 
suitability sample (Broadhurst et al. 2018) (a mixture of 
standards in a solvent blank) at defined intervals through-
out a batch while the frequency of use mirrored that of the 
process/extraction blanks, where slightly over half of the 
laboratories analyzed these blanks multiple times throughout 
a batch. The reported use of this blank was mostly to isolate 
and assess instrument performance independent of the sam-
ple extraction process.

Solvent blank (no internal standards) Over a third (39%: 
9/23) of laboratories reported analyzing a pure solvent 
blank (Broadhurst et al. 2018) (a solvent that has not passed 
through the sample preparation process applied to biological 
samples and which contains no internal standards) injected 
periodically throughout a batch, with eight of these nine 
laboratories utilizing this blank in addition to the process/
extraction blank. This solvent blank was reported as being 
used to assess carryover, including the carryover of the inter-
nal standards that have generally been spiked into all other 
samples. Solvent blanks were also used to assess contamina-
tion coming solely from the solvent system.

3.2.2.2 Pooled‑QC/Intra‑study QC samples A pooled QC or 
intra-study QC sample is a technical replicate of a sample 
that has the same matrix as the sample type in the study 
(Sangster et  al. 2006). Pooled/intra-study QC samples are 
created by pooling an aliquot of all or a subset of the experi-
mental biological samples in the study (Broadhurst et  al. 
2018; Viant et al. 2019; Dunn et al. 2012; Gika et al. 2007, 
2008; Bijlsma et al. 2006). Almost all (96%: 22/23) laborato-

Fig. 2  Process/extraction blank user metrics. a Uses of the data; b Peak filtering criteria when removing peaks from experimental samples
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ries reported using pooled QC/intra-study QC samples. The 
frequency was consistent with most responding laboratories 
running one to three injections at the beginning of a batch 
(excluding column conditioning injections), one to two at 
the end, and intermittently throughout the batch, generally 
every 10 to 20 injections. Approximately three-quarters 
(76%: 16/21) of responding laboratories used these samples 
for column conditioning before batch analysis, 71% (15/21) 
used them to assess relative standard deviation (RSD) for 
a study and 76% (16/21) reported using the pooled/intra-
study QC samples to assess peak quality (Fig. 3a). About 
half (55%: 12/22) of responding laboratories reported 
using these data to filter/remove peaks based on the rela-
tive standard deviation (RSD) of response and detection rate 
criteria. Specifically, in seven laboratories, the RSD of the 
experimental peak in the technical replicates were required 
to be < 30%; two laboratories used < 25%; two laboratories 
used < 20% and one laboratory reported using a < 15% RSD 
criteria (Fig. 3b). Detection rate filter criteria (Smilde et al. 
2005) ranged from a required detection rate of greater than 
50%, to a required 100% in all technical replicates for inclu-
sion in the subsequent data analyses.

3.2.2.3 Long‑term reference (LTR)/intra‑laboratory QC sam‑
ples A long-term reference (LTR) or intra-laboratory QC 
sample is a large pool of samples that is analyzed consist-
ently and repeatedly over time within a laboratory, though 
typically at a lower frequency than for pooled-QC/intra-
study QC samples. To support this QC sample type, a large 
quantity of this sample is required, and the sample needs 
to be stable over the time-period of use (Viant et al. 2019; 
Broadhurst et  al. 2018). Half (52%: 11/21) of responding 
laboratories reported using a long-term reference QC sam-
ple (with three additional laboratories in the development 
stage). Eight of these laboratories used their own pool of 
sample(s) for this purpose, one laboratory did not specify 
the LTR source and the rest used the National Institute of 

Standards and Technologies (NIST) SRM 1950 (Simon-
Manso et al. 2013). Some laboratories noted that LTR sam-
ples were not applicable to their laboratory since they did 
not analyze samples from longitudinal or large studies that 
would require assessment of long-term instrument stability. 
The laboratories that utilized LTR samples analyzed them 
multiple times per batch, generally following the same trend 
as blanks with one to two at the beginning of the batch, one 
to two at the end of the batch and additional samples inter-
spersed throughout the batch. One laboratory reported that 
if an LTR sample was being used for bridging long-term 
studies, it was incorporated approximately every ten sam-
ples. Reasons for incorporating LTR samples were to: (1) 
assess the stability of laboratory processes over time and/or 
(2) bridge/normalize batch-to-batch data over time (Zelena 
et al. 2009; Dunn et al. 2011).

