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Abstract
Introduction Oral cancer is a sixth commonly occurring cancer globally. The use of tobacco and alcohol consumption are 
being considered as the major risk factors for oral cancer. The metabolic profiling of tissue specimens for developing carci-
nogenic perturbations will allow better prognosis.
Objectives To profile and generate precise 1H HRMAS NMR spectral and quantitative statistical models of oral squamous 
cell carcinoma (OSCC) in tissue specimens including tumor, bed, margin and facial muscles. To apply the model in blinded 
prediction of malignancy among oral and neck tissues in an unknown set of patients suffering from OSCC along with neck 
invasion.
Methods Statistical models of 1H HRMAS NMR spectral data on 180 tissues comprising tumor, margin and bed from 43 
OSCC patients were performed. The combined metabolites, lipids spectral intensity and concentration-based malignancy 
prediction models were proposed. Further, 64 tissue specimens from twelve patients, including neck invasions, were tested 
for malignancy in a blinded manner.
Results Forty-eight metabolites including lipids have been quantified in tumor and adjacent tissues. All metabolites other 
than lipids were found to be upregulated in malignant tissues except for ambiguous glucose. All of three prediction models 
have successfully identified malignancy status among blinded set of 64 tissues from 12 OSCC patients with an accuracy of 
above 90%.
Conclusion The efficiency of the models in malignancy prediction based on tumor induced metabolic perturbations supported 
by histopathological validation may revolutionize the OSCC assessment. Further, the results may enable machine learning 
to trace tumor induced altered metabolic pathways for better pattern recognition. Thus, it complements the newly developed 
REIMS-MS iKnife real time precession during surgery.

Keywords Oral squamous cell carcinoma · Malignant tumor tissue · 1H HRMAS NMR spectroscopy · Lipid and metabolite 
quantitation · Blinded set of tissues · Predictive modelling · Glucose
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CPMG Spectra  CPMG 1H HRMAS NMR Spectra
NOESY Spectra  NOESY 1H HRMAS NMR Spectra
OPLS-DA  Orthogonal Partial Least Square Discri-

minant Analysis
PLS-DA  Partial Least Square Discriminant 

Analysis
QUANTAS  QUANTification by Artificial Signal
CustomCSI  Custom Chemical Shift Index
SHi-PUFA  Sum of Higher Polyunsaturated Fatty 

Acids
MUFA  Monounsaturated Fatty Acid
SFA  Saturated Fatty Acids
TG  Triglycerides
FFA  Free Fatty Acids

1 Introduction

Oral cancer ranks sixth among all cancer in the world 
(Fernández et al. 2015). It accounts 3.8% of all cancer cases 
and 3.6% of cancer deaths (Shield et al. 2017). The Oral 
Squamous Cell Carcinoma (OSCC) is defined as a malignant 
neoplasm originating in the stratified epithelium of the oral 
tissues. The use of tobacco and alcohol is being considered 
as one of the major risk factors for oral cancer (Jané-Salas 
et al. 2012). The morbidity and mortality associated with 
oral cancer can be prevented to a greater extent by early 
detection (Jafari et al. 2013). However, early lesions are dif-
ficult to diagnose because they are usually asymptomatic 
and clinically varying in appearance (Rajeev et al. 2015). 
Slaughter et al. first explained the multifocal growth of oral 
squamous carcinoma in 783 patients as “Field canceriza-
tion” (Slaughter et al. 1953). According to field canceri-
zation, microscopic patches of abnormal tissue surround-
ing the tumors gets proliferated due to preconditioning of 
epithelial area by carcinogenic agents (Curtius et al. 2018). 
Among all available cancer diagnostic techniques, biopsy 
and histopathological analysis are treated as gold standards 
(Seetharam and Ramachandran 1998; Rajeev et al. 2015). 
However, factors like inter-observer variability in grading, 
sample bias or patient’s cohort differences results in field 
cancerization without morphological changes and are being 
passed undetected (Curtius et al. 2018). Advanced molecu-
lar methods like polymerase chain reaction (PCR), fluores-
cent in situ hybridization (FISH) and flow cytometry have 
improved in understanding of pathogenesis, nature of lesion 
and prognosis. Further, optical spectroscopic techniques like 
fluorescence spectroscopy (FS), elastic scattering spectros-
copy (ESS) have detected critical substances correlated 
with the biochemical changes occurring in tissues. Fluoro-
phores mainly amino acids like tryptophan, tyrosine, struc-
tural proteins, co-enzymes, NADH, porphyrins etc. were 
exploited in tissues status profiling (Sreeshyla et al. 2014).

Two techniques, NMR spectroscopy and mass spectrom-
etry (MS) has been widely explored to identify metabolic 
changes occurred in malignant tissues (Chen and Yu 2019).

Both of the above techniques have long been employed in 
profiling the metabolic composition in available biofluids or 
tissues that were sampled from clinics (Jiménez and MacIn-
tyre 2017). The metabolic composition or phenotype of an 
individual indicates the underlying complex gene environ-
ment interactions. Although there exists physiological vari-
abilities among each tissues types, the snapshot of metabolic 
activity recorded on local phenotypes have a wide potential 
in evaluation of different stages of disease and other patho-
logical conditions. Further, the gap of isolated metabolic 
phenotypes were bridged using systematic statistical mod-
elling up to the system level (Nicholson et al. 2012). Clini-
cal metabolomics employ Chemometrics like multivariate 
statistics to reduce the complex spectroscopic data into a 
relatable biochemical patterns of disease and their interven-
tions. The metabolic similarities among each samples are 
mapped, and the correlating metabolites are extracted with 
linear projection methods like PCA and PLSDA. Further 
in validation, the multiparametric data with known histo-
pathological endpoints are used as a training set to generate 
predictive models capable of separating samples from dif-
ferent histopathological classes (Nicholson et al. 2012). A 
similar approach of predictive PLS based abnormal breast 
cancer cell detection were explored by Zhu et al. (2017). 
CAMO Unscrambler X software uses “Jack-knife” estima-
tion of parameter uncertainty to visualize the prediction 
results (Martens and Martens 2000).

During assessment of multivariate analysis on megavariate 
metabolomic data Rubingh et al. observed that latent variables 
(LV) and their selection plays critical role in performance of 
data analysis. They observed significant perturbation in results 
of cross validation, jack-knifing model parameter and permuta-
tion tests of predictive models (Rubingh et al. 2006). In NMR 
spectroscopy, latent variables represent spectral signals gener-
ated by underlying metabolite concentrations. Thus, effective 
predictive modelling depends on spectral binning as well as 
targeted metabolic profiling (Chang et al. 2007). In an earlier 
study, our group had effectively identified several metabolic 
perturbations of malignant tumor tissues form non-malignant 
bed and margins tissues specimens using HRMAS NMR 
spectroscopy. The predictive model generated on spectral 
region of 4.25–1.80 ppm which divided into 245 continuous 
bins of 0.01 ppm width. The OPLS-DA model had 97.4% of 
diagnostic accuracy, along with 100% sensitivity and 92.3% 
specificity. Confounder metabolites were identified as ace-
tate, glutamate, taurine, TCho and lactate (Srivastava et al. 
2011). Although OPLS-DA model did showed good separa-
tion between malignant and benign tissues, the result from 
spectral binning may have possibility of overfitting and thus 
deceptive (Chang et al. 2007). Due to possibility of metabolite 
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signal overlapping, alternative method of peak-picking PLS 
algorithm were proposed (Ammann et al. 2006).

