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Abstract
Introduction  The Metabolomics Standards Initiative has recommended four categories for metabolite assignments in NMR-
based metabolic profiling studies. The “putatively annotated compound” category is most commonly reported by metabo-
lomics investigators. However, there is significant ambiguity in reliability of “putatively annotated compound” assignments, 
which can range from low confidence made on minimal corroborating data to high confidence made on substantial cor-
roborating data.
Objectives  To introduce a new ranking system, Rank and AssigN Confidence to Metabolites (RANCM), to assign confidence 
levels to “putatively annotated compound” assignments in NMR-based metabolic profiling studies.
Methods  The ranking system was constructed with three confidence levels ranging from Rank 1 for the lowest confidence 
assignment level to Rank 3 for the highest confidence assignment level. A decision tree was constructed to guide rank selec-
tion for each metabolite assignment.
Results  Examples are provided from experimental data demonstrating how to use the decision tree to make confidence 
level assignments to “putatively annotated compounds” in each of the three rank levels. A standard Excel sheet template is 
provided to facilitate decision-making, documentation and submission to data repositories.
Conclusion  RANCM is intended to reduce the ambiguity in “putatively annotated compound” assignments, to facilitate effec-
tive communication of the degree of confidence in “putatively annotated compound” assignments, and to make it easier for 
non-experts to evaluate the significance and reliability of NMR-based metabonomics studies. The system is straightforward 
to implement, based on the most common datasets collected in NMR-based metabolic profiling studies, and can be used 
with equal rigor and significance with any set of NMR datasets.
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1  Introduction

Metabolomics as a discipline has existed in some fashion 
(though without the moniker) since the middle of the twen-
tieth century but it was first formally described as such in 
1999 (Nicholson et al. 1999). The rapid development and 
expansion of the field over the next two decades has spawned 

large efforts to standardize reporting of metabolomics data 
(Sumner et al. 2007) and the creation of large-scale data 
repositories to collect raw data from metabolomics studies, 
e.g. the internationally supported MetaboLights database 
(Haug et al. 2013) and the United States National Institutes 
of Health funded Metabolomics Workbench database (Sud 
et  al. 2016). A comprehensive set of recommendations 
regarding standardization of all aspects of metabolomics 
studies, including experimental design, sample prepara-
tion, data collection, data analysis and data reporting, was 
established by the Metabolomics Standards Initiative (MSI) 
group and published in 2007 (Sumner et al. 2007). Despite 
these early efforts, debate continues with respect to universal 
reporting standards (Creek et al. 2014; Salek et al. 2013). 
Standardized guidelines for reporting metabolite assign-
ments from experimental NMR data, while addressed by 
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the MSI recommendations, remain inadequately defined, and 
standardized reporting of metabolite assignments has not 
been universally adopted by the metabolomics community.

One of the earliest efforts to create a resource to aid in 
metabolite identification in metabolomics studies was the 
METabolite LINk (METLIN) database, established in 2005, 
which compiled mass spectrometry data on metabolite 
standards to provide a resource for investigators identifica-
tion of metabolites in mass-spectrometry based metabo-
lomics studies (Guijas et al. 2018; Smith et al. 2005). The 
Human Metabolite Data Base (HMDB) followed soon after 
in 2007 (Wishart et al. 2018, 2013, 2009, 2007), which was 
established as a free public database that included one-
dimensional and two-dimensional NMR spectra of refer-
ence metabolites, in addition to mass spectrometry data, 
and biological, chemical, and clinical information about the 
metabolites. The HMDB has also been integrated into other 
metabolite analysis programs such as ChenomX (Edmonton, 
Alberta, Canada) (https​://www.cheno​mx.com/). Another 
valuable resource for identification of metabolites in NMR 
based metabolic profiling studies is the BMRB, which was 
established in 2008 (Ulrich et al. 2008). More recently, pow-
erful tools for analysis of two dimensional homonuclear and 
heteronuclear NMR data in support of making metabolite 
assignments in complex biological samples have been intro-
duced (Bingol et al. 2014), in particular, the Complex Mix-
ture Analysis by NMR, i.e. COLMAR (Bingol et al. 2016).

Following the development of the METLIN and HMDB 
online databases, over the course of several years (approxi-
mately from 2005 to 2007), the MSI’s Chemical Analysis 
Working Group (CAWG) discussed and developed qualita-
tive reporting standards to use when reporting metabolite 
data (Fiehn et al. 2007). These standards have been con-
sidered the primary minimum reporting standards over the 
past 10 years (Creek et al. 2014; Salek et al. 2013; Spicer 
et al. 2017).

Notwithstanding, looking back on more than a decade of 
development, there remains a lack of conformity in adher-
ing to minimum reporting standards in many metabolomics 
studies published after the 2007 MSI paper outlining report-
ing standards, with reporting standards poorly implemented 
or largely ignored by both publishers and researchers (Salek 
et al. 2013). This problem has been further exacerbated by 
the lack of consensus and consistency, or complete omis-
sion, with respect to reporting confidence levels in metabo-
lite assignments and the lack of practical options for ranking 
and reporting confidence levels in metabolite assignments.