3.2.2.4 Standard reference material (SRM)/inter‑laboratory 
QC samples A standard reference material (SRM)/inter-
laboratory QC sample is an externally tested, validated 
and maintained sample that is available for purchase by the 
metabolomics community (Broadhurst et  al. 2018; Viant 
et al. 2019). SRMs can range in compound complexity but 
within the context of untargeted metabolomics, it is gen-
erally a biological sample of appropriate biological origin 
(human, plant, fish, etc.) and matrix (plasma, urine, etc.). 
A third (33%: 7/21) of responding laboratories reported the 
use of an SRM, specifically commercially available SRM 
1950 (NIST Metabolites in Frozen Human Plasma (Simon-
Manso et al. 2013)), and two laboratories also used several 
different SRMs (all NIST standards). Two laboratories 
noted that SRM samples were used as their LTR QC sam-
ples while the other laboratories reported the use of an SRM 
only in the context of cross-platform or site performance 
comparisons.

Fig. 3  Pooled QC/intra-study QC metrics. a Pooled/intra-study QC data uses. b RSD criteria of technical replicate peaks when removing peaks 
from experimental samples



 A. M. Evans et al.

1 3

113 Page 8 of 16

3.3  General practices

3.3.1  Use of internal standards

Internal standards are defined here as isotopically labelled 
or otherwise not endogenously present chemicals which are 
intentionally spiked into some or all samples in a process 
and are used to help assess data quality. Most (91%: 21/23) 
laboratories reported using internal standards in their labo-
ratories. Two laboratories used them in some but not all 
of their methods. Of the laboratories/methods that used 
them, internal standards were consistently spiked into all 
samples. Eight of the laboratories spiked different stand-
ards at two different points in the process (pre-extraction 
and post-extraction); seven laboratories spiked all standards 
pre-extraction; four laboratories spiked all standards post-
extraction; and two laboratories did not respond to their 
spiking procedures (Fig. 4b). Among laboratories spiking 
standards at multiple times in the extraction process, the 
rationale was to separately assess quality throughout the 
entire process, including sample extraction and the quality 
of the instrumental analysis and ionization matrix effects. 
The number of standards utilized per method varied greatly 
across the laboratories from one to 800 standards, with one 
to fifteen standards being the most common. Internal stand-
ards were specified to be chosen to cover both the analytical 
method mass range and chromatographic time, in addition to 
not interfering with other compounds present in the sample. 
A list of specific standards used by each laboratory was not 
requested, therefore, information on their origin and/or if 
these standards were isotopically labelled were not available.

More than 80% of responding laboratories used the spiked 
internal standards to assess the chromatographic perfor-
mance (19/21) and mass accuracy (17/21) of the data. Over 
70% of responding laboratories reported using the standards 
to assess RSDs (15/21), to monitor for instrument sensitivity 
drift (16/21) and mass stability (16/21) across the data. Just 

under half (45%: 9/20) used their standards for peak reten-
tion time alignment post-acquisition (Fig. 4a).

3.3.2  Use of technical replicates of experimental samples

Technical replicates are repeat analyses of the same bio-
logical sample and should not be confused with biological 
replicates which are repeat biological samples of a specific 
study design, i.e. six mice in a control group are considered 
biological replicates. Technical replicates can be applied in 
two primary ways. One is to perform two or more injections 
from the same post-extraction sample tube (“injection rep-
licates”) and another is by re-extracting the same source of 
biological sample multiple times and analyzing each sam-
ple once and independently (“extraction replicates”). Over 
a third (36%: 8/22) of responding laboratories reported the 
use of technical replicates on at least a subset of experi-
mental samples in addition to QC samples. An additional 
six laboratories used technical replicates on experimental 
samples “sometimes” or in relation to specific methods or 
when the number of biological replicates was low. Five labo-
ratories reported that their experimental technical replicates 
were injection replicates (i.e. injections from the same post-
extraction tube), three laboratories used extraction replicates 
(i.e. analysis of the same source sample extracted multiple 
times) and other laboratories used a combination of both 
replicate types depending on the method or study. The inves-
tigators reported using the technical replicate data to moni-
tor reproducibility while other investigators used them for 
batch normalization to correct for instrument drift within a 
batch or to merge/integrate data from different batches/stud-
ies analyzed at different times. When technical replicates of 
experimental samples were used, most investigators reported 
that data from the replicates were averaged.