As technologies for spectral processing updated, it allowed 
us to quantify the underlying metabolites signals. Bruker Amix 
software’s deconvolution allows to quantify the lipid signals, 
while Chenomx scan be used to identify each metabolites 
present in 1H NMR tissue spectra (Wishart 2008; Chenomx 
2015). Unfortunately the quantitation of lipids and metabolites 
were restricted due to non-uniformity of TSP signals generated 
from isotropic susceptibility difference between intracellular 
and supernatant water compartment and were depends on sam-
ple spin rate (Hong et al. 2009). The unreliability of TSP fur-
ther increased due to its tendency to interact with macromol-
ecules especially proteins (Van 2013). The limitation can be 
resolved by a software generated artificial signal QUANTAS 
with a constant scaling factor. The QUANTAS allows us to 
introduce a uniform reference signal to all samples depending 
upon their spectral parameter and can be quantified from the 
sample having most uniform TSP signal. An analogous signal 
customCSI were allowed to introduce by Chenomx software 
in order to quantify the metabolites (Vitols and Mercier 2006; 
Chenomx 2015). The applicability of the results of the present 
work is in identification of biomarkers that trace altered meta-
bolic pathways of OSCC along with its specificity in deter-
mination of clinical status. Thus, it provides support to less 
histopathologically specific in vivo chemical characterization 
of tissues by Rapid Evaporative Ionization Mass Spectrometry 
(REIMS) in real time (Nicholson et al. 2012).

This NMR based metabolomic study is an attempt to 
make a more robust and effective model which could blindly 
predict the malignancy in OSCC cases. Therefore, refined 
chemometric models were generated from metabolic profile 
which consists majority of the earlier recorded NMR spec-
tral data of 36 OSCC patients (159 tissue specimens) with 
additional combination of newly recorded data from 7 OSCC 
patients (21tissue specimens). These models were tested to 
predict malignancy among a set of 64 blinded tissues (42 
tumor and adjacent oral tissues; 22 neck tissues including 
arteries, veins, nerves and lymph nodes) obtained from 
twelve patients undergoing surgery having OSCC along with 
neck invasions. The validation of the results were further 
reinstated by histopathological analysis of the same tissues 
specimens. This study may contribute in establishing the 
correlation of metabolite composition to clinical status of 
various tissues under the influence of OSCC.

2  Materials and methods

2.1  Subjects and study protocol

Nineteen OSCC patients, including 12 patients having neck 
invasions, who were enrolled in this study had undergone 

surgical treatment at King George’s Medical University 
(KGMU), Lucknow. The mean age of patients who were 
suffering from oral cancer was 44 years. None of the patients 
were dehydrated and/or anemic (mean Hb 9.8 g/dl) at the 
time of surgery. Informed consent was obtained from all 
the patients and protocol was approved by KGMU Ethical 
Committee.

Tissue samples comprising of tumor and adjacent benign 
oral mucosa along with tissues from neck region which 
includes nerve, vein, artery and lymph nodes excised dur-
ing surgical resection were obtained from each patient. Sam-
pling was purely based on visual screening by the surgeon. 
All tissue specimens were stored in high quality plastic vials 
and snap-frozen in liquid Nitrogen at the time of surgery and 
further stored at − 80 °C till proton HRMAS NMR spectra 
recorded.

2.2  Chemicals

All the chemicals including  D2O (with 99.96% deuterium-
enriched and 0.03% sodium-3-(trimethylsilyl)-2,2,3,3-
d4-propionate—TSP) was purchased from Sigma–Aldrich 
Inc. (St. Louis, MO, USA). All other chemicals used were 
of reagent grade with the highest purity commercially 
available, unless otherwise mentioned. The retailer, chemi-
cal purity and batch were assured to be matched with the 
chemicals used in earlier work of Srivastava et al. (2011).

2.3  1H HRMAS NMR spectroscopy

All tissue specimens were thawed and washed with  D2O and 
the dissected inner core were packed in 4 mm  ZrO2 rotor 
of 50 µl capacity, to this, 20 µl of  D2O having 0.03% TSP 
was added as Chemical Shift Index (CSI). The 1H HRMAS 
NMR spectra recorded with Bruker Avance 400 MHz spec-
tra having 4 mm HRMAS 1H-13C dual probehead operat-
ing on 400.13 MHz. Rotational sidebands eliminated with 
sample spin of 4.0 kHz. With reference to earlier work per-
formed by Srivastava et al. (2011), Proton NMR spectra of 
all tissue specimens were recorded with 1D NOESY pulse 
sequence, keeping mixing time τm: 100 ms, total relaxation 
time: 3.99 s and 8250.8 Hz of spectral width. Each spectra 
recorded with 128 transients plus 2 dummy scans that took 
a total recording time of 9 min. Similarly, 1D CPMG pulse 
sequence with water suppression comprising an echo time of 
0.1 ms each (0.2 ms) flanked between 180° pulses with 800 
cycles of repetitions having a total echo time of 160 ms were 
recorded for each tissue samples. The relaxation time of 
3.99 s includes 2 s of delays and 1.99 s of acquisition time. 
Both NOESY and CPMG experiments accompanied with 
water presaturation of 2 s using weak transmitter pulse at 
the transmitter frequency of 400.1318806 MHz prior to the 
execution of hard pulses for recording of the NMR spectral 
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data. Further, sample temperature maintained at 283 K dur-
ing spectral acquisition using nitrogen gas cooling system 
(Srivastava et al. 2011).

2.4  Histopathology

After HRMAS NMR spectral recording, both 21 oral tissues 
from 7 new OSCC patients and 64 blinded tissues specimens 
from 12 patients have OSCC with neck invasion were sub-
jected to histopathological analysis. To do so, each tissue 
samples fixed in 10% formalin, then embedded into paraffin. 
After that all samples sent to histopathological analysis at 
KGMU, Lucknow (Srivastava et al. 2011). Result of histo-
pathological studies show, among 64 blinded tissues from 
12 patient having OSCC with neck invasion, 22 out of 42 
tumor and adjacent oral tissues have confirmed well differ-
entiated SCC. Further, four secondary lymph nodes and a 
carotid sheath identified with OSCC invasion among 22 neck 
tissues. (Overall details of tissues used in present study are 
provided in the Supplementary Table ST1.)