Qualitative, quantitative, and integrated methods have 
been suggested for metabolite identification in metabonom-
ics studies (Bingol et al. 2016; Creek et al. 2014; Dona et al. 
2016; Everett 2015; Posma et al. 2017; Rohnisch et al. 2018; 
Salek et al. 2013; Sanchon-Lopez and Everett 2016; Spicer 
et al. 2017; Tardivel et al. 2017; van der Hooft and Rankin 

2016). Qualitative methods largely rely on the original 
guidelines set out by the MSI and CAWG, which involve 
categorizing putative metabolites by a variety of parameters 
and methods (Creek et al. 2014; Spicer et al. 2017). Quan-
titative methods vary, but typically are based on an exhaus-
tive chemical analysis to generate a ‘score’ for each possible 
metabolite using a combination of chemical parameters and 
database comparison from multiple experiments (Bingol 
et al. 2016; Everett 2015; Sanchon-Lopez and Everett 2016). 
As of this writing there is not a widely accepted method 
that has been effectively developed and adopted to facilitate 
assignment and reporting of confidence levels in metabolite 
identifications from experimental NMR data (Spicer et al. 
2017).

The MSI standards for classifying metabolite assignments 
(Sumner et al. 2007) are listed below:

•	 Identified compounds (there is a significant amount 
of additional information that is recommended by the 
CAWG/MSI for this level of significance).

•	 Putatively annotated compounds (e.g. assignments made 
without reference to chemical standards, based upon 
physicochemical properties and/or spectral similarity 
with public/commercial spectral libraries).

•	 Putatively characterized compound classes (e.g. based 
upon characteristic physicochemical properties of a 
chemical class of compounds, or by spectral similarity 
to known compounds of a chemical class).

•	 Unknown compounds—although unidentified or unclas-
sified these metabolites can still be differentiated and 
quantified based upon spectral data.

For a metabolite to be “identified”, at least two orthogonal 
properties of an authentic reference standard measured in the 
researcher’s laboratory must be matched to features measured 
in the sample spectrum. However, most laboratories do not 
maintain a comprehensive validated library for making such 
metabolite identifications. Rather, most laboratories rely on 
reference to, and comparison with, standard compound refer-
ence spectra available in large commercial databases (e.g. Che-
nomX) or federally funded or public databases (HMDB, COL-
MAR) for making metabolite identifications. Consequently, in 
the context of the MSI guidelines, most NMR-based metabo-
lomics researchers make “putatively annotated compound” 
assignments based on spectral similarity to commercial or 
public databases. The problem herein lies with the significant 
and inherent ambiguity in making the assignment of a “puta-
tively annotated compound”. For example, the ambiguity asso-
ciated with a “putatively annotated compound” assignment 
can range from a high degree of uncertainty, e.g. in the case 
where the assignment is based on a single matching singlet 
without any further corroboration from the database spectra, 
to an assignment that has essentially no uncertainty, e.g. in 
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the case of an assignment being based on multiple spectral 
features, including both singlets and multiplets with match-
ing intensities, and corroborated by more than one 2D NMR 
dataset, but not confirmed by an authentic reference stand-
ard in the researcher’s own laboratory. In these two extreme 
examples, both assignments would be indicated as a “puta-
tively annotated compound” in a publication, and researchers 
in other laboratories or fields would have no way of knowing 
the relative magnitude of the uncertainty, ambiguity, or reli-
ability in classifying the assignment as a “putatively annotated 
compound”.

Here, we introduce the Rank and AssigN Confidence to 
Metabolites (RANCM) algorithm, pronounced “Rank ‘Em”, to 
augment and refine the “putatively annotated compound” clas-
sification category suggested in the MSI recommendations. 
Our goal is to minimize the ambiguity associated with the 
“putatively annotated compound” assignment classification, 
and to provide a platform for which all assignments to this 
category can be documented in a common format that can be 
submitted to the data repository sites alongside the raw data, 
thus providing a resource that can be reviewed by other inves-
tigators. The significance of preserving such documentation in 
public data repositories can be appreciated when considering 
that most researchers who conduct NMR-based metabolomics 
studies draw biochemical and biological conclusions based on 
“putatively annotated compound” assignments, and therefore 
providing and preserving the documentation supporting the 
“putatively annotated compound” assignments will provide 
critically valuable information to future investigators con-
sidering the published work. In the new RANCM algorithm, 
we introduce a 3-point ordinal ranking scale for assigning 
confidence to putative metabolite annotations. The 3-point 
ordinal ranking scale makes use of experimentally acquired 
1D and/or 2D NMR spectra in combination with the widely 
and commonly used reference databases such as ChenomX, 
the HMDB and COLMAR. The 3-point ordinal scale is sup-
ported by a detailed decision tree to facilitate easy assignment 
to a specific rank. We recommend that the ranking scores be 
reported in some manner in NMR-based metabolomics publi-
cations, either in a table or in supplementary material. Further, 
a standardized Excel spread sheet template is provided to aid 
in implementation of the RANCM algorithm, which helps in 
deciding the rank assignment for each metabolite, and to docu-
ment the data used to make the rank assignments, which can 
be submitted to data repository sites along with raw NMR 
datasets.

2 � Materials and methods

2.1 � Samples

Urine samples from mice from the NOD-ShiLtJ mouse 
model of type 1 diabetes (unpublished data) were used to 
demonstrate the ranking scheme introduced in this study. 
The NOD-ShiLtJ urine samples were obtained by placing 
the mouse into a metabolism cage for 12 h and collecting 
urine into a beaker containing light mineral oil to prevent 
evaporation and sodium azide to prevent bacterial growth. 
The urine under the light mineral oil layer was collected 
by pipette and centrifuged at 10,000xg for 5 min at 4 °C, 
and liquid supernatant was collected. The samples were 
prepared for NMR analysis by mixing 540 µL of urine 
with 66 µL of a pH 7.4 phosphate buffer containing 10 mM 
trimethylsilylpropanoic acid (TSP) as a chemical shift ref-
erence. The samples were pH adjusted to 7.4 by adding 
HCl and NaOH as necessary, and finally added to 60 µL of 
D2O. The resulting 666 µL solutions were frozen at -80 °C 
until NMR experiments could be conducted. 600 µL of 
each sample was transferred into a 5 mm NMR tube for 
NMR analysis. The animal research protocol for this pro-
ject (protocol number 898) was approval by the Miami 
University Institutional Animal Care and Use Committee.