Fig. 4  Internal standards user metrics. a Parameters assessed and data usage from internal chemical standards; b Percentage of different internal 
standard spiking procedures
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3.3.3  Run order randomization and balancing

Run (or analysis) order is defined as the order in which 
the experimental and QC samples are analyzed in a batch 
(Broadhurst et al. 2018). Run order randomization is the 
process by which experimental samples are randomly dis-
tributed within a batch to ensure that important metadata 
elements are not inadvertently accumulated during any 
phase of the batch, such as running more control samples at 
the beginning of the batch than at the end. Balancing is the 
process by which the experimental samples are intention-
ally distributed based on metadata to ensure that important 
metadata elements are not inadvertently accumulated across 
multiple batches, such as running significantly more females 
or control samples in one batch compared to other batches. 
Balancing is more critical for multiday analyses than for sin-
gle day analyses if the run order is randomized. Paired case/
control sets can be randomized across batches to address this 
issue. Most (91%: 20/22) responding laboratories reported 
randomizing experimental samples within a defined template 
of QC samples and one additional laboratory randomizing 
all samples (experimental and QC). Eighty-one percent 
(17/21) of responding laboratories reported balancing their 
study samples. Laboratories that did not balance their study 
samples did not provide a specific reason, however, they all 
reported randomization of experimental samples.

3.4  Post analysis quality management

3.4.1  Quality of compound identification

Compound identification is the process by which an LC–MS 
peak is assigned a chemical identity. The act of compound 
identification is not a QC practice, however, the verification 
of the correctness of the identification is considered to be 
a QC practice. The rigor with which a compound is identi-
fied has been classified into distinct levels by the Metabo-
lomics Society in order to promote a clear understanding of 
the confidence of the reported identification (Sumner et al. 
2007). MSI level 1 is the highest confidence and most rigor-
ous identification and is defined as “a minimum of two inde-
pendent and orthogonal data relative to an authentic com-
pound analyzed under identical experimental conditions”. 
For LC–MS applications, retention time and MS/MS data 
are utilized for identification. Analysis of authentic chemical 
standards in the research laboratory is essential for the reten-
tion time data because different laboratories utilize different 
LC assays (column type, solvents, gradient elution, tempera-
ture, stationary phase), thus retention time data collected in 
one laboratory may not be transferable to another labora-
tory. MS/MS data can be collected in different laboratories 
using the same analytical conditions and so data collected 
in one laboratory are transferable to other laboratories. 

All laboratories (22/22) reported establishing MSI level 1 
(Sumner et al. 2007) confidence identifications on at least 
some of the detected compounds (Supplementary Material 
4). Thirteen respondents stated that they reported the MSI 
confidence levels for all reported/published compounds, 
and three additional laboratories were in the development 
process. Eighty percent (16/20) of responding laboratories 
established their own in-house library in order to have MSI 
level 1 confidence identifications. In all cases, the compound 
retention time and mass were stored and in all except one 
laboratory, the fragmentation spectra were also stored within 
the compound libraries. These libraries ranged in size from 
40 to 4,800 compounds (median = 600; mean = 884). The 
majority (91%: 20/22) of responding laboratories also used 
a public database in their compound identification process. 
Close to two thirds (65%: 11/17) of responding laborato-
ries reported using workflows that identified statistically 
significant compounds only. It should be noted that there 
are four MSI levels for reporting metabolite identifications 
and that these levels are currently being reviewed by the 
metabolomics community (personal communication, War-
wick Dunn, April 2020).