2.5  NMR spectra, processing and assignments

The 1H HRMAS NMR spectra of all tissues from both 
NOESY and  T2 filtered CPMG experiments were processed 
with Bruker Topspin 3.5 spl6 software. Each of these spec-
tra were then divided into 1501 repetitive continuous bins 
of 0.005 ppm size corresponding region of 0.5 to 8.4 ppm 
(using Amix, version 4.4.1, Bruker BioSpin, Switzerland) 
and water region (4.70–5.10 ppm) removed in order to per-
form metabolites signal intensity based predictive analysis 
(Paul et al. 2018).

Lipid signals assigned and quantified in NOESY 1H 
HRMAS NMR spectra (or NOESY Spectra) using software 
Amix deconvolution algorithm (Wishart 2008). In absence 
of uniform TSP signal, quantification of lipid signal per-
formed with respect to software generated artificial sig-
nal QUANTAS having constant scaling factor of 15e−04 
a.u. (Farrant et al. 2010; Bharti and Roy 2012). Concen-
tration assigned to the QUANTAS signal were calibrated 
with respect to TSP signal of known concentration among 
model tissue set. Assigned concentration of QUANTAS is 
0.8344 mM. Since NMR Spectroscopy only sensitive to 
mobile lipids (Rizwan and Glunde 2014), present work only 
measure quantities of these lipid species, which are (1) lin-
oleic acid, (2) Sum of Higher Polyunsaturated Fatty Acids 
(SHi-PUFA) (Alexandri et al. 2017), (3) Mono Unsaturated 
fatty Acids (MUFA), (4) Saturated Fatty Acids (SFA), (5) 
Triglyceride (TG), (6) Total Fatty Acids (TFA) and (7) Free 
Fatty Acids (FFA) from signals of NOESY spectra recorded 
on tissues specimens. The mathematical expression for 
quantitation of lipid species is documented in Supplemen-
tary Table ST2.

Similarly, metabolite signals were identified and quanti-
fied in CPMG 1H HRMAS NMR spectra (or CPMG spec-
tra) using Chenomx (version 8.1) (Chenomx 2015). For 
unambiguous characterization of various metabolites hav-
ing overlapping signal viz. guanidoacetate, 2-oxoglutarate, 
Asn, 4-aminobutyrate, choline, MeOH, Ser etc., earlier 
recorded two-dimensional COSY and HSQC spectra (Sriv-
astava et al. 2011) were reanalyzed and assignment were 
further reinstated through matching results with BMRB and 
HMDB database. Quantification of metabolites performed 
with respect to Chenomx software introduced Custom CSI 
signal (Chenomx 2015) and calibrated with respect to TSP 
of known concentration. Assigned concentration of Custom 
CSI signal is 0.0644 mM. While quantification, all param-
eters of custom CSI signal were maintained unaltered.

All tissue spectra were analyzed for residual TSP sig-
nals, the signal intensity of TSP most commonly occurring 
among all tissue spectra was assigned as effective TSP sig-
nal. The quantitation of above all lipid and metabolites were 
performed with respect to the effective TSP signal. Further 
any deviation in quantitation by above analytical methods 
were measured as limit of quantitation (LOQ) and Limit of 
detection (LOD) (Mikkelsen and Cortón 2016) from sets of 
prepared samples with known concentration of metabolites 
and TSP (As mentioned in Supplementary Procedure SP1).

2.6  Predictive modelling and optimization

Processed spectral data from 1H HRMAS NMR spectros-
copy of malignant and benign tissues can be categorized as: 
NOESY spectra, CPMG spectra and Metabolite concentra-
tion including lipids. Each data categories were indepen-
dently explored in predictive modeling and tissue analysis. 
The metabolic separation between malignant and benign 
tissues of model set were mapped with score and loading 
plots of Principle Component Analysis (PCA) using ‘The 
Unscrambler X’ software package (version 10.4, Camo 
ASA, Norway) (Srivastava et al. 2011). Predictive models 
were generated with Partial Least square methods (PLS) 
on each data category. For spectral data categories, OSCC 
filtration were performed and therefore OPLS-DA models 
were developed to reduce data ambiguity due to any diurnal 
changes occupied among the tissues (Gavaghan et al. 2002). 
For metabolites concentration based modelling, both PLS-
DA and OPLS-DA models were compared for their efficacy 
in prediction of malignancy status among unknown 64 tis-
sues from blinded set of 12 patients suffering from OSCC 
along with neck invasion.

The blinded set of 64 tissues from 12 OSCC patient with 
neck invasion have diverse tissue type like nerve, artery, 
veins, lymph node as well as facial tissue, muscle and tongue 
cancer. These diversification among tissues may experience 
isolated and unique metabotype (Nicholson et al. 2012) that 
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may interfere with PLS-DA and OPLS-DA models based 
malignancy prediction. Therefore all prediction models were 
optimized by dividing the model set of 180 tissues (n = 108 
benign, n = 72 malignant) from 43 OSCC patients were 
divided into training set of 133 tissues of 35 patients and 
test set of 47 tissues from 8 patients (details provided in the 
Supplementary table ST 4). In order to maintain tissues vari-
ability similar to blinded set, all patients with muscle tissues 
were selected in test set. The trial prediction models was 
generated from the training set of 133 malignant and benign 
tissue which were tested form malignancy 47 tissues from 8 
patients in test set. From CPMG and NOESY spectral data, 
OPLS-DA model generated and tested in malignancy predic-
tion. Successively unsupervised PCA identified correspond-
ing confounder metabolite peaks with respect to malignant 
and benign tissues. Further performance of OPLS-DA 
model enhanced by selecting suitable latent variable (LV) 
(Szymańska et al. 2012) as mentioned in Supplementary 
Procedure SP2–3.

Similarly, the significance of OSC filtration in quanti-
tative metabolomics were validated from AUROC of each 
metabolite, performance parameter of OPLS-DA model 
and predictive accuracy of unknown tissues of test set (as 
mentioned in Supplementary Procedure SP4). Then PLS-
DA model also tested for efficacy of discreet metabolites 
excluding data of SHi-PUFA, FFA, TFA and TCho (in Sup-
plementary Procedure SP5). Finally three approaches, VIP 
(Variable Importance Projection) score, HCA (Hierarchical 
Cluster Analysis) dendrogram splitting height and prob-
abilities in NPP (Normal Probability Plot) used as criteria 
for metabolite selection in order to study LV based perfor-
mance enhancement of quantitative PLS-DA prediction 
model (as mentioned in Supplementary Procedure SP6). All 
modelling, prediction and validation were performed with 
Unscrambler X (version 10.4, CAMO), Simca-P (version 
14.1, MKS Umetrics) (Moazzami et al. 2015) and Metabo-
analyst (version 4.0) (Chong et al. 2018).