2.2 � NMR data collection

All NMR experiments on the NOD-ShiLtJ samples were 
conducted on a Bruker Avance Spectrometer at 298°K and 
850.104 MHz. One-dimensional 1H CPMG or NOESY 
NMR experiments and two-dimensional 1H-1H TOCSY 
and 1H-13H HSQC NMR experiments were performed as 
described in our previous publications (Chihanga et al. 
2018a, b, c; Romick-Rosendale et al. 2009, 20122014; 
Schmahl et al. 2018; Wang et al. 2015; Watanabe et al. 
2012a, b, 2011). The CPMG experiment was generally 
preferred as it consistently produced superior baselines 
free from distortion due to incompletely suppressed 
water signal and residual protein and lipid in the samples, 
although it can introduce minor peak intensity distortions 
away from the water signal due to the T2 filtering scheme. 
Phase correction, baseline correction, and other necessary 
processing of spectra were performed manually using Top-
Spin 3.5. All NMR data used to demonstrate the use of 
the ranking algorithm have been deposited to the figshare 
data repository (https​://figsh​are.com/s/1b2fc​d1465​8f32e​
65fcb​) and the MetaboLights data repository (accession 
ID: MTBLS781). The complete description of the files 
included in the data repositories in included in Supple-
mentary material file ESM_3.

https://figshare.com/s/1b2fcd14658f32e65fcb
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2.3 � Software used for metabolite annotations

One-dimensional NMR spectra were investigated using the 
ChenomX Profiler software (https​://www.cheno​mx.com/). 
Putative metabolite identifications made using the Che-
nomX software were further analyzed using the HMDB 
(http://www.hmdb.ca/) (Wishart et al. 2007, 2009, 2013, 
2018 ). Analysis of 2D NMR data was performed using 
the COLMAR software (http://spin.ccic.ohio-state​.edu/) 
(Bingol et al. 2014, 2016). Ranking score assignments 
were determined using the decision tree described below.

2.4 � Construction of the ranking decision tree

As we are suggesting and introducing the use of a new 
ranking scheme to define confidence levels in “putative 
metabolite assignments”, we provide some context for the 
philosophy underlying the construction of the decision 
tree. The overall construction was intended to reflect our 
own heuristic experience encountered when going through 
the process of metabolite identification. The decision tree 
is meant to parallel the very process and decisions that the 
investigator follows during the process. With the advent 
of the widely used public databases and tools that aid in 
metabolite identification, we naturally screen the databases 
in order to identify putative compounds that might explain 
peaks in the experimental spectra. This naturally leads to 
metabolites that have only one or more singlets and metab-
olites that have multiple peaks including multiplets. We 
therefore designed an algorithm that contains these two 
major branches. Depending on which branch the metabo-
lite belongs to, there are different kinds of data that can 
be used to support the putative assignment. This includes 
varying levels of confirmation by 2D HSQC data in the 
cases of metabolites containing only singlets and a com-
bination of 2D TOCSY and 2D HSQC experiments in the 
case that a metabolite contains multiple peaks including 
multiplets. In constructing the algorithm, we created three 
tiers of questions resulting in assignments to guide ranking 
of the confidence in the putative metabolite assignments. 
The 3-point ordinal scale and decision tree are constructed 
as follows:

2.4.1 � Rank 1S/1

Rank 1 or Rank 1S corresponds to the lowest confidence 
level assignment of a “putatively annotated compound”. 
A “putatively annotated compound” assigned at this rank 
is uncertain but possible. Researchers should be cautious 
about drawing biochemical or biological conclusions from 
Rank 1 “putatively annotated compound” assignments. A 

“putatively annotated compound” is assigned a Rank = 1 or 
Rank 1S when one of the following scenarios is true.

Rank 1S: The putative metabolite has one or more sin-
glets in the 1D 1H spectrum, and

a.	 The intensity and chemical shift of the singlets in the 
sample spectrum match that of the putative metabolite 
in a 1D reference spectrum database (e.g. ChenomX).

b.	 The singlet assignment is not supported by 2D data, i.e. 
either a cross peak in a 2D 1H-13C HSQC or in a 1H-
15N HSQC, (with the sign of a 1H-13C cross-peak being 
consistent with that expected from multiplicity editing 
(Willker et al. 1993)).

Rank 1: The putative metabolite has multiple peaks, 
including multiplets, and

a.	 The intensities and chemical shifts of at least two mul-
tiplets matches that of the putative metabolite in a 1D 
reference spectrum database (e.g. ChenomX).

b.	 None of the matching peak assignments are supported 
by 2D homonuclear 1H-1H TOCSY data.

c.	 None of the matching peaks are supported by 2D het-
eronuclear 1H-13C or 1H-15N HSQC NMR data (with the 
sign of a 1H-13C cross-peak being consistent with that 
expected from multiplicity editing (Willker et al. 1993)).

2.4.2 � Rank 2S/2

Rank 2 or Rank 2S indicates an intermediate level of con-
fidence in identification of a “putatively annotated com-
pound”. Researchers can be reasonably confident when 
drawing biochemical or biological conclusions based on 
measured changes in the concentration of Rank 2 or Rank 
2S “putatively annotated compounds”. The “putatively anno-
tated compound” is assigned to Rank 2 or Rank 2S when one 
of the three following scenarios is true.

