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Abstract
Introduction Metabolomics is an emerging approach for early detection of cancer. Along with the development of metab-
olomics, high-throughput technologies and statistical learning, the integration of multiple biomarkers has significantly 
improved clinical diagnosis and management for patients.
Objectives In this study, we conducted a systematic review to examine recent advancements in the oncometabolomics-based 
diagnostic biomarker discovery and validation in pancreatic cancer.
Methods PubMed, Scopus, and Web of Science were searched for relevant studies published before September 2017. We 
examined the study designs, the metabolomics approaches, and the reporting methodological quality following PRISMA 
statement.
Results and Conclusion The included 25 studies primarily focused on the identification rather than the validation of predictive 
capacity of potential biomarkers. The sample size ranged from 10 to 8760. External validation of the biomarker panels was 
observed in nine studies. The diagnostic area under the curve ranged from 0.68 to 1.00 (sensitivity: 0.43–1.00, specificity: 
0.73–1.00). The effects of patients’ bio-parameters on metabolome alterations in a context-dependent manner have not been 
thoroughly elucidated. The most reported candidates were glutamic acid and histidine in seven studies, and glutamine and 
isoleucine in five studies, leading to the predominant enrichment of amino acid-related pathways. Notably, 46 metabolites 
were estimated in at least two studies. Specific challenges and potential pitfalls to provide better insights into future research 
directions were thoroughly discussed. Our investigation suggests that metabolomics is a robust approach that will improve the 
diagnostic assessment of pancreatic cancer. Further studies are warranted to validate their validity in multi-clinical settings.
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AUC   Area under the curve
BCAAs  Branched-chain amino acids
CP  Chronic pancreatitis

GC–MS  Gas chromatography–mass 
spectrometry

LC–MS  Liquid chromatography–mass 
spectrometry

MRI  Magnetic resonance imaging
MS/MS  Tandem mass spectrometry
NMR  Nuclear magnetic resonance
OPLS-DA  Orthogonal projections to latent 

structures discriminant analysis
PC  Pancreatic cancer
PCA  Principal component analysis
PDAC  Pancreatic ductal adenocarcinoma
PLS-DA  Partial least squares discriminant 

analysis
PLS-DF  Partial least squares discriminant 

function
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Q2  Cross-validated coefficient of 
determination

R2  Coefficient of determination
ROC  Receiver operating characteristic 

curve
SFE-SFC/MS/MS  Supercritical fluid extraction-super-

critical fluid chromatography coupled 
with tandem mass spectrometry

1 Introduction

Pancreatic cancer (PC) is currently one of the leading causes 
of cancer-related fatality worldwide with the median sur-
vival of six months (Oberstein and Olive 2013). Despite 
the lethal properties of PC, this disease usually has no early 
warning signs. Hence, a large number of patients are diag-
nosed at the advanced and incurable stages of the disease. 
Available screening approaches, however, are only highly 
capable of detecting PC among high-risk individuals (Shin 
and Canto et al. 2012). With the advancement of genom-
ics and other post-genomic high-throughput technologies, a 
tremendous number of genetic molecules and proteins have 
been reported to be potential biomarkers in the literature. 
Significantly, an extensive investigation has introduced 
a compendium that includes 2516 genes and evidence of 
their expression levels that were associated with PC, which 
accounted for approximately 12–13% of the known human 
coding genes (Harsha et al. 2009). Still, there are currently 
no clinically relevant biomarkers for accurate diagnosis 
in early stage of PC. Various types of recurrent somatic 
mutations of PC have been observed in a recent integrated 
genomics, transcriptomics, and proteomics study, which 
indicated the remarkable complexity of the disease (Can-
cer Genome Atlas Research Network 2017). Moreover, the 
precise mechanisms of PC initiation and progression remain 
poorly understood despite recent significant progress (Hezel 
et al. 2006; Makohon-Moore and Iacobuzio-Donahue 2016). 
This fact has contributed to the unsatisfactory performance 
of not only the discovery of useful biomarkers for early 
detection within the general population but also the devel-
opment of accurate diagnostic tests for the disease in clinical 
practice (McCormick and Lemoine 1998).

