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Abstract
Introduction Specific oncogenotypes can produce distinct metabolic changes in cancer. Recently it is considered that meta-
bolic reprograming contributes heavily to drug resistance. Aldehyde dehydrogenase 1A1 (ALDH1A1), is overexpressed in 
drug resistant lung adenocarcinomas and may be the cause of acquired drug resistance. However, how ALDH1A1 affects 
metabolic profiling in lung adenocarcinoma cells remains elusive.
Objective We sought to investigate metabolic alterations induced by ALDH1A1 in lung adenocarcinoma in order to better 
understand the reprogramming and metabolic mechanism of resistance induced by ALDH1A1.
Methods Metabolic alterations in lung adenocarcinoma HCC827-ALDH1A1 cells were analyzed by ultra-performance 
liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC–QTOF-MS). HCC827-ALDH1A1 metabolic 
signatures were extracted by univariate and multivariate statistical analysis. Furthermore, metabolite enrichment analysis 
and pathway analysis were performed using MetaboAnalyst 4.0 software.
Results Twenty-two metabolites were positively identified using authentic standards, including uridine monophosphate 
(UMP), uridine diphosphate (UDP), adenosine diphosphate (ADP), malic acid, malonyl-coenzyme A, nicotinamide adenine 
dinucleotide (NAD), coenzyme A and so on. Furthermore, metabolic pathway analysis revealed several dysregulated path-
ways in HCC827-ALDH1A1 cells, including nucleotide metabolism, urea cycle, tricarboxylic acid (TCA) cycle, and glycerol 
phospholipid metabolism etc.
Conclusion Lung cancer is the most frequent cause of cancer-related deaths worldwide. Nearly all patients eventually undergo 
disease progression due to acquired resistance. Mechanisms of biological acquired resistance need to be identified. Our study 
identified altered metabolites in HCC827-ALDH1A1 cells, enhancing our knowledge of lung adenocarcinoma metabolic 
alterations induced by ALDH1A1, creating a novel therapeutic pathway. These metabolic signatures of ALDH1A1 over-
expression may shed light on molecular mechanisms in drug-resistant tumors, and on candidate drug targets. Furthermore, 
new molecular targets may provide the foundation for potential anticancer strategies for lung cancer therapy.
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1 Introduction

Aldehyde dehydrogenase (ALDH), an enzyme that 
degrades acetaldehyde, is a characteristic of cancer stem 
cells (CSC). Nineteen ALDH genes, including ALDH1A1, 
have been identified in the human genome to form the 
ALDH superfamily (Vasiliou et  al. 2004). The ALDH 
superfamily is composed of NAD (P)+ dependent enzymes 
that catalyze the oxidation of aldehydes to non-toxic car-
boxylic acids (Ueshima et al. 1993; Vasiliou et al. 2000). 
They catalyze the oxidation of a variety of aldehyde sub-
strates against toxic species in cells. Manzer et al. pro-
posed ALDH1A1 effectively degrades lipid peroxidation 
derived aldehydes, including 4-HNE and MDA, to elimi-
nate oxidative stress, including ageing and UV radiation 
(Lassen et al. 2007; Manzer et al. 2003). As a metabolic 
enzyme, ALDH1A1 plays a key role in cellular defenses 
against toxic metabolites (Fig. S1).

In addition to degrading acetaldehyde, ALDH activ-
ity is also associated with drug resistance (Januchowski 
et al. 2016; Prabavathy et al. 2018; Tanei et al. 2009). The 
expression of ALDH enzymes is found to increase in drug-
resistant cells, in contrast to drug-sensitive cells (Janu-
chowski et al. 2013; Luo et al. 2012; Wang et al. 2018a). 
Analogously, lung cancer cells that are resistant to EGFR 
tyrosine kinase inhibitor (EGFR-TKI), or to chemothera-
peutic drugs have higher expression levels of ALDH1A1 
(Huang et al. 2013). Lung cancer is the leading cause of 
cancer-related death in the world today. Globally, approxi-
mately 1.6 million new cases are reported each year, and 
the 5 year survival rate is only 16.6% (Domingues et al. 
2014; Siegel et al. 2014; Sundar et al. 2014). Unfortu-
nately, drug resistance is almost inevitable in lung cancer 
patients, leading to tumor recurrence and poor prognosis 
after using targeted drugs over a period of time (Kobayashi 
et al. 2005; Roengvoraphoj et al. 2013). ALDH promotes 
acquired resistance by metabolizing the chemotherapeutic 
drug cyclophosphamide, and detoxifying the intermediate 
product aldophosphamide to a non-toxic carboxyphospho-
ramide (Bozorgi et al. 2015; Magni et al. 1996). Although 
ALDH1A1 can induce drug resistance, changes in meta-
bolic networks induced by ALDH1A1 are unclear, and 
whether the metabolome leads to drug resistance remains 
uncertain.