Rank 2S: The putative metabolite has one or more sin-
glets in the 1D 1H spectrum, and

a.	 The intensity and chemical shift of one or more sin-
glets in the sample spectrum matches that of the putative 
metabolite in a 1D reference spectrum database (e.g. 
ChenomX).

b.	 At least one singlet assignment based on the 1D database 
is supported by 2D data, i.e. either a cross peak in a 2D 
1H-13C HSQC or 2D 1H-15N HSQC (with the sign of a 
1H-13C cross-peak being consistent with that expected 
from multiplicity editing (Willker et al. 1993)).

Rank 2: The putative metabolite has multiple peaks, 
including multiplets, and

https://www.chenomx.com/
http://www.hmdb.ca/
http://spin.ccic.ohio-state.edu/
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a.	 The intensities and chemical shifts of at least two multi-
plets match that of the putative metabolite in a 1D refer-
ence spectrum database (e.g. ChenomX).

b.	 At least two matching multiplet assignments from the 1D 
data are supported by 2D homonuclear 1H-1H TOCSY 
data.

c.	 The matching multiplets supported by the 1D data and 
2D 1H-1H TOCSY data are not supported by 2D hetero-
nuclear 1H-13C or 1H-15N HSQC NMR data (with the 
sign of a 1H-13C cross-peak being consistent with that 
expected from multiplicity editing (Willker et al. 1993)).

2.4.3 � Rank 3S/3

Rank 3 or Rank 3S indicates the highest level of confidence 
in assignment of a “putatively annotated compound”. The 
researcher can be highly confident when making biochemi-
cal or biological conclusions regarding changes in the con-
centration of the “putatively annotated compound”. The 
“putatively annotated compound” is assigned a Rank 3 or 
Rank 3S when one of the following scenarios is true.

Rank 3S: The putative metabolite has two or more sin-
glets in the 1D 1H spectrum, and

a.	 The intensity and chemical shift of the majority of at 
least two singlets in the sample spectrum matches that 
of the putative metabolite in a 1D reference spectrum 
database (e.g. ChenomX).

b.	 The majority of at least two singlet assignments are 
supported by 2D data, i.e. either a cross peak in a 2D 
1H-13C HSQC or in a 1H-15N HSQC, (with the sign of a 
1H-13C cross-peak being consistent with that expected 
from multiplicity editing (Willker et al. 1993)).

Rank 3: The putative metabolite has multiple peaks, 
including multiplets, and

a.	 The intensities and chemical shifts of the majority of at 
least two multiplets match that of the putative metabolite 
in a 1D reference spectrum database (e.g. ChenomX).

b.	 The majority of at least two matching multiplet assign-
ments are supported by 2D homonuclear 1H-1H TOCSY 
data.

c.	 The majority of at least two matching multiplet assign-
ments are supported by 2D heteronuclear 1H-13C or 
1H-15N HSQC NMR data (with the sign of a 1H-13C 
cross-peak being consistent with that expected from 
multiplicity editing (Willker et al. 1993)).

In order to facilitate rank assignments using RANCM, 
a decision tree flow chart has been constructed as shown 
in Fig. 1. One utilizes the decision tree by first identify-
ing a putative metabolite present in the reference spectrum 

database. For example, one can “filter” the database for ref-
erence compounds that have a peak at or near the chemi-
cal shift of the peak you are attempting to identify. Once 
you have identified a putative compound, the next step is to 
determine which of the two branches in the decision tree to 
take in making your rank assignment, i.e. does the putative 
metabolite have only “one or more singlets” (left branch 
in Fig. 1), or does the metabolite have “multiple peaks, 
including multiplets” (right branch in Fig. 1). One you have 
determined the correct branch, simply start at the top of the 
branch, answering the tier 1, tier 2 and tier 3 questions in 
the boxes (Fig. 1). At the first instance where you answer 
“NO” to the question, you stop and assign the “putatively 
annotated compound” the rank indicated at the right of the 
question. An Excel worksheet template is provided in sup-
plementary material that can be used as a guide for making 
rank assignments and to document every “putatively anno-
tated compound” rank assignment, by adding a sheet for 
each metabolite. It is intended that the Excel sheet should 
be used at the time the researcher is making “putatively 
annotated compound” assignments. At the completion of 
the study, it is recommended that the investigator prepare 
a table indicating the rank assignment for each “putatively 
annotated compound” and that the table be included either 
in the manuscript or as supplementary material, and that 
the completed Excel sheet be submitted together with the 
raw data to document the data used to make the “putatively 
annotated compound” assignments. The Excel sheet tem-
plate that can be used to curate and document metabolite 
and rank assignments has been deposited to the figshare data 
repository (https​://figsh​are.com/s/1b2fc​d1465​8f32e​65fcb​).