2.7  Tissue analysis and classification

Predictive (OPLS-DA) models were generated from CPMG 
spectral data on a set of 180 tissues (n = 108 benign, n = 72 
malignant) from 43 patients using results of above optimi-
zation. The generated models employed for malignancy 
analysis on corresponding CPMG spectral data recorded on 
unknown set of 42 tissues from 12 OSCC patients. Compar-
ing the histopathological status of OSCC tissues, effective 
cut-off value separating malignant and benign tissue regions 
were identified. Positive and negative likelihood for each tis-
sue determined on the basis predicted with deviation scores 
(Kinross 2019). Any tissues have higher prediction score 
were assigned malignant, the accuracy prediction measured 
from number of true positive and true negative tissues case 

in respect to their histopathological status were validated. 
Similarly, NOESY spectral data were harnessed in deter-
mining the pathological status of 42 blinded tissues from 12 
patients using prediction model generated from model set of 
tissues. Each of above model were also tested on set of neck 
tissue in order to determine OSCC invasion.

Each of 42 tumor and adjacent tissues as well as 22 neck 
tissues from 12 patients in blinded set was profiled for the 
metabolite and lipid species concentration. The profiled 
lipids and metabolites concentration data of each tissue were 
then subjected to pathological prediction with the predic-
tive model generated from corresponding concentration data 
of model set tissues as mention above. Further, the above 
model was tested to determine the OSCC in neck tissues 
which includes secondary lymph nodes. The metabolic 
profile of OSCC invasion free neck tissues mainly arteries, 
veins, nerves and lymph nodes were also compared using 
unsupervised multivariate analysis and confounder metabo-
lites determined from variable importance projection (VIP) 
scores. Further the influence of OSCC invasion character-
ized by addition of secondary lymph nodes and carotid 
sheath in the VIP score of PLS-DA model on metabolite 
concentrations.

2.8  Analysis of lipid and metabolic perturbations 
and their pathways

2.8.1  Lipid and metabolite profiling

Significance of 48 metabolites including 7 lipid species in 
differentiating malignant tissue from benign tissues was 
tested with Student’s t test along with their box plot (using 
metaboanalyst, version 4.0, www.metab oanal yst.ca) (Chong 
et al. 2018). The variation in lipid profile from benign tissue 
to malignant tissue in model set were evaluated with univari-
ate Box–whisker plot (using Microsoft Office, version 2016, 
Microsoft Corporation USA) (Beskeen et al. 2016). Con-
tribution of each lipid species in overall lipid content were 
graphed with Pie-Doughnut chart (Microsoft office, version 
2016) for model set. Also the correlation between TFA and 
TG among benign tissues and malignant tissues in model set 
measured individually along with regression coefficient R2 
(Unscrambler X, version 10.4).

2.8.2  Pathway analysis

Using Metaboanalyst (version 4.0), a set 25 confounder 
metabolites were identified from PLS-DA VIP score of 
48 metabolites measured among 180 tissues of model set. 
Pathway and Enrichment analysis module of Metaboanalyst 
(version 4.0) (Chong et al. 2019) were then applied on con-
founder metabolite concentration data from the model set of 
180 tissues in order to highlight the dysregulated network 

http://www.metaboanalyst.ca
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of pathways (Chong et al. 2018). Finally tracking the identi-
fied pathways, a generalized network of pathways locating 
majority of metabolites were drawn using “An atlas of bio-
chemistry and molecular biology” as reference (Michal and 
Schomburg 2012).

3  Result

3.1  Oral SCC tissues spectra and profiling

Figure 1 represent a stack plot of CPMG spectra of OSCC 
and adjacent tissues from model set. From bottom to top 
spectra are from benign bed, benign margin, benign mus-
cle, other benign tissue, malignant bed, malignant margin, 
tumor tissue and other malignant tissue. CPMG spectra of all 
benign tissues were dominated by lipid signal. Only benign 
muscle tissues demonstrated signals from small molecular 
metabolites like Cr, Lac, Gln and Total Choline (TCho). The 
CPMG spectra of malignant tissues show strong cluster of 
metabolites signal. A similar pattern of lipids and metabo-
lites signals observed in NOESY spectra of all above tis-
sues (Supplementary Figure SF1). Additionally, signals of 
TG were observed in NOESY spectra. Overall 44 metabo-
lites including lipids were successfully quantified from the 
NOESY spectra (Supplementary Figure SF2) and CPMG 
spectra (Supplementary Figure SF3). Supplementary Table 
ST3 listed the identified metabolite with their HMDB ID. 
The table also included the Sum of Higher Polyunsaturated 
Fatty Acids (SHi-PUFA), Free Fatty Acids (FFA), Total 
Fatty Acids (TFA) and TCho in order to maintain metabolic 
significance as well as to imitate the signal overlap in NMR 
spectra by similar metabolites.

A similar stack plot of bar diagram for 48 metabolites 
concentration bars for above set of tissues are shown in 
Supplementary Figure SF4a. The full concentration bar 
diagram shows very tall bar of Lac concentration among all 
malignant tissues. Other metabolites basically amino acids 
like Glu, Gln, Ala, Lys and Tau were also have significant 
concentration among malignant tissues. While benign tissue 
show a complete metabolite scarcity. Only benign muscle 
tissues have significant concentration bars of Cr, Glc, Lac 
and Tau. Enlarging the bar diagram as in Supplementary 
Figure SF4b through reduction of concentration window 
range to 0.275 mM allow us to profile less concentrated 
metabolites. The concentration windows show accumula-
tion of large number of metabolites in malignant bed tissues. 

Although benign bed tissues too had a number of metabolite 
concentration bars, yet their concentrations were not com-
parable with malignant bed tissues. Benign margin have 
specific lipid composition pattern which consisting of large 
TFA bar, medium SFA, MUFA, TG and FFA bars, minute 
SHi-PUFA and linoleic acid bar for concentrations. Similar 
pattern, or benign pattern, of lipid composition bars were 
seen in all benign tissues except benign muscles. However 
among all malignant tissues, these lipid composition pattern 
were highly altered. All malignant tissues have negligible 
amount of TG, linoleic acid and SHi-PUFA. Estimated Limit 
of quantitation (LOQ), Limit of detection (LOD) (Long and 
Winefordner 1983) in observations of Supplementary Proce-
dure SP1 showed a insignificant deviations by both QUAN-
TAS based and CustomCSI based metabolite quantitation.

3.2  Observations from latent variable based 
predictive model optimization

Supplementary Figure SF5 and SF6 show the results of opti-
mization process applied to CPMG, NOESY spectral data. 
In CPMG spectra, confounder metabolite signals responsible 
for effective separation of malignant and benign tissues were 
found in the region of 1.42–4.22 ppm. These signals are 
generated by Lac, Ala, Glu, TCho, Tau, α-H amino acids 
and lipids. In NOESY spectra, major confounders are lipid 
signals which appeared between 1.41 and 4.69 ppm. The 
region also includes signal from TCho.