The metabolome is a collection of small biochemically 
active molecules, namely metabolites, with a high level 
of chemical diversity in biological systems (Nicholson 
and Lindon 2008). Untargeted metabolomics are global 
in scope and aim to simultaneously measure as many 
metabolites (metabolome) as possible from biological 
samples without bias, which is an important comparative 
tool to study global metabolite levels in samples under 

various conditions. Approaches that accelerate measure-
ment of metabolite levels directly from samples shed light 
on our understanding of the diverse roles of metabolites, 
and potentially lead to discovery of new and noncommit-
tal mechanisms of drug resistance. Genomics and tran-
scriptomics provide a blueprint for the metabolic activity 
of organisms. Proteomics is the executor of this blue-
print, and metabolomics, reflects real-time changes in the 
metabolism of organisms, and their phenotypic character-
istics. This is the advantage of metabolomics, compared 
to other approaches (Wettersten 2013). Although untar-
geted metabolomics can be performed using either NMR 
or mass spectrometry (MS), MS enables the detection of 
most metabolites and has, therefore, been the technique 
of choice for metabolic profiling efforts. Most metabolic 
profiling studies are currently performed using quadru-
pole-time-of-flight (QTOF)-MS due to high resolution, 
sensitivity, rapid data acquisition, and high mass accuracy. 
The development of ultra-performance liquid chromatog-
raphy (UPLC) has made it possible to achieve even higher 
resolution, greater sensitivity, and rapid separation when 
compared to conventional high-performance liquid chro-
matography (HPLC) methods. Inevitably, UPLC, com-
bined with QTOF-MS, is undoubtedly a suitable system 
for untargeted metabolomics analysis (Klupczynska et al. 
2015; Sreekumar et al. 2009; Wang et al. 2018b; Zhang 
et al. 2015; Zhou et al. 2018).

Our study showed that ALDH1A1-overexpressed lung 
adenocarcinoma cells are resistant not only to the molec-
ular-targeted drugs gefitinib and erlotinib, but also to the 
traditional chemotherapy drug, paclitaxel. We performed 
metabolic profiling on ALDH1A1-overexpressed lung ade-
nocarcinoma cells using UPLC–QTOF-MS. It is hoped that 
differential metabolites and metabolic pathways related to 
ALDH1A1 overexpression will be discovered in HCC827 
lung adenocarcinoma. Additionally, more clues for meta-
bolic mechanisms of drug resistance induced by ALDH1A1 
may come to light.

2  Materials and methods

2.1  Equipment and reagents

Methanol (MS1922-801, HPLC grade) and water 
(WS2211-001, HPLC grade) were purchased from TEDIA 
(Fairfield, USA); acetonitrile (ACN) (1.00030.4000, 
HPLC grade) was obtained from MERCK (Darmstadt, 
Germany); formic acid (94318-250  mL-F, MS grade) 
was purchased from SIGMA (Deisenhofen, Germany); 
ammonium formate (65929-0025, LCMS grade) was 
supplied by ROE SCIENTIFIC INC (Newark, USA); 
phenylalanine-2,3,4,5,6-d5 (D-5466, 99.7 atom  % D) 
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and lysine-4,4,5,5-d4 (D-6689, 98 atom % D) were pur-
chased from CDN isotopes (Canada). Non-small cell lung 
cancer (NSCLC) therapeutic drugs, including erlotinib 
(E625000, 500 mg), gefitinib (G304000, 5 g) and pacli-
taxel (P132500, 250 mg) were obtained from Toronto 
Research Chemicals, Inc. (North York, Canada). HCC827 
cell (ATCC CRL-2868), an NSCLC cell line, was supplied 
by ATCC (Manassas, VA, USA).

2.2  Cell culture

Cells were cultured using RPMI 1640 medium (Gibco) 
containing 10% fetal bovine serum (FBS) (GEMINI), 1% 
GluMax, and 1% penicillin/streptomycin. The cells were 
maintained at 37 °C under a 5% CO2 atmosphere. HCC827-
ALDH1A1 and HCC827-EV cells were cultured in six-well 
plates at a density of 2.5 × 105 cells/well and harvested when 
grown to almost 90% confluence. Parallel samples were set 
up next to experimental samples to determine cell numbers 
used for data normalization. Adherent cells were washed 
twice with PBS, quenched in liquid nitrogen for 1 min, and 
then stored at − 80 °C.