3 � Results and discussion

3.1 � Rank 1S example—3,7‑dimethyluric acid

Here, we demonstrate a Rank 1S assignment of 3,7-dimethy-
luric acid (strongest acidic pKa = 8.13). Based on filtering for 
the observed chemical shifts of ~ 3.37 ppm and ~ 3.42 ppm 
in ChenomX, we determined that 3,7-dimethyluric acid was 
a potential candidate (Fig S1A). Since 3,7-dimethyluric acid 
had only two predicted singlets, this determined that we 
should use the “one or more singlets” branch in the deci-
sion tree (Fig. 1). We were able to match chemical shifts 
of the two singlets as well as the intensity of the singlet at 
~ 3.37 ppm in ChenomX (Fig S1A), thus satisfying the tier 
1 criterion in the decision tree (Fig. 1). This ensured assign-
ment of the metabolite as 3,7-dimethyluric acid with at least 
a Rank 1S confidence level. In order to advance to a Rank 2S 
level, at least one of the peaks would need to be supported by 
2D 1H-13C HSQC data. Inspection of the 2D 1H-13C HSQC 
in the HMDB reference data base for 3,7-dimethyluric acid 

https://figshare.com/s/1b2fcd14658f32e65fcb
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(HMDB01982) revealed the chemical shifts at which we 
should expect cross peaks (Fig S1B). However, inspection 
of the experimental 2D 1H-13C HSQC spectrum in Fig S1C 
revealed that the expected peaks were either absent or had 
insufficient signal to noise to be observed. Therefore, the tier 
2 criterion could not be satisfied and the metabolite could 
only be assigned as 3,7-dimethyluric acid with a Rank 1S 
confidence level in this sample.

3.2 � Rank 1 example—homovanillate

Based on filtering for the chemical shifts at ~ 6.88 ppm, we 
determined that homovanillate (carboxylic acid pKa = 3.74) 
was a potential match (Fig S2A). Five peaks, including 

multiplets were predicted based on the ChenomX data base 
(Fig S2A), indicating that we should use the “multiple peaks 
including multiplets” branch of the decision tree (Fig. 1). 
The chemical shifts could be matched for three of the five 
expected features and the intensities could be matched for 
two of the peaks (Fig S2A), thus satisfying the tier 1 level 
criterion in the decision tree. In order to advance to a Rank 
2 assignment, the majority of the peaks tentatively assigned 
using the 1D ChenomX database needed to be supported by 
2D 1H-1H TOCSY data. The expected cross peaks in the 2D 
1H-1H TOCSY were identified from the spectrum included 
in the HMDB for record HMDB00118 (Fig S2B). Inspec-
tion of the experimental 2D 1H-1H TOCSY spectrum in the 
region where the cross peaks were expected (Fig S2B, red 

Fig. 1   Decision tree flowchart for deciding rank assignments for 
“putatively annotated compounds”. The decision tree contains two 
branches. The branch selection depends on the number and nature 
of the peaks expected in a 1D 1H NMR spectrum according to the 
following: a metabolite having one or more singlet peaks (left, red 
branch) or metabolite having multiple peaks including multiplets 
(right, blue branch). To determine which branch to use, one first iden-
tifies a putative matching compound and determines the number and 
complexity of expected peaks for the putative compound from a ref-

erence database. Once the appropriate branch has been selected, one 
proceeds to answer the questions at each tier, starting at Tier 1. Each 
tier is separated into a distinct row within the decision tree. If one 
answers “YES” to the question for a given tier, one proceeds to the 
question in the next tier. In the first instance for which one answers 
“NO” to a question, the investigator would not proceed further, and 
would assign the rank indicated beside the boxed question to the 
“putatively annotated compound”
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inset) did not allow definitive observation of the expected 
cross peaks given their proximity to the diagonal (Fig S2B, 
green inset), and therefore it was not possible to satisfy the 
tier 2 criterion in the list, thus limiting the confidence to a 
Rank 1 assignment. In order to advance to a Rank 3 assign-
ment, the tier 3 criterion would have needed to be satisfied. 
This would have required that the majority of the peaks ten-
tatively assigned in the 1D spectrum be supported by 2D 1H-
13C HSQC data. The positions of the expected cross peaks 
for homovallinate were found from the reference spectrum 
provided in the HMDB (Fig S2C), however submission of 
the peak list of the experimental 2D 1H-13C HSQC spectrum 
matched only one of the three expected cross peaks (Fig 
S2C, inset), which would have failed to satisfy the tier 3 cri-
terion and prevented advancement to a Rank 3 assignment.

3.3 � Rank 2S example—allantoin

Based on filtering for the chemical shifts at ~ 5.4 ppm in 
the 1D ChenomX database, we determined that allantoin 
(strongest acidic pKa = 8.93) was a potential match for this 
metabolite (Fig S3A). As can be seen in Fig S3A, two peaks 
were expected in the 1D 1H spectrum of allantoin at 5.4 and 
6.0 ppm. Since the two expected peaks in allantoin were 
singlets, this dictated that we should use the “one or more 
singlets” branch of the decision tree. Inspection of the 1D 1H 
spectrum indicated that the chemical shift and intensities of 
both predicted peaks could be adjusted to fit the experimen-
tal spectrum (Fig S3A) thus satisfying the tier 1 criterion in 
the decision tree (Fig. 1). This ensured that allantoin could 
be assigned with at least a Rank 1S confidence level. In 
order to advance to the Rank 2S level, at least one of the 
two peaks would need to be supported by 2D 1H-13C HSQC 
data. Inspection of the structure of allantoin (Fig S3B) indi-
cated that it has only one non-exchangeable methine proton 
that would be observable in a 2D 1H-13C HSQC spectrum. 
Comparison of the experimental 2D 1H-13C HSQC spec-
trum with that of the reference spectrum included in the 
HMDB (HMDB0000462) indicated that expected peak was 
a potential match (Fig S3C), and this was further confirmed 
by submitting the data to the COLMAR software which 
identified allantoin as a unique match for the experimentally 
observed cross peak (Fig S3D). This ensured that the “puta-
tive metabolite” could be assigned as allantoin with at least 
a Rank 2S confidence level. In order to advance to a Rank 
3S level, both of the expected peaks tentatively identified in 
the 1D spectrum would need to be supported by 2D HSQC 
data. However, because the second singlet corresponded to 
one or more of the exchangeable NH protons, it was impos-
sible to support the assignment of this peak with 2D 1H-15N 
HSQC NMR data, and therefore it was impossible to satisfy 
the tier 3 criterion, thus limiting the assignment to a Rank 
2S level of confidence.