3.4.2  Data quality review

Many (86%: 19/22) laboratories reported the manual review 
of peak integrations. Four laboratories reviewed only a sub-
set of peak integrations which includes: named compounds 
only, compounds with poor integration track records or those 
compounds highlighted by an automated software system 
that flagged peaks of concern. Greater than 75% of respond-
ing laboratories assessed resolution of chromatographic 
peaks (16/18), consistency of integration throughout a study 
(14/18) and signal-to-noise ratio (19/19) (Supplementary 
Material 5). Two laboratories also used positive correlation 
analysis either across methods or across metabolite groups 
to assess quality of peak integration.

Approximately half (11/21) of the responding laborato-
ries manually reviewed of peak alignment across samples 
in a study. Two additional laboratories used an automated 
process to check alignment quality. Several laboratories used 
retention time window criteria to assess and monitor align-
ment quality; for example, no greater than 25% of peaks 
must be outside a 0.1 min window, or all aligned peaks must 
be within 0.2 min. Several laboratories also used retention 
time deviation plots to help identify problem alignments. 
Most (85%: 17/20) laboratories used principal component 
analysis (PCA) score plots to look for clustering of replicate 
samples and to identify potential QC and/or biological outli-
ers during the quality review process. Several groups also 
used additional minimum required detection rates within the 
experimental samples based on group/meta-data criteria; for 
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example, for a peak to be included in a study, it must be 
found in at least 80% of the treatment samples.

4  Discussion

We designed and administered a questionnaire to assess qual-
ity assurance (QA) and quality control (QC) management 
practices of a cross section of international LC–MS untar-
geted metabolomics research groups (including members 
of the Metabolomics QA and QC Consortium (mQACC)) 
drawing from academic, industry and government facilities 
(Fig. 5). The over-arching aim of the project was to estab-
lish a consensus of QA/QC best practice within this specific 
group of experts such that it could be formally documented 
and disseminated to the broader metabolomics community. 
We also sought to identify differences in QA/QC practices 
across laboratories to prompt discussion within the metabo-
lomics community on areas requiring development, pro-
motion or training. These data are intended to inform best 
practices and reporting standards within the consortium and 
serve as a basis for the expansion of content through further 
community engagement efforts. Future planned activities 
include conducting similar studies to gather information on 
QA/QC practices for nuclear magnetic resonance (NMR) 
spectroscopy and gas chromatography-mass spectrometry 
(GC–MS) based metabolomics methods, lipidomics methods 

and to determine specific pass/fail metrics and criteria used 
in quality processes. It is important to note that the goal here 
was not to define which criteria should or should not be used 
by the community but rather to define acceptable practices 
to use and report such data and processes.

This initiative builds upon the continued efforts of the 
Metabolomics Society (Sumner et al. 2007; Dunn et al. 
2017; Kirwan et al. 2018), MERIT (Viant et al. 2019), the 
Johns Hopkins Center for Alternatives to Animal Testing 
(CAAT) (Bouhifd et al. 2015) and independent researchers 
(Broadhurst et al. 2018) to encourage the acceptance and 
use of quality management practices. As such, this publica-
tion bridges the various differences in terminology among 
the current publications when referring to the same quality 
practices.

We found that some practices were commonly adopted 
among laboratories (> 80% usage rate) (Fig. 6). These 
included system suitability assessments, sample run-
order randomization and balancing, the use of authentic 
chemical standards, and the use of various quality control 
samples such as pooled-QC/intra-study QC samples and 
blanks. In addition, a high degree of concordance occurred 
among post-analytical quality control practices, such as 
compound identification practices, assessment of integra-
tion accuracy and the use of PCA for quality assessments 
of sample clustering. This speaks to the success of the 
previous efforts to bring awareness of these practices to 

Fig. 5  Summary of example QMS practices. Note that the practices highlighted in this figure as QA or QC will likely change as the community 
continues to discuss these topics and reach a consensus



Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices…

1 3

Page 11 of 16 113

the community, and also to the value of the practices to the 
users (and the metabolomics field) to monitor and assess 
quality.

For laboratories adopting a specific QC practice, the 
use of practice-specific procedures was comprehensive 
(Figs. 1–4, and Supplementary Material 4 and 5). For exam-
ple, over 70% of respondents assessed the same factors in 
system suitability practices, namely: sensitivity, mass accu-
racy, retention time, blank levels and instrument stability 
(Fig. 1). Likewise, greater than 70% of laboratories used 
internal standards to assess chromatographic performance, 
mass stability, mass accuracy, sensitivity/response stabil-
ity and sample-to-sample reproducibility (Fig. 4); and used 
pooled-QC/intra-study QC samples to assess process repro-
ducibility, peak quality and to condition columns.