2.3  Construction of ALDH1A1 overexpression 
vector in HCC827 cell line

A lentivirus for cDNA gene expression was constructed as 
described previously (Yang et al. 2014). The plasmid, car-
rying ALDH1A1 coding sequence, was cloned into the len-
tiviral vector. Then, ALDH1A1 overexpression in HCC827 
cells (HCC827-ALDH1A1) was induced using the Tet-On 
system. Empty vector was used as a control (HCC827-EV). 
Positive clones were selected for with puromycin after trans-
fection for 72 h. Overexpression of ALDH1A1 was con-
firmed by real-time PCR and western blotting.

2.4  Cell viability assay

To validate whether or not ALDH1A1-overexpression 
induces drug resistance in the NSCLC cell line, cell viability 
assays were performed after treatment with NSCLC thera-
peutic drugs (erlotinib, gefitinib and paclitaxel). To measure 
cell viability, CCK-8 assays were performed 72 h after treat-
ment, according to the manufacturer’s specifications. At the 
end of transfection, the cell viability reagent WST-8 was 
added to each well and incubated for 2 h at 37 °C. Viable cell 
numbers were estimated by measurement of optical density 
at 450 nm. The amount of the formazan dye, generated by 
the activities of dehydrogenases in cells, is directly propor-
tional to the number of living cells.

2.5  Sample preparation

80% methanol aqueous solution containing 100 ng/mL of 
phenylalanine-2,3,4,5,6-d5 and lysine-4,4,5,5-d4 as internal 
standard compounds was precooled in a − 80 °C freezer for 
10 min, and was then used as a cell lysate. One mL of lysate 
was added to each well of a six-well plate, and cell samples 
were scraped into 1.5 mL Eppendorf (EP) tubes, followed 
by sonication for 30 s, and then centrifuged to remove cel-
lular debris (20,000g, 4 °C, 15 min). The supernatants were 
concentrated in a vacuum centrifugal concentrator for 1 h, 
then reconstituted with 80 μL of 80% methanol solution for 
UPLC-MS analysis. Pooled quality control (QC) samples 
were prepared by mixing 20 μL of each cell sample during 
extraction procedure.

2.6  UPLC–QTOF‑MS method for metabolic profiling

A LC-30AD series Ultra Performance Liquid Chromatog-
raphy system  (Nexera®, Shimadzu, Japan) and a Waters 
ACQUITY UPLC BEH Amide column (100 × 2.1  mm, 
1.7  μm) were used for UPLC–QTOF-MS with a Sciex 
 TripleTOF® 5600 plus mass spectrometer (Sciex, Concord, 
ON, USA). Data for metabolomics was acquired in both pos-
itive (ESI +) and negative (ESI −) modes. The mobile phases 
in different ionization modes were as follows: (A) 0.1% (v/v) 
formic acid in acetonitrile and (B) 0.1% (v/v) formic acid 
in water in ESI + mode; (A) 10 mM ammonium formate in 
ACN/H2O (95:5, v/v) and (B) 10 mM ammonium formate 
in water in ESI − mode. The injection volume was 5 μL and 
the flow rate was 0.4 mL/min. The following linear gradient 
was used: 0 min 95% A, 2 min 95% A; 9 min 55% A; 11 min 
55% A; 11.2 min 95% A; 15 min 95% A. The column oven 
was set to 45 °C.

The mass range scanned was m/z 50–1000 in full data 
storage mode. The drying gas temperature was set at 
550 °C (ESI +) and 450 °C (ESI −), the ion spray voltage 
was 5500 V (ESI +) and − 4500 V (ESI −). Atomization 
gas pressure, auxiliary heating gas pressure and curtain gas 
pressure in both ionization modes, were set at 55, 55 and 
35 psi, respectively. The instrument was mass calibrated by 
automatic calibration infusing the Sciex Positive Calibration 
Solution (part no. 4460131, Sciex, Foster City, CA, USA) 
for positive mode and Sciex Negative Calibration Solution 
(part no. 4460134, Sciex, Foster City, CA, USA) for negative 
mode after every six-sample injections. One QC sample and 
one blank vial were run after each of the 10 cell samples.

2.7  Statistical analysis

The instrument software MarkerView (version 1.2.1.1, 
Sciex, USA) was used to perform peak extraction, peak 
matching, peak alignment and normalization preprocessing 
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on the acquired data. The main parameters were set as fol-
lows: the retention time range was 1–15 min; the retention 
time and m/z tolerance were 0.1 min and 10 ppm respec-
tively; the response threshold was 100 counts; the isotope 
peaks were removed. The obtained data set matrix was then 
imported into the data analysis software SIMCA-P 13.0 
(Umetrics, Sweden). After Pareto-scaling (Par transforma-
tion), multi-dimensional statistical analysis such as Principal 
components analysis (PCA) and partial least-squares dis-
crimination analysis (PLS-DA) were performed.

