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Abstract
Introduction  Processing delays after blood collection is a common pre-analytical condition in large epidemiologic studies. 
It is critical to evaluate the suitability of blood samples with processing delays for metabolomics analysis as it is a potential 
source of variation that could attenuate associations between metabolites and disease outcomes.
Objectives  We aimed to evaluate the reproducibility of metabolites over extended processing delays up to 48 h. We also 
aimed to test the reproducibility of the metabolomics platform.
Methods  Blood samples were collected from 18 healthy volunteers. Blood was stored in the refrigerator and processed for 
plasma at 0, 15, 30, and 48 h after collection. Plasma samples were metabolically profiled using an untargeted, ultrahigh 
performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) platform. Reproducibility of 1012 metabo-
lites over processing delays and reproducibility of the platform were determined by intraclass correlation coefficients (ICCs) 
with variance components estimated from mixed-effects models.
Results  The majority of metabolites (approximately 70% of 1012) were highly reproducible (ICCs ≥ 0.75) over 15-, 30- or 
48-h processing delays. Nucleotides, energy-related metabolites, peptides, and carbohydrates were most affected by pro-
cessing delays. The platform was highly reproducible with a median technical ICC of 0.84 (interquartile range 0.68–0.93).
Conclusion  Most metabolites measured by the UPLC–MS/MS platform show acceptable reproducibility up to 48-h pro-
cessing delays. Metabolites of certain pathways need to be interpreted cautiously in relation to outcomes in epidemiologic 
studies with prolonged processing delays.
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1  Introduction

Metabolomics involves the study of small molecules 
(< 1500 Da) related to metabolism in cells, biofluids, and 
tissues using high-throughput analytical technologies 
(Wishart 2008). Metabolomics is increasingly being used 

in epidemiologic studies to identify metabolic variations 
related to disease development (Shah and Newgard 2015; 
Mayers et al. 2014; Sreekumar et al. 2009; Holmes et al. 
2008), early detection biomarkers (Gaul et al. 2015; Ishi-
kawa et al. 2016) and lifestyle biomarkers (Cross et al. 2014; 
Moore et al. 2014; Playdon et al. 2017, 2016). Because 
pre-analytical factors during sample collection and storage 
can introduce measurement error to metabolite levels and 
attenuate the associations with disease outcomes, evaluat-
ing the reproducibility of metabolites given the existing pre-
analytical factors is critical before applying the technology 
in epidemiologic studies.

A potential source of pre-analytic variation in many epi-
demiologic studies is the delay in sample processing that 
often occurs when blood is collected outside of facilities 
with appropriate processing laboratories, and thus must be 
transported to a different facility for fractionation and sub-
sequent storage and the delay could go beyond 24 h. During 
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prolonged processing delays, certain metabolite levels can 
change primarily due to active metabolism of red blood cells 
(Bernini et al. 2011; Bervoets et al. 2015; Fliniaux et al. 
2011; Jain et al. 2017; Jobard et al. 2016; Malm et al. 2016; 
Trezzi et al. 2016).

Several studies have evaluated the effect of processing 
delays on serum or plasma metabolic profiles (Bernini et al. 
2011; Bervoets et al. 2015; Breier et al. 2014; Dunn et al. 
2008; Fliniaux et al. 2011; Jain et al. 2017; Jobard et al. 
2016; Kamlage et al. 2014; Malm et al. 2016; Midttun et al. 
2014; Townsend et al. 2013; Trezzi et al. 2016; Yin et al. 
2013; Shurubor et al. 2007). However, only three of these 
studies evaluated processing delays longer than 24 h (Jain 
et al. 2017; Midttun et al. 2014; Shurubor et al. 2007), and 
among those studies either a limited number of metabolites 
was evaluated (Midttun et al. 2014; Shurubor et al. 2007) or 
no quantitative individual metabolite results were provided 
(Shurubor et al. 2007; Jain et al. 2017). Thus, information 
regarding the reproducibility of individual metabolites over 
longer processing delays is lacking.