3.4 � Rank 2 example—hydroxyphenyllactate

Based on filtering the ChenomX 1D database for peaks 
around 6.9 ppm and 7.2 ppm, hydroxyphenyllactate (strong-
est acidic pKa = 3.58) was identified as a potential metabo-
lite candidate. Hydroxyphenyllactate was found to have sev-
eral peaks including multiplets, indicating that we should 
use the “multiple peaks, including multiplets” branch of 
the decision tree (Fig. 1). It was found that the chemical 
shifts and intensities of multiple peaks could be fit using the 
ChenomX database (Fig S4A), satisfying the tier 1 criterion 
indicating that the metabolite could be assigned at least a 
Rank 1 confidence level. In order to advance to the Rank 2 
level, the majority of at least two peaks tentatively identified 
in the 1D spectrum would need to be supported by 2D 1H-
1H TOCSY data. Submission of the experimental 2D 1H-1H 
TOCSY spectrum to the COLMAR database query returned 
matches for multiplets identified in the 1D ChenomX data-
base (Fig S4B) satisfying the tier 2 criterion that ensured at 
least a Rank 2 assignment. In order to advance to the Rank 
3 level, the majority of the peaks tentatively identified in the 
1D ChenomX database needed to be supported by 2D 1H-
13C HSQC data. Five cross peaks were expected in the 2D 
1H-13C HSQC data based on the spectrum included in the 
HMDB for hydroxyphenyllactate (HMDB00755) (Fig S4C). 
Out of the five expected peaks, only two were detected: one 
for proton #2 (Fig S4C, red inset) and one for proton #4 (Fig 
S4C, blue inset) whereas peaks were missing for proton #1 
(Fig S4C, green inset) and proton #3 (Fig S4C, blue inset). 
The lack of support for the assignment of the majority of 
peaks identified in the 1D ChenomX database by the 2D 1H-
13C HSQC data failed to satisfy the tier 3 criterion and thus 
limit the confidence in the assignment of the metabolite to 
hydroxyphenyllactate to a Rank 2 confidence level.

3.5 � Rank 3S example—creatine

In this case, filtering the ChenomX database for peaks 
near 3.0 ppm and 3.9 ppm led to the identification of cre-
atine (strongest acidic pKa = 3.5) as a potential metabolite. 
Inspection of the peak list indicated that we should expect 
two singlets for creatine, dictating that we should use the 
“one or more singlets” branch of the decision tree (Fig. 1). 
It was found that the chemical shifts and intensities of both 
peaks could be matched in the 1D ChenomX database 
(Fig. 2a), thus satisfying the tier 1 criterion and ensuring 
that the metabolite could be assigned as creatine with at least 
a Rank 1S confidence level. In order to advance to the Rank 
2S level, at least one of the singlet peaks tentatively assigned 
in the 1D ChenomX database would need to be supported 
by 2D HSQC data. Reference to the HMDB indicated that 
two cross peaks should be expected in the 2D 1H-13C HSQC 
spectrum for creatine (HMDB00064) (Fig. 2b). Inspection of 
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the experimental 2D 1H-13C HSQC spectrum for this sample 
indicated that two peaks were found in the expected region 
of the spectrum (Fig. 2b, inset), thus satisfying the tier 2 
criterion for assignment to the Rank 2S level. Submission 
of the list of cross peaks picked from the experimental 2D 
1H-13C HSQC spectrum to the COLMAR database indicated 
that both of the peaks found in the correct region of the 
spectrum matched the cross peaks expected for creatine in 
the COLMAR database (Fig. 2c, inset). Furthermore, the 
methyl cross peak (peak #2) and the methylene cross peak 
(peak #1) had the expected sign expected for their respective 
multiplicities (Fig. 2b, inset). These observations satisfied 
the tier 3 criterion indicating that creatine could be assigned 
with a Rank 3S confidence level. As a point of reference, two 
nearby peaks both in the 1D ChenomX database and in the 
2D COLMAR database were identified as creatinine in the 
COLMAR database.

3.6 � Rank 3 example—lactate

Filtering of the 1D ChenomX database for peaks near 
1.3 ppm and 4.1 ppm led to identification of lactate (strongest 

acidic pKa = 3.86) as a potential candidate (Fig. 3a). Inspec-
tion of the peak list for lactate indicated that two multiplets 
should be expected for the metabolite, dictating that the 
“multiple peaks, including multiplets” branch of the decision 
tree should be used (Fig. 1). It was found that the chemical 
shifts and intensities of the peaks in the experimental spec-
trum could be matched with the reference spectrum for lac-
tate in the 1D ChenomX database, thus satisfying the tier 1 
criterion and ensuring that the metabolite could be assigned 
as lactic acid with at least a Rank 1 confidence level. In order 
to advance to the Rank 2 level, it would be necessary that 
the two peaks tentatively assigned to lactate be supported by 
2D 1H-1H TOCSY data. Submission of the experimental 2D 
1H-1H TOCSY spectrum to the COLMAR database returned 
a match for the cross peak expected between the two ten-
tatively assigned multiplets in the 1D ChenomX database 
(Fig. 3b). This satisfied the tier 2 criterion, ensuring that the 
metabolite could be assigned to lactate with at least a Rank 2 
confidence level. In order to advance to the Rank 3 level, the 
two tentatively assigned multiplets in the 1D ChenomX data-
base needed to be supported by 2D 1H-13C HSQC data. The 
cross peaks expected in the 2D 1H-13C HSQC spectrum for 