PCA and PLS-DA models were established to visual-
ize metabolic differences among HCC827-ALDH1A1 and 
HCC827-EV groups. The quality of the models is described 
by the  R2X (PCA) or  R2Y (PLS-DA) values. To avoid model 
over-fitting, 999 cross-validations in SIMCA-P 13.0 were 
performed throughout in order to determine the optimal 
number of principal components.  R2X,  R2Y and  Q2Y values 
of the models were nearly 1.0, indicating that these models 
have good capacity in explaining and predicting variations 
in the X and Y matrices.

Heat maps were generated with Omicshare platform 
(Gene Denovo, GuangZhou, China), which is available 
online at: http://www.omics hare.com/. Error bars in the fig-
ures represent SEM. Statistical significance was accepted at 
*p < 0.05; **p < 0.01; ***p < 0.001;****p < 0.0001.

2.8  Identification of metabolic profiles

The different metabolites were determined by the combi-
nation of the VIP (variable importance in the projection) 
value > 1 and and |pcorr| > 0.52 in PLS-DA models and the 
p values (< 0.05) from two-tailed Student’s t test on the nor-
malized peak intensities. Fold change was calculated as the 
average normalized peak intensity ratio between two groups.

The structural identification of differential metabolites 
was performed by matching the mass spectra with an in-
house standard library (Table S2), including accuracy mass, 
retention time, MS/MS spectra and online databases: Metlin 
(http://www.metli n.scrip ps.edu) and HMDB (http://www.
hmdb.ca).

2.9  Metabolic pathway analysis

The impact of ALDH1A1 on the metabolic phenotype of 
HCC827 cells was evaluated based on MetaboAnalyst 4.0 
software (Genome Canada, Canada) for pathway analysis, 
which is available online (http://www.metab oanal yst.ca). 
The Pathway Analysis module in the tool explores the results 
interactively and gives detailed instructions and outcomes 
to obtain a better understanding of the pathways involved 
in the conditions under study. By uploading the differen-
tial metabolites, the built-in pathway library (human) and 
hypergeometric test for over-representation analysis were 
employed. A results report was then presented graphically 
as well as in a detailed table.

3  Results

3.1  ALDH1A1‑overexpressed HCC827 cells are 
resistant to therapeutic drugs

Previous reports have shown a correlation between ALDH 
and drug resistance (Ajani et al. 2014; Liu et al. 2013). 
Kanya Honoki et al. found that overexpression of ALDH1 
in tumors can confer resistance to chemotherapy (Honoki 
et al. 2010). ALDH1A1 is one of the 19 ALDH subtypes 
in humans, and is commonly used to express the activity of 
tumor stem cell ALDH (Marcato et al. 2011).
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Fig. 1  Drug resistance of ALDH1A1 overexpressed lung adenocar-
cinoma cells. a Western blot analysis of HCC827-parent, HCC827-
EV and HCC827ALDH1A1 cells. Blots have been probed with the 
indicated antibodies. β-actin was used as loading control. b The 
inhibitory rate of HCC827 cells after transfection with ALDH1A1 

or control RNA and treatment with erlotinib (1 μM), gefitinib (1 μM) 
and paclitaxel (100 μM) for 72 h. Statistical analysis was performed 
using two-tailed Student’s t test. Error bars in the figures represent 
SEM. Statistical significance was accepted at *p < 0.05; **p < 0.01; 
***p < 0.001; **** p < 0.0001
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Western blotting analysis revealed that ALDH1A1 
overexpression occurred in HCC827-ALDH1A1 cells 
(Fig.  1a), which indicated that we successfully con-
structed ALDH1A1-overexpressed cells. Quantitative 
real-time PCR analysis also demonstrated higher expres-
sion levels of ALDH1A1 in HCC827-ALDH1A1 cells 
(Fig. S2).

To clarify the effect of ALDH1A1 on cell prolifera-
tion under drug treatment (erlotinib 1 μM, gefitinib 1 μM 
and paclitaxel 100 μM), we conducted CCK-8 assays in 
HCC827-ALDH1A1 and HCC827-EV cells. ALDH1A1 
overexpression significantly enhanced the proliferation 
of HCC827-ALDH1A1 cells, while the proliferation of 
HCC827-EV cells was remarkably repressed (Fig. 1b). 
This illustrated that HCC827-ALDH1A1 cells are resist-
ant to erlotinib, gefitinib and paclitaxel. Together, these 
results suggested that ALDH1A1 was the cellular media-
tor of drug resistance. ALDH1A1 is one of the princi-
pal metabolic enzymes responsible for the oxidation of 
aldehydes to carboxylic acids, and changes in cellular 
metabolism accompany classical chemoresistance and 
tumorigenesis (DeBerardinis and Chandel 2016; Rabold 
et al. 2017; Sarvi et al. 2018). Hence, alterations in meta-
bolic profiling can specifically reflect the beginning of 
drug resistance. Metabolic studies may supply potential 
biomarkers and novel therapeutic strategies to reverse 
resistance.