The statistical method used to quantify the influence of 
processing delay is important when informing calculation 
of statistical power or sample size in epidemiologic studies 
of metabolomics and diseases. In epidemiologic studies that 
examine relationships with disease outcomes, metabolite 
reproducibility, assessed by intraclass correlation coefficient 
(ICC, the ratio of between-person variance to total variance), 
is more meaningful to consider than absolute level change. 
When between-person variation is much larger than varia-
tion due to processing delay, the impact of processing delay 
on the metabolite-disease association will be minimal (Ber-
voets et al. 2015). ICC has been used to calculate attenuated 
risk estimates given the true risk estimates (Platz et al. 2010; 
Rosner et al. 1992). The attenuated risk estimate determines 
the effect size and statistical power of the study. Some previ-
ous studies reported significant changes in metabolite levels 
due to processing delay but didn’t calculate variation due 
to processing delay (Breier et al. 2014; Bernini et al. 2011; 
Jobard et al. 2016; Kamlage et al. 2014; Malm et al. 2016; 
Trezzi et al. 2016; Yin et al. 2013). Several other studies 
reported systematic differences in blood metabolic profiles 
using multivariate analysis such as principal component 
analysis and suggested that between-person variation was 
greater than processing delay variation but didn’t calculate 
ICC (Bervoets et al. 2015; Fliniaux et al. 2011; Jain et al. 
2017; Teahan et al. 2006). Only two of the previous studies 
quantified reproducibility over processing delays using ICC 
(Townsend et al. 2013; Midttun et al. 2014).

Therefore, we conducted a study to test the reproduc-
ibility of metabolites measured by an untargeted, ultrahigh 
performance liquid chromatography-tandem mass spectrom-
etry (UPLC–MS/MS) platform over extended processing 
delays up to 48 h, mimicking the conditions during sample 

transportation and processing in large population studies. 
We aimed to examine the reproducibility of the metabolites 
and identify a list of metabolites that are poorly reproduced 
during processing delays to inform studies with similar pre-
analytic conditions. We also aimed to evaluate the reproduc-
ibility of the platform using sample replicates.

2 � Methods

2.1 � Participants and study design

A convenience sample of 18 healthy volunteers donated 
non-fasting blood for this study. A total of 240 ml blood 
was collected using 10 ml sodium EDTA vacutainers. Blood 
samples were placed in a rack and kept in the refrigerator 
until being processed by centrifugation for 10 min at 1000×g 
after 0, 15, 30, and 48 h. Plasma was transferred into the 
1.8 ml cryovials using a sterile, disposable plastic pipette 
and stored at − 80 °C until needed for analysis. For each 
participant, the samples collected at the 15- and 48-h time 
points were analyzed in duplicate whereas those for the 0- 
and 30-h time point were analyzed in triplicate. Thus, ten 
samples were analyzed from each volunteer.

The 180 samples (18 × 10) were analyzed in two batches 
(108 and 72 samples on each batch) on two consecutive days. 
Triplicates of 12 samples were distributed among the study 
samples to allow for the calculation of within and between 
batch variation.

2.2 � Metabolomics analysis

Metabolomic profiling was conducted by Metabolon, Inc. 
(Durham, NC) using UPLC–MS/MS described elsewhere 
(Evans et al. 2009). Briefly, methanol was added to pre-
cipitate protein, followed by centrifugation. The resulting 
extract was divided into five fractions: two for analysis by 
two separate reversed phase (RP)/UPLC–MS/MS methods 
with positive ion mode electrospray ionization (ESI), one 
for analysis by RP/UPLC–MS/MS with negative ion mode 
ESI, one for analysis by HILIC/UPLC–MS/MS with nega-
tive ion mode ESI, and one sample was stored as backup. 
Individual metabolites were identified by comparison with 
the Metabolon chemical spectral library of more than 3300 
authentic purified standards based on retention time, mass to 
charge ratio, and fragment ion spectra. The majority of the 
named metabolites are validated identification according to 
the metabolomics standards initiative (Sumner et al. 2007; 
Schrimpe-Rutledge et al. 2016). Metabolites that are struc-
turally similar but have a side group that could not be defini-
tively placed in the molecule were given the same chemical 
name followed by a number in parentheses to differentiate 
them from each other.