We evaluated post-analysis quality practices such as 
establishing MSI level 1 identifications (Sumner et al. 2007) 
to ensure high confidence compound identification, manual 

review and confirmation of peak integrations and alignment, 
and the use of PCA as a quality assessment tool. Accurate 
compound identification is fundamental to the process of 
deriving correct biological insight. The rigor with which 
a compound is identified has been classified into distinct 
levels by the Metabolomics Society in order to promote a 
clear understanding of the confidence of the reported iden-
tification (Sumner et al. 2007). MSI level 1 is the highest 
confidence and most rigorous identification and is defined 
as “a minimum of two independent and orthogonal data 
relative to an authentic compound analyzed under identical 
experimental conditions”. Lower confidence identifications 
rely on matching experimental data to public or commer-
cial spectral libraries that were not collected under iden-
tical experimental conditions. These data showed that the 
metabolomics field relies upon public and/or commercially 
available databases for tentative annotations, with over 90% 
of practitioners utilizing them. However, all laboratories also 

Fig. 6  Common (> 80% usage rate) QA and QC practices



 A. M. Evans et al.

1 3

113 Page 12 of 16

reported establishing MSI level 1 confidence identifications 
on at least a subset of metabolites (Supplementary Material 
4). This was predominantly done by establishing in-house 
authentic standard libraries which ranged in size from 40 
compounds to over 4,800, with a median of 600 compounds 
and a mean of 884 compounds. Establishing comprehensive 
in-house authentic standard libraries to support MSI level 
1 confidence identification requires a large investment in 
resources. Therefore, some laboratories reported only doing 
so for a subset of reported molecules, presumably focus-
ing on the statistically relevant compounds in their study. 
An additional community effort is underway through the 
Metabolomics Society’s Metabolite Identification Task 
Group to further “build consensus on metabolite identifica-
tion reporting standards” and “educate the community on 
best practices” (www.metab olomi cssoc iety.org/board /scien 
tific -task-group s/metab olite -ident ifica tion-task-group ).

Other post-analysis quality practices were well conserved 
with over 80% of practitioners reviewing peak integrations 
(Supplementary Material 5). and using PCA to assess clus-
tering of replicate injections and identification of outliers. 
Half of the laboratories also reported a manual review of 
data alignment using various metrics. As many of the pro-
cesses involved in untargeted metabolomics rely on auto-
mated processes such as peak integration, alignment and 
compound identification; data quality is directly impacted 
by the algorithms at the core of the processes, which do not 
always perform as desired.

Many of the differences in quality control practices were 
notably related to practices that were either inappropriate 
or unnecessary for some workflows. For example, laborato-
ries that rarely analyzed data over long periods of time had 
no need for a long-term reference standard/intra-laboratory 
QC sample. SRMs/inter-laboratory QC samples were only 
utilized when a comparison of performances across sites 
or laboratories was required, further emphasizing the need 
for future best practice guidelines to consider the context of 
their use and analysis of the data.

Other differences were relatively minor such as whether 
blanks included internal standards or were solvent blanks 
with no spiked standards or were differences related to the 
point at which the internal standards were added in the 
sample preparation process (Fig. 4b). Ultimately, these dif-
ferences may or may not need to be defined in best prac-
tices. Rather, it is more useful to recommend the inclusion 
of blanks and internal standards with explanations for their 
use, but leave these finer details to the discretion of labora-
tory practitioners to decide what is most appropriate for their 
laboratory and/or a given study.