Fig. 2   Data used for the Rank 3S assignment for creatine. a The 1D 
1H experimental NMR spectrum (black) overlaid with two matching 
singlets from the 1D 1H reference spectrum of creatine (blue) deter-
mined by ChenomeX. Both peaks representative of creatine are pre-
sent in the experimental spectrum at the expected intensities. b The 
2D 1H-13C HSQC reference NMR spectrum for creatine included 
in the HMDB. The chemical structure of creatine and the chemical 
shifts for the cross peaks are included as insets. The experimental 2D 

1H-13C HSQC NMR spectrum is included as an inset, with red circles 
denoting experimental cross peaks that match the database peaks in 
the reference spectrum. c The COLMAR output after submitting the 
cross peaks that were picked from the experimental spectrum to the 
COLMAR database. The green solid circles indicate cross peaks that 
match the expected peak for creatine within defined tolerances. Due 
to similarities in structure and chemical shifts, creatinine has also 
been indicated using red circles in this database query
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L-lactate were found in the reference spectrum included in 
the HMDB (HMDB0000190)1 (Fig. 3c). Submission of the 
list of cross peaks picked from the experimental 2D 1H-13C 
HSQC spectrum to the COLMAR database returned unique 
matches for both of the expected cross peaks (Fig. 3d), thus 
satisfying the tier 3 criterion and justifying the identification 
of lactate with a Rank 3 confidence level. It should be noted 
that simple reference to the NMR databases did not enable 
distinction between the d- and l- stereoisomers of lactate.

3.7 � Recommended use of RANCM in NMR‑based 
metabolomics studies

The primary aim of the RANCM algorithm is to minimize 
ambiguity in assignments to the MSI “putatively annotated 
compound” category, which is by far the most common 

assignment category reported in modern NMR-based meta-
bolic profiling studies. The persistent ambiguity in ubiqui-
tous “putatively annotated compound” assignments signifi-
cantly and negatively impacts the reliability and potential 
impact of NMR-based metabolic profiling studies. In many 
cases, the goal of a NMR-based metabolic profiling study 
is to establish a biochemical, biological and cellular under-
standing of a disease condition, or other parameter, being 
investigated based on the changes in concentrations of sig-
nificant metabolites that are either “identified” or assigned 
as a “putatively annotated compounds”. Thus, the story 
that emerges from the inferences regarding the metabolic 
pathways based on the lists of metabolites identified in the 
metabolic profiling analysis depends on the confidence 
with which the “putatively annotated compound” assign-
ments have been made. However, there is no current stand-
ard method or practice for assigning confidence levels to 
“putatively annotated compound” assignments, and conse-
quently, there is also no mechanism for documenting, report-
ing and submitting such documentation to the national and 

Fig. 3   Data used for the Rank 3 assignment for L-lactic acid. a The 
1D 1H experimental NMR spectrum (black) overlaid with matching 
multiplets from the 1D 1H reference spectrum of l-lactic acid (blue) 
determined by ChenomX. The two peaks representative of l-lactic 
acid are present in the experimental spectrum at the expected chemi-
cal shifts, with one feature of a multiplet overlapping with other sig-
nals. b The COLMAR output after submitting the experimental 2D 
1H-1H TOCSY spectrum to a COLMAR query. An inset shows that 
two peaks identified by COLMAR match the two peaks for l-lactic 
acid contained in the COLMAR database. c The 2D 1H-13C HSQC 

reference NMR spectrum for l-lactic acid included in the HMDB. 
The chemical structure of lactic acid and the chemical shifts for the 
cross peaks are included as insets. d Two peaks characteristic of lactic 
acid identified by a COLMAR query of the experimental 2D 1H-13C 
HSQC NMR detailing the expected peaks (in red) matching with the 
peaks identified by COLMAR(in blue) Other identified peaks are pre-
sent, but are not circled. Further insets detail the matching ratio result 
from the COLMAR query, as well as detailed insets for both experi-
mental cross peaks(in blue and red) that match the expected positions 
from the HMDB database within defined tolerances

1  Note that the spectrum included for l-lactic acid in the HMDB is 
labeled as d-lactic acid with record number (HMDB0001311).
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international data repositories alongside the raw NMR data 
files. The new RANCM ranking system introduced here is 
intended to fill these gaps, and by doing so, hopefully to 
increase the reliability, impact and utility of NMR-based 
metabolomics investigations.