3.2  UPLC–QTOF‑MS analysis for metabolic profiling

To investigate the contribution of ALDH1A1 to metabolic 
heterogeneity, a metabolic profiling analysis was performed 
on HCC827-ALDH1A1 and HCC827-EV cells. The 
UPLC–QTOF-MS system was able to obtain metabolic 
profiling for both groups using the total ion chromatogram 
(TIC). A total of 2088 and 840 features were detected after 
removing isotope peaks in the positive and negative ion 
modes respectively. Each feature is composed of exact mass, 
retention time, and average intensity. From the TICs, there 
are many different features in the endo-metabolome between 
the two groups (Fig. 2 and Fig. S3). As shown in Fig. 2, the 
difference is mainly concentrated in the 4–9 min interval in 
the positive mode, indicating that more variables may come 
from this time range. Additionally this difference mainly 
exists in 3–8 min in the negative mode (Fig. S3).

3.3  Multivariate statistical analysis

For ESI-MS data, 2088 peaks of positive ions and 840 peaks 
of negative ions from 1 to 15 min of retention time were 
obtained after data pre-processing. To investigate global 
metabolic alterations in HCC827-ALDH1A1 and HCC827-
EV cells, all observations acquired in both ion modes were 
integrated and co-analyzed using PCA. PCA, based on cel-
lular metabolites, demonstrated that the two cell lines clus-
tered closely within each group, and separately from each 
other (Figs. S5a, S6a). QC samples were clustered together, 

Fig. 2  LC-MS total ion chromatography (TIC) of intracellular metabolites in HCC827-ALDH1A1 and HCC827-EV cells. The UPLC–QTOF-
MS system can obtain metabolic profiling of both groups with TIC. a, b Detected in the positive (ESI +) ion mode
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indicating good stability and repeatability of the method, 
which is conducive to the establishment of mathematical 
models, and to the identification of differential variables 

(ESI +:  R2X = 0.796,  Q2Y = 0.748; ESI −:  R2X = 0.85, 
 Q2Y = 0.836) (Fig. 3a and Fig. S4a). In loading scatter plots, 
the further the compounds are from the origin in the loading 

Fig. 3  Multivariate statistical analysis of HCC827-ALDH1A1 
and HCC827-EV cells. a Score plot for PCA model of HCC827-
ALDH1A1 and HCC827-EV cells in ESI +. The black spheres rep-
resent quality control samples, the blue diamonds represent HCC827-
ALDH1A1 samples, the green squares represent HCC827-EV 
samples. b Score plot for PLS-DA model of HCC827-ALDH1A1 

and HCC827-EV cells in ESI +. The blue spheres represent HCC827-
ALDH1A1 samples, the green spheres represent HCC827-EV sam-
ples. c Validation plot of PLS-DA model and 999 RPTs in ESI +. d 
DModX line plot of the model in ESI +. e S-plot of the PLS model in 
ESI +. Each square in the S-plot represents an ion. Ions in red squares 
are potential biomarkers
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plot, the more important they are for the differentiation pat-
tern (Figs. S5b, S6b).

To further explore differences between HCC827-
ALDH1A1 and the control group, supervised PLS-DA 
was applied for stoichiometric analysis. For ESI–MS (+) 
data, the classification of models and controls resulted in 
two components with the cross-validated predictive abil-
ity  Q2Y = 0.964  (R2X = 0.679,  R2Y = 0.983) (Fig. 3b). The 
second model (HCC827-ALDH1A1 vs control in negative 
ion mode) was produced with an  R2X = 0.768,  R2Y = 0.986, 
 Q2Y = 0.98 (Fig. S4b). Permutation testing (999 times) 
showed that the model is not over-fitted (ESI +:  R2Y = 0.164, 
 Q2Y = − 0.338; ESI −:  R2Y = 0.232,  Q2Y = − 0.257) (Fig. 3c 
and Fig. S4c). In addition, Distance to Model X (DModX) 
was applied to test the outliers of the model. In SIMCA, the 
detection tool for outliers is termed DModX, a short-hand 
notation for distance to the model in X-space. DModX is 
based on considering the elements of the residual matrix 
E and summarizing these row-by-row. A value for DModX 
can be calculated for each observation. These values can be 
plotted in a control chart where the maximum tolerable dis-
tance (Dcrit) for the dataset is given. Moderate outliers have 
DModX values larger than Dcrit. When DModX is twice 
Dcrit, there is some indication of more considerable outliers. 