Differences were seen in the frequency of injections uti-
lized by practitioners and the specific acceptance criteria. 
For example, for respondents using a ratio of peak levels 
detected in an experimental sample to peak levels detected 

in a process blank to remove or filter low quality peaks, 
the specific acceptance criteria ranged from a greater than 
3-to-1 ratio to a greater than 20-to-1 ratio for acceptance 
(Fig. 2b). A similar diversity of acceptance criteria was 
apparent for the process of filtering/removing peaks based 
on the reproducibility of aligned peaks in the technical rep-
licates of a pooled QC/intra-study QC sample; acceptance 
criteria ranged from filtering the data based on an RSD of 
technical replicates (with cut-off values ranging from 15 to 
30%) to no filtering criteria based on RSDs at all (Fig. 3b). 
These differences in acceptance criteria could contribute to 
inter-laboratory differences, where some labs could remove/
disqualify certain compounds as a result of more strict 
acceptance criteria. Laboratories using more strict criteria 
usually did so for specific methods or studies only. Reasons 
for choosing the method or study-specific criteria were not 
probed, but a better understanding of what drives the choice 
for stricter quality criteria is warranted.

There appeared to be limited consensus on most quality 
assurance practices among the responders. Few laboratories 
incorporated various QA practices into their workflow out-
side of instrument care, maintenance and sample cold stor-
age. The definition of QA was another area of debate among 
authors and the wider mQACC community. The definition 
as settled upon after debate was that QA practices provide 
confidence that quality requirements will be fulfilled con-
sistently over time and that these practices are performed 
independent of data acquisition processes. Many QA pro-
cesses are focused on traceability, establishing defined 
processes with documentation, and optimizing workflows 
through reviews/audits. Informally, part of quality assur-
ance is analogous to having a “second pair of eyes” which 
critically reviewing the entire process to identify areas in 
need of improvement and to ensure traceability. Examples 
of quality assurance practices include requiring: secondary 
signatures in laboratory notebooks, peer-review of scientific 
manuscripts, secondary review of data, establishing systems 
for sample and data tracking, regular auditing of all pro-
cesses, and establishing processes and documentation that 
show alternations to or deviations from SOPs. Untargeted 
metabolomics laboratory practitioners may not be exposed 
to quality assurance processes since these are typically only 
required in regulated environments. However, their added 
value is important and is mandated if the data generated 
is destined for regulatory agencies or involves the study of 
humans. The area of QA within the untargeted metabolomics 
community is certainly wide open for discussion regard-
ing which of the QA activities are of high enough value 
for potential incorporation into practice recommendations 
(Manghani 2011; Dudzik et al. 2018).

http://www.metabolomicssociety.org/board/scientific-task-groups/metabolite-identification-task-group
http://www.metabolomicssociety.org/board/scientific-task-groups/metabolite-identification-task-group
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4.1  Strengths and limitations of the study

Strengths of this study include participation from over 20 
laboratories from across the globe with inclusion of aca-
demic, industry and government laboratories. Also, the suc-
cess of the last two mQACC workshops at the annual Metab-
olomics Society meeting indicate there is a strong demand 
for a forum to discuss these topics, which the current analy-
sis aimed to facilitate. Paradoxically, this strength is also a 
weakness, as the results presented are likely biased toward 
greater incorporation of quality assurance and quality con-
trol practices than actually occurs in the wider metabolomics 
community; participants willing to fill out a questionnaire 
on QA/QC are more likely to be concerned with QA/QC 
practices. The data presented here reflects the overall experi-
ence and commitment to QA and QC by the questionnaire 
participants. We also acknowledge that many metabolomics 
practitioners fit their QA/QC practices to a specific purpose. 
For example, some laboratories did not use specific quality 
control practices because the practices were, justifiably, not 
relevant to their workflow. Consequently, any “good prac-
tices” recommendations and defined reporting standards 
must be flexible enough to permit these natural and expected 
differences among users with appropriate knowledge trans-
fer. It will be important to expand our questionnaire beyond 
mQACC to gain a more representative snapshot of current 
practices in the field. In summary, there was a high level of 
consensus among untargeted metabolomics users regarding 
QA and QC practices, however, there were also differences, 
which warrants open discussion and establishment of best 
minimal practices by the community.

5  Conclusion

There was a surprisingly high level of consensus regarding 
best practices across the international laboratories sampled 
for this study. These results provide a useful blueprint for 
QA and QC assessment when developing new assays within 
a laboratory as well as a teaching resource for analytical 
chemistry/biochemistry. We are optimistic that through 
mQACC the metabolomics community at large will be able 
to develop a common set of best minimum practices and 
reporting standards to ensure that metabolomics research is 
robust and repeatable.
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