Reproducibility of non-fasting plasma metabolomics measurements across processing delays﻿	

1 3

Page 3 of 8  129

2.3 � Statistical analysis

Before any statistical analysis, we excluded metabolites that 
were below the detection limit in ≥ 90% samples (n = 14 of 
1026) to reduce noise. Missing values were assigned the 
minimum detection value for the included metabolites. To 
correct for day-to-day variation from the platform, each 
metabolite was divided by its daily median.

To evaluate the reproducibility of metabolites over pro-
cessing delays and reproducibility of the platform, two 
types of ICCs were calculated (Sampson et al. 2013). ICCs 
representing reproducibility of processing delay denote the 
proportion of total variance attributable to between-person 
variance (Eq. 1). Samples collected at two time points (15 
vs 0 h, 30 vs 0 h, 48 vs 0 h) were used to calculate ICCt 
(ICC15, ICC30, ICC48). Total variance is the sum of between-
person variance (�2

B
) , within-person variance or variance due 

to processing delay (�2

W
) , and variance of random error (�2

�
) . 

These variance components were estimated from a mixed-
effects model with subject (Si), interaction term of subject 
and processing delay (SiTi), and random error being random 
variables, and processing delay (Ti) being a fixed variable 
(Model 1).

Model 1 

Model 2 further separated batch as a random effect (Bi). 
The reproducibility of the platform—technical ICC (ICCtech) 
was calculated as the proportion of the total variance that is 
attributable to biological variance (sum of between-person 
and processing delay variance), as opposed to random labo-
ratory error (Eq. 2). We further calculated percentage of 
variance due to batch effect (Varbatch %) using Eq. 3.
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We considered ICCs < 0.4 to be poor, 0.4–0.59 to be fair, 
0.6–0.75 to be good and > 0.75 to be excellent (Cicchetti 
1994). All statistical analyses were performed using the 
computing environment R 3.4.2.

3 � Results

3.1 � Reproducibility over processing delays

In the analysis, the 1012 metabolites included 31% unknown 
metabolites, 30% lipids, 17% amino acids, 10% xenobiotics, 
3% nucleotides, 3% peptides, 2% carbohydrates, 2% vitamins 
and cofactors, and 1% energy-related metabolites. At 15-h 
processing delay, 7.1% (n = 72) metabolites had poor repro-
ducibility (ICC15 < 0.4), and 71.4% (n = 723) had excellent 
reproducibility (ICC15 > 0.75) (Table 1). For 30- and 48-h 
processing delay, the number of metabolites with poor repro-
ducibility were slightly higher [85 (8.4%) and 83 (8.2%), 
respectively] and metabolites with excellent reproducibility 
were slightly fewer [696 (68.8%) and 697 (68.9%), respec-
tively] compared to 15 h. When stratified by super-pathway, 
processing delays primarily affected nucleotides (median 
ICCs ≤ 0.58), approximately 30% with ICCs < 0.4; smaller 
proportions of energy-related metabolites (11–22%), pep-
tides (15%), and carbohydrates (10%) had ICCs < 0.4 over 
processing delays, however the median ICCs for the latter 
three pathways were considered good or excellent. Repro-
ducibility across all processing delay times was excellent for 
approximately 70% of amino acids, cofactors and vitamins, 
lipids, unknowns and xenobiotics.

The ICCs for individual metabolites are shown in Sup-
plemental Table 1. The metabolites with poor reproduc-
ibility at any time point (n = 102) included those involved 
in sub-pathways such as glutathione metabolism, histidine 
metabolism, glycolysis, TCA cycle, lysolipids, γ-glutamyl 
amino acid, purines, pyrimidines and several subtypes of 
fatty acids. Of these metabolites, 30 had acceptable repro-
ducibility at 15 h (ICC15 ≥ 0.4) but poor reproducibility at 
either 30 or 48 h (ICCs < 0.4).