Supplementary Figure SF7–9 demonstrates the sig-
nificance of OSC filtration in fully quantitative analysis. 
Although there is an increase in sensitivity of Glc and lipids 
after OSC filteration, accuracy of malignancy prediction 
by metabolite concentrations based OPLS-DA model was 
found to be less than that PLS-DA model. In Supplemen-
tary Figure SF10, discreet metabolites excluding SHi-PUFA, 
FFA, TFA and TCho were further explored for malignancy 
prediction of test set of tissues. Lastly, results of latent vari-
able as metabolite selection given in Supplementary Figure 
SF11–16, Supplementary Table ST5–7 along with detailed 
observations. Among three approach of latent variable as 
metabolite selection, VIP score based metabolite selection 
was found to be most effective.

3.3  Observation from blinded set of tissues analysis

MRI of patient 1 from blinded set imaged an engrossing 
tumor grown in buccal cavity under the tongue (Supple-
mentary Figure SF17). Seven tissues received were his-
topathologically identified as artery, vein, facial, margin 
1, lymph node, nerve and tumor tissues. Following three 
blocks inscribed the results of spectroscopic analysis of 64 
OSCC tissues from 12 patients including above tissues from 
patient 1.

Fig. 1  Representative stack plots of HRMAS 1H CPMG NMR spec-
tra recorded on OSCC tissues specimens along with histopathologi-
cal status (bottom-to-top): a benign bed, b benign margin, c benign 
muscle, d other benign tissue, e malignant bed, f malignant margin, g 
tumor tissue and h other malignant tissues

◂
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3.3.1  Block 1: based on CPMG spectral analysis

Figure 2 represents a stack plot of CPMG spectra recorded 
on tumor and adjacent oral tissues (at the top half) and neck 
tissues including artery, vein, nerve and lymph node (at 
the bottom half). Clusters of metabolite signals visible in 
CPMG spectra of tumor periphery tissue while the CPMG 
spectra of adjacent tissues are dominated with lipid signals. 
CPMG spectra of all invasion free neck tissues from patient 
1, including artery, lymph node and nerve were dominated 
from lipid signals, except vein which has spectral profile 
similar to benign muscle tissues.

Supplementary Figure SF18 shows the malignancy pre-
diction among 42 tissues in blinded set from 12 patients 
using different CPMG spectra-based OPLS-DA prediction 
model. Each model is validated with AUROC, permutation 
test,  R2 and  Q2 values. The model with spectral width of 
1.42–4.67 ppm is most effective in segregation of blinded 
tissues into layers of benign tissues and malignant tissues 
which were further reinstated by histopathological analysis. 
Figure 3a, b represent corresponding 3D PCA, OPLS-DA 
score plot. Both 3D score plots showed clear separations 
between malignant and benign tissues. Further the 3D PCA 
score plot had a minor separation between benign muscle 
tissues and rest of the benign tissues. PCA loading plot in 
Fig. 3c show upregulation of Ala, Glu, Ac, Cr, TCho, Tau, 
Lac and Glc in malignant tissues, while all lipid species were 
downregulated. Figure 3d outlines the malignant and benign 
tissues from each of 12 patients. Validation parameters gives 
OPLS-DA model are 0.997 and 0.990 for sensitivity and 
specificity, 0.914 and 0.868 for  R2 and  Q2, observed statis-
tics were preserved for more than 45 permutation test (Sup-
plementary Figure SF18(2)). Further the prediction model 
successfully identified malignant carotid-sheath and all 4 
secondary lymph nodes from neck (Fig. 3e). However, two 
false positive cases of benign margins as well as false pre-
dictions of invasion free arteries, nerve among neck tissues 
were also observed. These tissue specimens had significant 
metabolite signals.

3.3.2  Block 2: based on NOESY spectral analysis

Similarly stack plot of NOESY spectra of tissues from 
patient 1 in Supplementary Figure SF19 showed dominance 
of lipid signals in artery, facial, margin 1, lymph node and 
nerve, while vein spectra show signals of Glu, TCho, Cr 
and Glu. In NOESY spectra of tumor periphery, lipid sig-
nals shrunk and large numbers of metabolites signals were 
observed.

Results of NOESY spectra-based predictive analysis on 
blinded tissues depicted in Supplementary Figure SF20. 
Predictive model generated from NOESY spectral data of 
width 1.42–4.69 ppm found most effective with three false 

positive. Figure 4a, b represent 3D PCA, OPLS-DA score 
plots respectively. Each of these plots show significant sepa-
ration of benign and malignant tissues. Corresponding load-
ing plot in Fig. 4c show correlation of lipids to benign tissue 
while TCho, Cr, Glu, Ala, Gly and Lac to malignant tissues. 
Figure 4d outlines the malignant and benign tissues from 
each of 12 patients. The  R2 and  Q2 for OPLS-DA model are 
0.831 and 0.806 respectively while sensitivity and specific-
ity are 0.996 and 0.991 respectively (Supplementary Figure 
SF20(2)). Large deviation in some tissue developed due to 
presence of spectral noise in their respective spectra. Fur-
ther the investigation of OSCC invasion among neck tissues 
successfully identifies malignant carotid sheath and all the 
four secondary lymph nodes (Fig. 4e). However, there are 
several false positive predictions including arteries, veins 
and nerves.

3.3.3  Block 3: full set metabolites concentration analysis:

3.3.3.1 Metabolic profile of tissues obtained from 12 OSCC 
patients 64 tissues received from 12 patients suffering 
from Oral SCC were profiled for metabolic and lipidomic 
composition as shown in Supplementary Figure SF21 
(patients 1–12). The benign pattern of lipid composition of 
Supplementary Figure SF4b were also observed in all the 
benign adjacent tissues from 12 patients. The histopatho-
logically malignant tissues of each of 12 patients show a 
similar deranged lipid composition pattern with relatively 
higher amount of FFA. Further all of these tissues showed 
very high Lac concentration bars as well as significant bars 
of Glu, Tau, Ala and TCho concentration. All invasion free 
neck tissues displayed a dominative but benign pattern 
of lipid composition. Upon concentration scale window 
enlargement, each tissues type of neck tissues displayed 
their unique metabolic signature. In arteries, visible num-
ber of metabolites bars were observed with higher Glc/Lac 
ratio. These bar heights were found to be reduced for veins 
along with low Glc/Lac ratio. In few cases, veins also had 
large metabolite bars especially for Cr, Glc and Lac. Nerves 
had equal amount of Glc and Lac and small amount Tau. 
Among all OSCC free neck tissues types, lymph nodes have 
higher intensity of lipid bars. However these lipid profiles 
were observed to have disproportionated in histopatho-
logically identified secondary lymph nodes. All secondary 
lymph node tissues had higher concentration of metabolites 
with highest Lac concentrations.