The result obtained from the DModX line plot indicated that 
there were no outliers in our model (Fig. 3d and Fig.S4d). 
The HCC827-ALDH1A1 group can be separated from EV 
controls clearly, which reflected the remarkably distinct met-
abolic status of HCC827-ALDH1A1 and HCC827-EV cells. 
The S-plot, an easy way to visualize a PLS-DA model of two 
classes with magnitude (intensity) and reliability, was also 
used for the selection of biomarkers (Fig. 3e and Fig. S4e). 
Two vectors, p and p (corr), are combined in S-plot. A high 
p (corr) means a very high reliability. Variables with a VIP 
value > 1, p value < 0.05 and p (corr) absolute values > 0.52 
were finally considered as different variables. Finally 225 
and 118 different variables were found out in positive and 
negative mode respectively. Multivariate statistical analy-
sis revealed a set of metabolites that discriminated between 
HCC827-ALDH1A1 and HCC827-EV cells.

3.4  ALDH1A1 distinctly influences metabolic 
vulnerabilities in NSCLC cells

The selected variables identified by single- and multi-
dimensional statistical analysis were matched by matching 
the mass spectra with an in-house standard library includ-
ing accuracy mass, retention time and MS/MS spectra. The 

Fig. 4  Heat map of hierarchical 
clustering using intracellular 
metabolic data from HCC827-
ALDH1A1 and HCC827-EV 
cells. Each row represents a 
metabolite and each column 
represents a sample. Metabo-
lite features whose levels vary 
significantly (p < 0.01) between 
HCC827-ALDH1A1 and 
HCC827-EV cells are projected 
on the heat map and used for 
sample clustering. The Z-score 
of each metabolite is plotted 
over the firebrick–navy color 
scale. The firebrick color indi-
cates high abundance and navy 
indicates low abundance
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online databases Metlin and HMDB were used to validate 
fragment information. Finally, 22 potential biomarkers were 
identified (Table S1). Data are presented as the mean fold 
differences in HCC827-ALDH1A1 metabolite abundance, 
compared to the HCC827-EV group. The heat map showed 
22 potential biomarkers and unsupervised clustering of sam-
ples using metabolic signatures (Fig. 4).

In Table S1 and Fig. 4, 18 metabolites upregulated in 
HCC827-ALDH1A1 included uridine monophosphate, 
5′-CMP, guanosine monophosphate, uridine diphosphate, 
adenosine 3′-monophosphate and ADP (> 2-fold), rep-
resenting pyrimidine and purine metabolism; malic acid 
(3.21-fold) and malonyl-CoA (1.75-fold), representing 
the tricarboxylic acid cycle (TCA); glucose 6-phosphate, 
UDP-glucose, fructose1,6-bisphosphate (> 1.37-fold), 
representing glycolytic metabolism; citrulline (1.34-fold), 
argininosuccinic acid (1.33-fold), representing the urea 
cycle, and cytidine diphosphate choline (2.15-fold), repre-
senting glycerophospholipid metabolism. Table S1 further 
identifies the four metabolites downregulated in HCC827-
ALDH1A1. These include 2-S-glutathionyl acetate (0.82-
fold), representing glutathione metabolism, phosphocreatine 
(0.59-fold), representing the ammonia cycle, and glycer-
ophosphocholine (0.78-fold), representing lipid metabolism. 
Information regarding metabolite names, retention times, the 
detected masses (Da), the mass error (ppm), fold change, p 
values, direction of change, Kyoto Encyclopedia of Genes 
and Genomes (KEGG), Human Metabolome DataBase 
(HMDB), and PubChem identifiers for all 22 metabolites is 
listed in Table S1.

3.5  Pathway enrichment analysis

In this study, the data were input into online MetaboAna-
lyst 4.0 and metabolic pathways were analyzed to identify 
which pathways are largely involved in (Fig. 5). Relation-
ships between most of the differential metabolites are shown 
in Fig. 6, where red-labeled metabolites were elevated in 
HCC827-ALDH1A1 cells, and green-labeled metabolites 
were decreased in those cells. Pyrimidine and purine metab-
olism were enhanced in HCC827-ALDH1A1, reflecting that 
the biosynthesis of nucleotides was enriched. Nucleotides 
are essential biomolecules and are the building blocks of 
nucleic acids within cells. They are also involved in a variety 
of cellular functions that require energy in the form of the 
adenosine triphosphate (ATP), guanosine triphosphate, cyti-
dine triphosphate and uridine triphosphate. Several amino 
acid metabolic pathways were altered, including arginine 
and proline metabolism. Amino acids are the source of bio-
logical macromolecular proteins, including enzymes, trans-
port proteins, and other functional polypeptides. Functional 
proteins play important cellular roles, including metabolic 
reactions, DNA replication, and signaling. In addition, 

reactions related to energy metabolism, such as TCA cycle 
and glucose metabolism, were also enhanced. Energy is a 
primary requirement for cancer cell survival, proliferation 
and migration. The enrichment of these metabolic pathways 
may reflect cellular energy demands. These metabolic path-
ways might directly or indirectly reflect the drug resistance 
capacity of NSCLC cells.