We further calculated the fold-change of metabolite levels 
from 0 to 15, 0 to 30, and 0 to 48 h (complete results of fold-
change are shown in Supplemental Table 1). We evaluated 
the relationship between ICC and absolute value of percent 
change in all metabolites, and found statistically significant 
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but low inverse correlation between them (r = − 0.24, − 0.14, 
− 0.14 for 15, 30, and 48 h, respectively; P values < 0.0001). 
For the majority of metabolites, there was no clear pattern 
between fold-change and ICC. Fold-change and ICCs were 
shown side by side in Fig. 1 for 75 known metabolites with 
poor reproducibility at either 15-, 30- or 48-h processing 
delay.

3.2 � Technical reproducibility

The contribution of batch variance to total variance was very 
low with a median of 3% which is not unexpected because 
the two batches were measured on consecutive days (Supple-
mental Table 1). Sixty-six percent of metabolites (n = 665) 
had excellent technical reproducibility (ICCtech > 0.75). The 
overall high technical reproducibility (median ICCtech = 0.84, 
IQR = 0.68–0.93) indicated that the platform is highly repro-
ducible (Table 2). Correlation analyses indicated a high cor-
relation between ICC15 and ICCtech (r = 0.81, P < 0.0001), 
ICC30 and ICCtech (r = 0.79, P < 0.0001) and between ICC48 
and ICCtech (r = 0.81, P < 0.0001). Most metabolites with 
high ICC30 and ICC48 have high ICCtech because between-
person variance which is in the numerator of ICCtech equa-
tion is relatively large compared with total variance. How-
ever, metabolites with poor ICC over processing delays 
could also have high ICCtech due to the large processing 
delay variance which is also in the numerator of the equa-
tion (Fig. 2).

4 � Discussion

In this study that evaluated reproducibility of metabolites 
over up to 48-h processing delays, the majority of the 
metabolites were highly reproducible over 15-, 30- or 48-h 
processing delays. The untargeted UPLC–MS/MS platform 
used for the metabolomics analysis was highly reliable.

The human metabolome is a dynamic and complex matrix 
with a high inter-individual variability. A series of reactions 
occur in vitro after blood collection, such as erythrocyte 
metabolism, enzymatic activities, degradation and synthe-
sis of certain metabolites. Erythrocytes account for 40–45% 
of the volume of whole blood, and active metabolism of 
erythrocytes is a major event causing metabolism pertur-
bation during processing delays (Jain et al. 2017). Several 
studies suggest that metabolites related to erythrocytes can 
be used as indicators of prolonged processing delays when 
documentation of sample processing delay is missing (Breier 
et al. 2014; Jain et al. 2017; Kamlage et al. 2014; Malm Ta
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Fig. 1   Fold-change and intraclass correlation coefficients (ICCs) 
across 15, 30, and 48 h of processing delay among 75 known metabo-
lites with poor reproducibility (ICCs < 0.4) at any delay time point
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et al. 2016; Trezzi et al. 2016). Examples of these metabo-
lites include carbohydrates involved in glycolysis such as 
glucose, lactate, and pyruvate (Breier et al. 2014; Kamlage 
et al. 2014; Malm et al. 2016), 5-oxoproline, ornithine/argi-
nine ratio (Jain et al. 2017), and ascorbic acid/lactic acid 
ratio (Trezzi et al. 2016). Importantly, among these stud-
ies, the longest processing delay was up to 4 days after col-
lection (Jain et al. 2017). Similarly, we found significant 
fold-change for 30- and 48-h processing delays in glucose, 
lactate, pyruvate, and 5-oxoproline. In addition, the ornith-
ine/arginine ratio also increased over processing delay time 
in our study (fold-change = 1.18., 1.27, 1.30 for 15, 30, and 