The integration of metabolomics in cancer biomarker 
research, including PC, is an emerging field (Fan et al. 
2012; Halbrook and Lyssiotis 2017; Kumar et al. 2017; 
Perez-Rambla et al. 2017). This approach is expected to 
facilitate a comprehensive understanding of the metabolic 
alterations and to reveal underlying connections between PC 
and non-PC conditions. General advantages and disadvan-
tages of the employed analytical platforms for PC metabo-
lomics studies as well as a discussion of possible strategies 
were reviewed intensively (Gangi et al. 2014). Also, several 

metabolomics-based studies aiming to discover and validate 
metabolic alterations that are distinctly associated with the 
status of PC have been conducted (Tumas et al. 2016). The 
detection of distinct features of PC using biofluids and/or tis-
sue at the metabolome level can be used not only to provide 
new insights into cancer mechanisms but also to develop 
new diagnostic approaches (Nguyen et al. 2015).

Increasing interest in applying metabolomics to discover 
and validate biomarkers for early detection and diagnosis of 
PC has resulted in a variety of profiles regarding the metabo-
lomics approaches and potential candidates. However, there 
has been no overall survey of the status of this dominant 
topic. The complexity of a high-throughput technology like 
metabolomics combined with the unique challenges of a 
biomarker study requires considerable effort to translate the 
findings into meaningful knowledge. Additionally, the clini-
cal applicability of novel diagnostic biomarkers provided by 
omics-based studies is commonly overstated, possibly due 
to biases in the study design, small sample size, lack of epi-
demiological data, inadequate analysis, and/or insufficient 
validation (Lumbreras et al. 2009). In the current study, we 
conducted a systematic review to provide a comprehensive 
discussion on the clinical significance, current perspectives, 
and potential pitfalls of metabolomics-based biomarkers in 
PC. Finally, the putative biological relationships of reported 
biomarker candidates were also explored.

2  Materials and methods

The current systematic review was accomplished according 
to a predefined reporting protocol recommended by Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA, http://www.prism a-state ment.org/). The 
full checklist is shown in Supplementary file 1.

2.1  Systematic literature search

As shown in Fig. 1, a systematic search of PubMed, Scopus, 
and Web of Science was carried out to identify studies that 
evaluated the application of metabolomics in diagnostic bio-
marker discovery and validation in PC. According to a previ-
ously published guideline, the following terms were used: 
“(pancreas or pancreatic) and (tumor or tumour or malig-
nancy or neoplasm or cancer or carcinoma or adenoma) and 
(“metabolite profiling” or “metabolite analysis” or “meta-
bolic profiling” or “metabolic fingerprinting” or “meta-
bolic characterization” or metabolome or metabolomics or 
metabolomic or metabonomics or metabonomic or lipidome 
or lipidomics or lipidomic)” (Aromataris and Riitano 2014). 
There was no limit in terms of the search duration. The lit-
erature search was conducted on 16 September 2017. In 

http://www.prisma-statement.org/
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addition, the references to relevant articles were reviewed 
to identify the suitable studies for further assessment.

2.2  Inclusion and exclusion criteria

Data of title, year of publication, authors, and abstracts were 
extracted to EndNote X6 (Thomson Reuters, NY, USA). 
Duplicated articles among databases were removed. After 
that step, an initial screening process was employed by 
reading the titles and the abstracts of the remaining articles. 
Potential and suspected articles were further evaluated by 
reading their full-texts. Eligibility was reviewed by at least 
two authors to avoid personal biases, and a consensus was 
made when having inconsistencies.