4  Discussion

In our study, ALDH1A1 was indeed associated with tumor 
cell resistance, with increased expression in tumor cells 
making tumor cells resistant to therapeutic drugs (Fig. 1). 
Specific oncogenotypes can produce distinct metabolic 
changes in certain types of cancer (Boroughs and DeBerar-
dinis 2015; Faubert et al. 2014). Metabolic reprogramming 
usually occurs in tumor cells because it meets the needs 
of tumor survival, proliferation and other aspects. These 
metabolic changes are caused by the activation of tumor 
cell oncogenes, which can alter the metabolism of tumors 

Fig. 5  Analysis of pathway enrichment by differential metabolites 
in HCC827-ALDH1A1 and HCC827-EV cells. Significantly altered 
pathways were determined by completing pathway enrichment 
analysis within MetaboAnalyst 4.0 software. Pathway enrichment, 
the abscissa pathway impact represents the influencing factor of the 
path topological analysis, and the ordinate − log(p) represents the p 
value of the pathway enrichment analysis (negative logarithm). At the 
same time, the bubble size indicates the influence factor of topologi-
cal analysis, the bigger the bubble is, the bigger the impact factor is. 
The color of the bubbles indicates the p value (negative logarithm) of 
the enrichment analysis. The darker the color, the larger the value of 
− log(p), the more significant the enrichment
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through the coordinated operation of various signaling path-
ways (Sciacovelli et al. 2014).

In order to adapt to the environment and maintain rapid 
growth and proliferation, drug-resistant cells generally 
change their core metabolism. Maiso et al. (2015) found 
that inhibition of glycolysis can effectively inhibit the pro-
liferation of drug-resistant tumor cells. Kuntz et al. (2017)
even suggested that relapse in chronic myeloid leukemia 
drug resistance is due to metabolic reprogramming of CSCs, 
which can effectively inhibit the drug-resistant recurrence of 
leukemia after targeting mitochondrial energy metabolism. 

In Figs. 2 and 3, we show that the metabolic profile of 
HCC827-ALDH1A1 cells changed significantly, suggesting 
that ALDH1A1 can maintain tumor resistance through cellu-
lar metabolic reprogramming. ALDH is an enzyme that can 
catalyze the oxidation of aldehydes to carboxylic acids, and 
is indeed associated with multiple tumor relapses and poor 
prognosis (Croker and Allan 2012; Sladek and Landkamer 
1985; Storms et al. 1999). Stass et al. found that ALDH-
positive lung cancer cells have greater drug resistance, self-
renewal ability and tumor formation ability (Jiang et al. 
2009). Ginestier revealed that ALDH1A1 is a human breast 

Fig. 6  Schematic overview of metabolic changes in HCC827-
ALDH1A1 and HCC827-EV cells. Metabolites marked in red 
were significantly upregulated in HCC827-ALDH1A1 cells versus 

HCC827-EV cells. The metabolites marked in green were signifi-
cantly downregulated in HCC827-ALDH1A1 cells versus HCC827-
EV cells
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tumor and bladder CSC marker and a predictor of poor prog-
nosis (Ginestier et al. 2007; Su et al. 2010). Metabolomics 
can directly reflect the phenotype of cells by detecting intra-
cellular metabolites and amplifies small changes in gene and 
protein expression at metabolic levels. However, whereas 
there are few studies on ALDH overexpressed tumor cell 
metabolomics, we continue to explore this field and hope to 
provide new research directions and data for its role in tumor 
resistance and poor prognosis.

In our study, ALDHA1A1 overexpressed lung adeno-
carcinoma cells were constructed, and a UPLC–QTOF-
MS-based cell metabolic profiling method was established 
(Fig. 1 and Table S1). We found that the level of metabolites 
in the glycolytic pathway was up-regulated, suggesting that 
ALDHA1A1 overexpressing lung adenocarcinoma cells can 
satisfy the rapid growth of tumor cells or respond to drug 
stress through the Warburg effect (Fig. 6). The Warburg 
effect is a typical metabolic feature in tumor cells, which 
can utilize glucose metabolites to produce important bio-
macromolecules such as lipids, ribose, and glycerol, so as 
to provide a nutrient source for tumor proliferation. It has 
been reported that when targeting glycolysis in breast cancer 
resistant cells, the Warburg effect can effectively overcome 
tumor resistance to trastuzumab (Zhao et al. 2011).