3.3.3.2 Tissue analysis using quantitative prediction 
model Both 3D PCA and 3D PLS-DA score plot in Fig. 5a, 
b show a visible separation between malignant and benign 
tissues. The distribution of malignant tissues and benign tis-
sues including benign muscle tissues in metabolite concen-
tration based 3D PCA score plot (Fig.  5a) were arranged 
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Fig. 2  Representative stack plots of HRMAS 1H CPMG NMR spec-
tra recorded on tissues specimens received from patient1 along with 
respective histopathological status. The CPMG spectra of tumor and 
adjacent oral tissues as (top): a tumor periphery (malignant), b lateral 

margin (benign), c facial tissues (benign). The CPMG spectra of neck 
tissues as (bottom): d nerve (no invasion), e lymph node (no inva-
sion), f vein (no invasion) and g artery (no invasion)
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similar to CPMG spectra-based 3D PCA score plot (Fig. 3a). 
Loading plot in Fig. 5c demonstrates upregulation of metab-
olites in malignant tissues and downregulation of lipid spe-
cies. Figure 5d represents malignancy prediction of 42 tissue 
specimens from blinded set of 12 patients using metabolite 
concentration-based PLS-DA model. The PLS-DA model 
with  R2 and  Q2 of 0.833 and 0.832, sensitivity and specific-
ity for AUROC are 0.996 and 0.991 [Supplementary Figure 
SF22(2)]. In accuracy, metabolite concentration-based PLS-
DA has zero false positive and one false negative prediction 
i.e. patient9 margin1. Among neck tissues, concentration-
based PLS-DA prediction model successfully distinguished 
secondary lymph nodes from rest of the tissues, however it 
could not able to predict OSCC invasion in carotid-sheath. 
While, the prediction via OPLS-DA model on metabolite 
concentrations of model set of 180 tissues form 43 OSCC 
patients generates two false positive and three false nega-
tive cases among 42 tissues of blinded set of 12 patients 
and one misclassification from neck tissues [Supplementary 
Figure SF22(1)]. The PLS-DA model generated from dis-
creet metabolites were also equally sensitive to malignant 
tissue as the model with addition of TCho, TFA, FFA and 
SHi-PUFA data (Supplementary Figure SF23).

3.4  Neck tissues metabolomics in patients suffering 
from OSCC

Multivariate analysis of invasion free neck tissues includ-
ing arteries, veins, nerves and lymph nodes were randomly 
distributed each 3D PCA score plots generated from CPMG, 
NOESY spectral data and metabolite concentration data 
(Supplementary Figure SF24a). With inclusion of second-
ary lymph nodes and carotid sheath, a separation appeared 
in 3D PCA score plots of all three data categories as shown 
in Supplementary Figure SF24b, between invasion free neck 
tissues cluster arteries, veins, nerves and lymph nodes and 
the OSCC invaded cluster of secondary lymph nodes and 
carotid sheath.

VIP score plot for invasion free neck tissues showed 
upregulation in most of amino acids in arteries, while Glc, 
Lac, Tau Gln, Cr and homocysteine (Hcys) in veins. The 
lymph node has upregulation of FFA and PCho. Nerves had 
moderate metabolite profile (Supplementary Figure SF23c). 
Upon addition of secondary lymph nodes in metabolite con-
centration data, VIP score list gets altered (Supplementary 
Figure SF23d). The VIP score depicted an upregulation of 
all metabolites in secondary lymph nodes while invasion free 
lymph nodes had higher amount of TFA. Since present study 
consisted of single carotid sheath, it couldn’t be included 
in VIP scores. The comparative stack plot of invasion free 
lymph node and secondary lymph node (having OSCC inva-
sion) based on CPMG and NOESY spectra (in Supplemen-
tary Figure SF25a,b) showed normal lymph nodes were 
dominated by lipid signals while secondary lymph node 
spectra were accompanied with large number of metabo-
lite signals. The stack plot of metabolite concentration bars 
in Supplementary Figure SF25c showed reduction of lipid 
species among secondary lymph nodes although the benign 
lipid pattern (as shown in Supplementary Figure SF4) were 
maintained. Secondary lymph nodes also had very high con-
centration of Lac, Tau and Glu.

The results for studies of metabolites selection in PLS-
DA model efficiency is given in Supplementary Figure 26 
(1–3). The effect of tissue homogeneity in model sets were 
visible in PLS-DA model efficiency. Accuracy of PLS-DA 
for VIP score based metabolite selection was found to be less 
than that of NPP score based metabolite selection.

3.5  Metabolic perturbations in malignant tissues 
and their pathway correlations

Figure 6a provides the results of Student’s t-test on 48 
metabolites including 7 lipid species quantified in model 
set. Corresponding box plots for each 48 metabolites are 
provided in Supplementary Figure SF27. Box plots of all 
metabolites shows high concentration of lipid species in 
benign tissues and high metabolites concentration among 
malignant tissues of model set. Overall 2D t-test divides the 
metabolites into three classes. Class 1 comprises the lipid 
species which are observed in excess in benign tissues and 
have positive t.stat values. Class 2 comprises the rest of the 
metabolites except carnitine (Car), Cr, ethanol (Et), Glu, ino-
sine (Ino), isopropanol (IsPrOH). Class 2 metabolites are in 
higher concentration in malignant tissues and have negative 
t.stat values. Both Class 1 and Class 2 metabolite and lipid 
species act as confounder for malignant and benign tissues 
separation and are represented by pink dot in t-test (Fig. 6a). 
Class 3 consists of non-influential or ambiguous metabolites 
mainly Car, Cr, Et, Glc, Ino and IsPrOH. These insignifi-
cant metabolites further classified into firstly, metabolically 
significant but equally abundant Glc and Car, secondly 

Fig. 3  a Unsupervised 3D PCA score plot on CPMG spectral data 
which display a separation in distribution of 72 malignant tissues 
(including bed, margin, tumor and other) and 108 benign tissues 
(including bed, margin, muscle and other), b 3D score plot of gen-
erated OPLS-DA model, c loading plot for contribution lipids and 
metabolites. d CPMG spectra-based malignancy prediction among 
tumor and adjacent oral tissues using above prediction model (Result 
obtained in form of red horizontal line of prediction score with box 
of positive and negative deviations to uncertainty.). e Application of 
CPMG spectra-based predictive analysis in determination of OSCC 
invasion among neck tissues in addition to secondary lymph node 
identification. Color coding as follows: for tumor and adjacent oral 
tissues: red: malignant histopathology; blue: benign histopathol-
ogy. For neck tissues: maroon: OSCC invasion histopathology; light 
green: no invasion histopathology

◂
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non-uniformly distributed Cr and finally trace metabolites 
like Et, Ino, IsoPrOH. Detailed values of Student’s t-test on 
48 metabolites including t-stats and probabilities provided 
in Supplementary Table ST8.

Box–Whisker plots in Supplementary Figure SF28 
shows overall reduction of lipid species in malignant tis-
sues of model set. Triglycerides and PUFA concentration 
were highly reduced in malignant tissues. Overall reduction 
in total fatty acid were also observed in malignant tissues. 
The mean, median, SD, box parameters are presented in 
Supplementary Table ST9. Pie-doughnut chart in Supple-
mentary Figure SF29a, b showed increase of FFA fraction 
from benign tissues (71%) to malignant tissues (92%). While 
TG-TFA correlation is very strong in benign tissues, it com-
pletely gets disappeared in malignant tissues of model set as 
shown in Supplementary Figure SF29c, d.