48 h, respectively). Ascorbic acid was not measured thus 
the ratio of ascorbic acid to lactate was not investigated. 
ICCs for the above metabolites at 30 and 48 h were also low, 
however ornithine/arginine ratio has excellent reproducibil-
ity at both times (ICC30 = 0.87, ICC48 = 0.81). Although the 
absolute value of percent change and ICC are inversely cor-
related, the correlation coefficients are very low. Both ICC 
and fold-change are important when assessing the stability 
of metabolites over processing delay. Only ICC is informa-
tive when calculating effect size and statistical power in epi-
demiologic studies of metabolomics and outcomes.

In addition to the metabolites involved in glycolysis, TCA 
cycle, and glutathione metabolism, poor reproducibility was 
also found for metabolites involved in γ-glutamyl amino 
acid, and for several fatty acid subtypes. The low ICCs of 
purines and pyrimidines observed in this study are similar 
to the findings of a study conducted in the Nurses’ Health 
Study and Health Professionals Follow-up Study, and could 
be due to the ongoing enzymatic reactions in whole blood 
(Townsend et al. 2013).

There are 30 metabolites with acceptable reproducibility at 
15 h but poor reproducibility at 30 or 48 h, such as 5-oxopro-
line and cysteinylglycine involved in glutathione metabolism, 
succinate in TCA cycle, DHA, sphingomyelin, and sphingo-
sine 1-phosphate. These metabolites might be reliable when 
processing delay is within 24 h but need to be interpreted 
cautiously when processing delay goes beyond 1 day.

The present study has several advantages. It evaluated 
reproducibility across prolonged processing delays for a 

Table 2   Technical reproducibility of metabolites by super-pathway 
(n = 18)

IQR interquartile range

Super-pathways N Median technical ICC (IQR)

Amino acid 177 0.84 (0.71, 0.94)
Carbohydrate 20 0.75 (0.62, 0.83)
Cofactors and vitamins 25 0.86 (0.73, 0.94)
Energy 9 0.75 (0.68, 0.84)
Lipid 303 0.84 (0.68, 0.92)
Nucleotide 32 0.69 (0.58, 0.85)
Peptide 26 0.72 (0.60, 0.91)
Xenobiotics 105 0.89 (0.72, 0.96)
Unknown 315 0.84 (0.71, 0.93)
Total 1012 0.84 (0.68, 0.93)

Fig. 2   Scatter plots of ICC for processing delays and technical ICC
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larger number of metabolites than had been examined in 
previous studies. It quantified reproducibility using the ICC 
which is directly linked to effect size and statistical power 
in epidemiologic studies. There are also limitations in the 
present study. Time of day of blood collection and fasting 
status were not controlled. Previous studies show that sev-
eral lipid species and amino acids vary across time during 
the day, partially due to the effect of circadian rhythmicity 
(Ang et al. 2012; Begum et al. 2016). Therefore the between-
person variation and total variation might be larger for these 
metabolites than those in a study where these conditions are 
controlled. Only three processing delay times were evaluated 
in this study. However, large cohort studies typically experi-
ence a range of distribution of processing delays. Therefore 
the ICC obtained from this study may not be accurate when 
the samples are a mix of different processing delays, which 
can contribute to measurement error in effect size and power 
calculations. If the majority of the samples experience simi-
lar processing delays, this impact may be minimal.

5 � Conclusions

In this study designed to evaluate metabolite reproducibility 
over extended processing delays, most metabolites measured 
by the untargeted UPLC–MS/MS platform were shown to be 
highly reproducible over 15-, 30- or 48-h processing delays. 
The results demonstrated that pre-analytical constraints 
commonly imposed on sample processing in large cohort 
studies do not preclude metabolomic analyses to identify 
meaningful metabolite-disease associations. Metabolites of 
certain pathways need to be interpreted cautiously in rela-
tion to disease outcomes in future etiological analyses when 
prolonged processing delay is a common condition.
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