We recommend that NMR-based metabolomics research-
ers adopt the new RANCM ranking scheme by completing 
the Excel sheet template included in supplementary material 
for each “putatively annotated compound” and that the Excel 
sheet documenting the confidence in the identification of 
each “putatively annotated compound” be uploaded along-
side the raw experimental data in the public data reposito-
ries. It is recommended that the investigator complete a sheet 
as each putative metabolite is assigned, treating the Excel 
sheet as an electronic notebook. By adopting this practice, 
the investigator essentially documents their curation of the 
putative metabolite assignment process, while at the same 
time assigning a confidence rank to each assignment. We 
have deposited a completed Excel sheet documenting the six 
rank assignments included in this manuscript as an exam-
ple to the figshare data repository with the following acces-
sion number (https​://figsh​are.com/s/1b2fc​d1465​8f32e​65fcb​
). Furthermore, we recommend that the rank assignments 
for all “putatively annotated compound” be reported in the 
manuscript either in a table or in supplementary material. By 
adopting these practices, not only will researchers be able to 
use a straight-forward instrument to assign confidence lev-
els to their “putatively annotated compound” identifications, 
but submitting the associated documentation supporting 
those rank assignments alongside the data used to make the 
rank assignments will enable future investigators to always 
go back to the original data if there are any future queries 
regarding those metabolite identifications. Another strength 
of the RANCM ranking system is that it provides a detailed 
decision tree that is easily used with any combination of 
datasets, ranging from only 1D experimental 1H NMR spec-
tra to a complete set of 1D and 2D homonuclear 1H spectra 
or heteronuclear 1H-13C or 1H-15N NMR spectra. Therefore, 
the RANCM ranking system is stable in the sense that the 
rigor of the rank assignment is independent of the number or 
type of datasets that are used to make the rank assignment. 
Finally, the ease with which the decision tree along with the 
Excel sheet template can be used to document “putatively 
annotated compound” assignments should ensure that the 
RANCM algorithm can be widely adopted across the field 
of NMR-based metabolomics investigations.

3.8 � Discussion of limitations of the RANCM 
algorithm

The RANCM algorithm presented is deliberately simple for 
multiple reasons. One reason is that the algorithm was con-
structed with the intention that it could be used with any set 

of NMR data available to the investigator, ranging from 1D 
data only to extensive 2D data sets collected either at natural 
abundance or with the aid of isotopic labeling. While it is 
desirable to identify putative metabolites with the highest 
confidence possible, in practice there are always complica-
tions that limit confidence in assignments, including spectral 
overlap, limited signal-to-noise ratio, and incomplete refer-
ence databases, to mention a few. Some of these limitations 
can be overcome to some extent either using some means 
of sample enrichment or isotopic enrichment to overcome 
issues related to poor signal-to-noise, and these various 
approaches are well documented in the literature. Notwith-
standing these limitations, and even if exceptional measures 
are taken to improve the quality of the NMR data, it is criti-
cal to document the confidence in metabolite assignments 
in the context of whatever NMR data was used to make the 
assignments. Besides the limiting factors just mentioned, 
there are other factors that could be considered when assign-
ing the confidence level of a metabolite identification. For 
example, one could consider the likelihood that the putative 
metabolite will be present in the particular sample matrix 
under consideration based on information available in the 
various database, such as the HMDB. Using such informa-
tion, a higher confidence in a metabolite assignment could 
be achieved if the measured concentration in the sample 
matrix is consistent with the average concentration, or within 
the range of the metabolite concentrations reported in the 
database for the given sample matrix (Canueto et al. 2018). 
The current RANCM algorithm does not take such informa-
tion into consideration. Another technique that can be used 
in metabolite validation is STOCSY (Cloarec et al. 2005), 
however, our intentionally simple algorithm does not include 
reference to use of STOCSY. Once a putative metabolite 
assignment has been made, it is also possible to determine 
if the putative metabolite assignment and the inferred meta-
bolic pathways makes biochemical sense and such informa-
tion could be used as a means of cross-validation of puta-
tive metabolite assignments. Another potential issue that the 
investigator must be aware of, but is outside of the scope of 
the algorithm, is the importance and complexity of proper 
referencing of the experimental spectra so that accurate com-
parisons can be made with the reference database spectra. 
For example, it is common for the public databases to use 
DSS as a reference compound, whereas it has become com-
mon for investigators conducting NMR based metabolic pro-
filing studies to use TSP, and one must either account for the 
chemical shift differences between the reference standards 
or allow for a slightly greater tolerance to accommodate lack 
of correction. Referencing issues are also a potential prob-
lem due to chemical shift variability across different sample 
matrices, e.g. urine, blood, etc., and the investigators must 
be cognizant of the potential problems that this can cause for 
accurate referencing and comparison to the spectra deposited 

https://figshare.com/s/1b2fcd14658f32e65fcb
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in the public databases. A final limitation of the RANCM 
algorithm as presented is that it has not yet been indepen-
dently validated by experts out in the field. It is our hope 
that the quality and utility of the RANCM algorithm can 
be confirmed and improved by further validation by experts 
who use NMR based metabolic profiling as a part of their 
research. The authors would welcome any suggestions for 
improvement of the RANCM algorithm.

4 � Conclusions

In conclusion, we introduce the RANCM ranking system 
to assign confidence levels to “putatively annotated com-
pound” metabolite identifications made from experimental 
NMR spectral data. This new ranking system is intended 
to augment the original MSI guidelines in a manner that 
minimizes the ambiguity associated with the “putatively 
annotated compound” assignment category. The RANCM 
ranking system is supported by an easy-to-use decision tree 
that can be implemented using any combination of experi-
mental NMR spectra. The ranking system will add value 
to NMR based metabolic profiling studies by providing a 
consistent and rigorous ranking scheme can be used to report 
confidence levels in metabolite assignments regardless of 
the amount or type of experimental NMR data that is avail-
able for a given NMR based metabolomics study. It is rec-
ommended that the experimental data supporting the rank 
level assignments be documented in an Excel sheet for every 
metabolite identified in the course of the study, and that the 
supporting documentation be submitted along with the raw 
NMR data files associated with the metabolomics study. The 
rank confidence values obtained using the RANCM algo-
rithm introduced here could easily be integrated with, com-
bined with, or reported alongside other existing approaches 
for assignment confidence in metabolite identifications made 
in NMR based metabolic profiling studies.
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