VIP score in Fig. 6b represents 15 major confounder 
metabolite in OSCC positive tissues among model set of 180 
tissues from 43 patients. Lac, Glu, Gly, Ala and TCho were 
highly upregulated and only TFA was observed downregu-
lated in malignant tissues. The pathway analysis predicted 
33 metabolic pathways as shown in Fig. 6c. The pathways 
of glutathione, Arg-Proline, Gln-Glu metabolism have very 
high probability of occurrence in malignant tissues. While 
pathway frequencies for PUFA metabolisms (include linoleic 
and linolenic acid), Gly-Ser-Thr, Tau-hypotaurine and Ala-
Asp-Glu metabolisms were severely altered in comparison 
to benign tissues. Noticeably pathways for glycolysis-gluco-
neogenesis and pyruvate metabolism were observed to have 
probabilities above 80 in −log(p) units. Further, Enrichment 
analysis demonstrates Warburg effect maximum probability 
(p value) as shown in Supplementary Figure SF30. The fatty 
acid metabolisms are least enriched. Supplementary Table 
ST10 represents identified metabolism of Fig. 6c. According 
to the atlas of biochemical pathways (Michal and Schomburg 
2012), 42 metabolites were found to be connected into a 
single network with glucose as a major source of substrate 
for metabolism Fig. 6d.

Finally, results of all the above predictions as tabulated 
along with comparisons to histopathological status and 
details of 12 patients are presented in Supplementary Table 
ST11.

4  Discussion

The human body has more than 500 histologically distinct 
cell types which perform specific functions. Each of these 
cell types has a unique pattern of gene expression, proteome, 
and metabolome (Nicholson et al. 2012). Thus, a diverse 
metabolic phenotype among different somatic tissues espe-
cially in benign bed, margin and muscle tissues appeared 
in present study. During metabolic investigation, appear-
ance of adipose nature among majority of benign margins 
(Paul et al. 2018), vascular nature of bed tissues (Marti 
2005), and high creatine content in muscle tissues (Chen 
et al. 2008) confirmed the above proposition. The interac-
tion of these metabolic phenotypes only occurred through 
the vascular and lymphatic system (Nicholson et al. 2012). 
In the absence of any external signal such as growth factor, 
normal cell does not proliferate autonomously. Thus, it able 
to conserve cellular resources to a larger extent (DeBerar-
dinis et al. 2008). Several derangements in metabolic pro-
file appeared in malignant tissues are likely associated with 
several cancer-related conditions. First of all, any altered 
metabolite concentration indicates an underlying mutation 
of metabolic enzyme thus affecting all the pathways relating 
to the metabolites. It decreases the flux of metabolites from 
major pathways which upregulates its compensating path-
ways in order to generate a support for anabolic metabolism. 
These change of flux through alternative pathways enhances 
macromolecular synthesis in proliferating tumor cell (Sul-
livan et al. 2016). Under inadequate vascularization, grow-
ing tumor accompanies the ischemic and hypoxic condition 
(Proskuryakov and Gabai 2010). This hypoxic environment 
associated with aggressive cancer causes necrotic cell death. 
Tata et al. detected the increased amount of oleic acid or 
MUFA and arachidonic acid in necrotic breast cancer tumor 
tissues using DESI-MS (Tata et al. 2016). Numerous studies 
reports association of tumors with networks of irregular and 
poorly functional capillaries generated from angiogenesis. 
These capillaries exhibit high permeability resulting in a 
flow pattern of fluid that results in concentration gradient 
at tumor microenvironment level (Shieh 2011). The visible 
changes in metabolic profile of malignant bed, margin, and 
muscle along with tumor tissues received from 53 OSCC 
patients in present study has been identified from spectral 
intensities of different metabolites and their concentrations 
measured from 1H HRMAS NMR spectra. The efficacy of 
identified biomarkers tested for predicting malignancy status 

Fig. 4  a Unsupervised 3D PCA score plot on NOESY spectral data 
which display a separation in distribution of 72 malignant tissues 
(including bed, margin, tumor and other) and 108 benign tissues 
(including bed, margin, muscle and other), b 3D score plot of gen-
erated OPLS-DA model, c loading plot for contribution lipids and 
metabolites. d NOESY spectra-based malignancy prediction among 
tumor and adjacent oral tissues using above prediction model. (Result 
obtained in from of Red horizontal line of Prediction score with box 
of positive and negative deviations to uncertainty). e Application of 
NOESY spectra-based predictive analysis in determination of OSCC 
invasion among neck tissues in addition to secondary lymph node 
identification. Color coding as follows: For Tumor and adjacent oral 
tissues: red: malignant histopathology; blue: benign histopathol-
ogy. For neck tissues: maroon: OSCC invasion histopathology; light 
green: no invasion histopathology
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of 64 blinded tissues obtained from 12 patients suffering 
from OSCC with neck invasion.

Out of 48 metabolites quantified in tumor and adjacent 
tissues of model set, Glc shows highest probability and have 
equal abundance in both malignant and benign tissues by 
box-whisker plot (De Winter 2013). Such behavior explained 
the ubiquitous nature of Glc that serve several metabolic 
requirements in human body as it acts as fuel in ATP genera-
tion. Under normal condition, it produces 36 ATP molecule 
via oxidative phosphorylation. Some tissues also utilizes 
excess of glucose in lipogenesis using acetyl-CoA from 
Krebs cycle (Zhang et al. 2019). Glycolysis also provides 
flux of glycerol necessary to support TG/FFA cycle (Reshef 
et al. 2003). Wigfield et al. reported a mechanisms of Lac 
upregulation under hypoxic conditions of HNSCC along 
with high rate of glycolysis (Wigfield et al. 2008). Falling 
of pyruvate flux would alters the formation of lipid deposits. 
These lipid deposits are further consumed by proliferating 
cells for synthesis of signaling lipid molecules and mem-
brane phospholipids (Park et al. 2018). The mobile lipids 
sensitive NOESY spectra (Delikatny et al. 2011; Khanna 
et al. 2018) based OPLS-DA model on OSCC tissues pre-
dicted malignancy among blinded set of tissues at an accu-
racy of 93.75%. Although lipid is the major confounder, its 
low abundance in oral tissue along with mild changes in 
malignant tissues causes relatively low accuracy.