As shown in Figs. 4 and 5, we also found changes in the 
levels of metabolites such as CDP choline and glycerol phos-
phatidylcholine, indicating that ALDHA1A1 overexpressed 
lung adenocarcinoma cells do regulate glycerophospholipid 
metabolism, the source of which is likely to be derived from 
intermediate metabolites of glycolysis. Bao et al. (2016) pro-
posed that high levels of glycerophospholipid metabolism 
in malignant melanoma are associated with poor progno-
sis, suggesting that drug-resistant cells may require a large 
amount of lipids due to the synthesis of cell membranes and 
signaling molecules, and thus tumor cells may enhance the 
metabolism of glycerophospholipids. Meanwhile, the citric 
acid in the TCA cycle could be converted to propionyl-CoA 
by the action of ATP citrate lyase and acetyl-coenzyme car-
boxylase, and then converted to palmitic acid by the action 
of fatty acid synthase. Our study found that the propionyl-
CoA and malic acid content increased significantly, impli-
cating energetic metabolism was enhanced when ALDH1A1 
was overexpressed (Fig. 6). In patients with drug-resistant 
breast and ovarian cancer, previous studies have also found 
that fatty acid synthase expression is up-regulated and fatty 
acid metabolism is enhanced (Bauerschlag et  al. 2015; 
Munoz-Pinedo et al. 2012).

Tumors require a large amount of nucleotides as raw 
materials during the process of malignant proliferation. A 
class of anti-nucleotide synthetic drugs, including 5-fluoro-
uracil and 6-mercaptopurine, have been used effectively as 
tumor chemotherapy drugs, thereby indicating that nucleo-
tide metabolism is crucial in tumors. We found that in ALDH 

overexpressed tumor cells, levels of nucleotide metabolites, 
such as cytidine monophosphate (CMP), uridine monophos-
phate (UMP), adenosine monophosphate (AMP), and guano-
sine monophosphate (GMP) were increased (Fig. 5), indi-
cating that enhanced nucleotide metabolism facilitates the 
survival and proliferation of drug-resistant cells. Cui Y et al. 
(2014) found that nuclear factor kappa-light-chain-enhancer 
of activated B cells 2 (NF-κB2) can regulate 6-phosphate 
glucose dehydrogenase to promote glucose 6-phosphate into 
the pentose phosphate pathway (PPP) to enhance nucleotide 
metabolism in prostate cancer cells. Furthermore, NF-κB2 
can promote tumor growth and also enhance drug resist-
ance in tumor cells (Nadiminty et al. 2013). Arginine is an 
intermediate metabolite in the urea cycle. Citrulline and 
aspartic acid are synthesized by argininosuccinic acid by 
argininosuccinate synthetase, and then become fumaric acid 
and arginine, catalyzed by argininosuccinate lyase, in which 
fumaric acid is a component of the TCA cycle, which links 
the urea cycle with energy metabolism. We found that the 
content of citrulline and argininosuccinic acid increased in 
HCC827-ALDH1A1 cells, indicating that the urea cycle 
was in an enhanced state, while the arginine content did not 
change significantly, probably because arginine was involved 
in multiple metabolic pathways, such as the biosynthesis 
of creatine and polyamines, and anabolism of nucleotides, 
proline and glutamate.

5  Conclusion

In summary, we established UPLC–QTOF-MS-based intra-
cellular metabolic profiling analysis of HCC827-ALDH1A1 
cells and found that ALDH1A1, a major metabolic enzyme, 
enables tumors to be resistant to therapeutic drugs. The 
metabolic profile of HCC827-ALDH1A1 cells was altered, 
and most metabolites, such as glucose-6-phosphate, fruc-
tose 1,6-diphosphate, propionyl-CoA, malic acid, malic 
acid, phosphatidylcholine, glycerol phosphatidylcholine, 
GMP, citrulline and arginine succinic acid increased, involv-
ing metabolic pathways such as glycolysis, the TCA cycle, 
glycerophospholipid metabolism, nucleotide metabolism, 
and the urea cycle. Enhanced metabolic phenotypes of 
energy metabolism and anabolism induced by ALDH1A1 
promote drug resistance of tumor cells to therapeutic drugs. 
Among them, differential metabolites are largely involved 
in nucleotide metabolic pathways, and ALDH may affect 
tumor resistance through such pathways (Fig. 6). Our study 
provides a metabolic dissection of HCC827-ALDH1A1 
cells, offering insights into drug resistance mechanisms, and 
proposes related differential metabolic pathways, which pro-
vides clues for drug-resistant tumor molecular mechanisms 
and drug targets.
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