PCA of CPMG spectra displayed an additional upregula-
tion of Lac, Cr, TCho, Glu, Gln, Gly and Ala in malignant 
tissue as in our previous study (Srivastava et al. 2011). Con-
structed OPLS-DA model has 91.19% predictive accuracy, 
which improved further to 93.75% accuracy and 100% of 
sensitivity upon addition of anomeric Glc and Ala spectral 
region. According to Felig, plasma amino acid maintained 
a well-defined concentrations in normal subject which have 
little intra- or inter-individual variation, except in muscle 
tissues which harbor 50% of total body pool of amino acids 
(Felig 1975). Present study showed maximum pooling of 

Cr in muscle tissues and thus appeared as an ambiguous 
metabolite in Student t-test. The ambiguous abundance of 
other metabolite, Glc, can be explained on the basis Warburg 
effect. The growing biosynthetic demands of proliferating 
cells are usually met by Warburg effect (Vander Heiden et al. 
2009). It describes the upregulation of glycolytic metabo-
lism over oxidative metabolism, on the basis of its capability 
to provide necessary equivalents of carbons and reducing 
cofactors required by proliferating cells (Folmes et al. 2011). 
For example, glycolysis plays a key role in regulation of 
choline metabolism (Valli et al. 2015). In addition to glyco-
lysis, glutaminolysis also provides biosynthetic intermedi-
ate and energy support to proliferating cells. Their growing 
demand as well as accumulating Lac in tumor tissue induces 
angiogenesis (Polet and Feron 2013). Similarly, non-toxic 
Ala that has significant catabolic role are circulated via 
glucose-alanine cycle (Felig 1975). Taurine, another con-
founder metabolite, upregulated in tumor tissues maintains 
osmotic balance in hypoxic environment (Srivastava et al. 
2010).

The quantification of tissue metabolites provides the 
opportunity to study the effect of malignancy upon them, 
and provide an independence from NMR parameters like 
number of protons, their splitting pattern, etc. The similar-
ity in result of concentration-based multivariate analysis to 
that of CPMG spectra, proved the conservation of the data 
integrity during transformation of metabolite and lipid NMR 
spectral signals to their respective concentrations. However, 
sensitivity enhancement of metabolites concentration by 
orthogonal signal correction (Gavaghan et al. 2002) results 
in overfitting in Glc, MUFA and SFA which reduces the 
concentration-based OPLS-DA model’s predictive accuracy 
(Beckwith-Hall et al. 2002). Further there is an achievement 
of similar accuracy in malignancy prediction of blinded set 
of 64 tissues even after narrowing list of metabolites as vari-
able selection especially with normal probability distribu-
tion has the highest accuracy in malignancy prediction of 
blinded 64 tissues. It proves a possibility of tuning the pre-
diction model through tracking of all malignancy effected 
metabolites.

Quantitative metabolic profiling also enhanced in emerg-
ing the distinctive metabolic signatures of neck tissues 
especially in VIP score. Arterial metabolic profile majorly 
showed extensive amount of small molecular metabolites or 
nutrients, which experienced extensive perturbations as in 
profile of veins (Ivanisevic et al. 2015). In addition to mas-
sive amount of Lac in veins, significant amount of Gln, Tau, 
Cr and Glc suggests a high metabolic activities were occur-
ring in neighboring tissues. VIP scores of nerves indicates a 
moderation in metabolic activities especially for Glc and Gly 
(Bhakoo et al. 1996). The metabolic profile of normal lymph 
nodes signifies the immunological properties of phospho-
lipids (Olszewski 2019). The disturbance and shift of above 

Fig. 5  a Unsupervised 3D PCA score plot on metabolites concentra-
tion data which display a separation in distribution of 72 malignant 
tissues (including bed, margin, tumor and other) and 108 benign tis-
sues (including bed, margin, muscle and other), b 3D score plot of 
generated PLS-DA model, c loading plot for contribution lipids and 
metabolites. The tissues with red names have higher malignancy 
prediction score and were malignant histopathological status. Blue 
named tissues have benign histopathological status. d Metabolite con-
centration-based malignancy prediction among tumor and adjacent 
oral tissues using above prediction model. (Result obtained in form 
of Red horizontal line of Prediction score with box of positive and 
negative deviations to uncertainty). e Application of metabolite con-
centration-based predictive analysis in determination of OSCC inva-
sion among neck tissues in addition to secondary lymph node identi-
fication. Color coding as follows: for tumor and adjacent oral tissues: 
red: malignant histopathology; blue: benign histopathology. For Neck 
tissues: maroon: OSCC invasion histopathology; light green: no inva-
sion histopathology
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metabolic pattern due to introduction of secondary lymph 
nodes accompanied with least amount of TFA confirms the 
presence of active cellular proliferation that have high fatty 
acid catabolism (Ubellacker and Morrison 2019).

Prognostic importance of glucose in cancer had long been 
reported. Further PET imaging agents mainly “18F-2-fluoro-
2-deoxy-D-glucose” were in the phase of clinical trials for 
non-invasive tumor imaging (Penson 2009). Evaluation of 
tumor status could be performed on the visible metabolites 
in the network of clinical sugar cycle. Since intact tissue 
NMR spectra is intimate with in vivo tumor status, assign-
ment of ex vivo and in vivo spectral signals provides precise 
information of biochemical status of malignancies (Srivas-
tava et al. 2011). In the present work, 1H HRMAS NMR 
spectroscopy simultaneously detected lipids and metabo-
lites content in tumor and adjacent tissues maintaining tis-
sue integrity for further histopathological studies. The set 
of 48 metabolites were detected, in which 42 metabolites 
were correlated into a single network of metabolic pathways. 
These detection and quantification of tissue metabolites that 
identifies as substrates and products for underlying meta-
bolic pathways allows to model any epigenetic alterations by 
selecting highly effected metabolites located in the pathways. 
Prognostic accuracy in identification of malignancies among 
blinded set of tissues also demonstrated decision making 
efficacy of predictive multivariate models. Further, the class 
separation obtained among malignant and benign tissues in 
NPP showed the fusibility of NMR spectral chemometrics to 
the results of mass spectrometry (Forshed et al. 2007). Thus 
outcome of the present work may provide support in the 
avenue of precision medicine (Beger et al. 2016), especially 
in phenome centres, where HRMAS NMR based clinical 
biomarker diagnostics have layered above real-time surgical 
diagnostics through nanospray Mass Spectrometry (Bonner 
et al. 2019) are being performed. Our results may strengthen 

REIMS-MS iKnife diagnostics with its metabotype data in 
building database and enable the machine learning to unbi-
ased tumor specific pattern for precision excision during 
surgery (Ashizawa et al. 2017) in near future.

5  Conclusion

Present work demonstrated the application of 1H HRMAS 
NMR spectroscopy in quantitation of lipid and metabolite 
species in intact tissue specimens. It further showed the fea-
sibility of spectral intensity-based as well as concentration-
based metabolomics in prediction of malignancy among 
blinded tissues of patients suffering OSCC along with neck 
invasion. Thus, the present work may be helpful in machine 
learning based modelling OSCC biomarkers to plethora of 
metabolites distributed in tumor and neighboring tissues 
and hence serve as support for real-time surgical diagnostics 
in developing modern phenome centers for precise tumor 
excision.
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