A study was qualified when it examined the diagnostic 
biomarker discovery and validation using any metabolomics 
platforms in PC that described most if not all the following 
elements: (1) biospecimen (tissue, serum, and/or plasma, 
etc.); (2) metabolomics platform (GC/MS, LC/MS, and/or 
NMR, etc.); (3) the statistical biomarker selection and evalu-
ation (univariate analysis, multivariate analysis, or statistical 
learning) for the discrimination of PC from other cancer-
ous and non-cancerous conditions; (4) suitable prediction 
metrics of the biomarkers (accuracy, sensitivity, specificity, 
and area under a receiver operating characteristics curve 
(AUC-ROC), etc.). We excluded the studies if (1) no suitable 
control groups were used; (2) the studies were conducted 
on animal tissues or cell lines; (3) there was duplicated or 
had no reliable data; and (4) they are letters, reviews, the-
ses, and conference posters or proceedings. There was no 
restriction to study design, race, geographical area, or cer-
tain population.

2.3  Study data extraction

A data extraction form was developed in accordance with 
previously published systematic reviews and guidelines. 
Basic information of the study (first author, year of publi-
cation), patient characteristics (country, patient participant 
status, clinical stage, prior treatment), control participant 
status, age, gender ratio, and follow-up were first extracted. 
Criteria for diagnosis were examined by three levels: guide-
line, histological confirmation, or not described. Next, the 
biological specimen, employed metabolomics or lipidomics 
platforms, nature of the approach (targeted or untargeted), 
fasting condition, sample collection and storage condition, 
sample preparation or pretreatment description, internal 
standard, analytical validation, and metabolite identification 
methods were described. Finally, we assessed the valida-
tion protocol (external validation or cross-validation), outlier 
detection, suggestive biomarkers (individual markers or pan-
els of markers), quantitative prediction model, and the meas-
urement of predictive performance (Findeisen and Neumaier 
2009). The performances of the biomarker panels were pref-
erably reported. Although  R2 (coefficient of determination) 
and  Q2 (cross-validated  R2) are not the direct indicators for 
the clinical utility or the future prediction of the diagnostic 
models, they are commonly employed in metabolomics bio-
marker research (Xia et al. 2013). Thus, the  R2 and  Q2 values 
of PLS-DA or OPLS-DA models were extracted. For each 
included article, at least two reviewers read and extracted 
relevant data for the qualitative synthesis. The reviewers 
retrieved data independently to avoid unexpected error and/
or personal biases. Any inconsistencies were discussed to 
reach a final consensus.

Fig. 1  The whole workflow of 
the systematic review
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2.4  Reporting methodological quality assessment

According to the Metabolomics Standards Initiative, a 
minimum reporting standard of metabolomic experiments 
includes adequate reports of sample preparation, experi-
mental analysis, quality control, metabolite identification, 
and data pre-processing (Sumner et al. 2007). For the eval-
uation of a biomarker study, clear objective, proper clinical 
context, appropriate data source, robust statistical analysis, 
and external validation are desired (Azuaje et al. 2009; 
Bossuyt et al. 2015, 2003; Parker et al. 2010; Turakhia 
and Sabatine 2017). Collectively, we developed a reporting 
quality assessment panel of included studies to fully assess 
the included studies with both diagnostic study and metab-
olomics study aspects: (1) the study characteristics includ-
ing study design, characteristics of the studied population, 
diagnostic criteria, criteria for inclusion and exclusion, 
prior treatment, follow-up, comparative analysis with ref-
erence (e.g., CA19.9); (2) the sampling and experimental 
analysis including sample collection and storage, sample 
preparation, experimental condition, the use of internal 
standard, analytical validation method, outlier detection, 
metabolite identification; and (3) the computational analy-
sis including data pre-processing, statistical analysis, and 
quantitative prediction modeling. At least two authors 
independently assessed the quality of the included studies 
in accordance with the extracted data. We used the term 
“low risk of bias” (L) for adequate description, “high risk 
of bias” (H) for simple description or not described (U) for 
unknown risk of bias, and we performed the visualization 
of the quality assessment under QUADAS-2 tool (Whiting 
et al. 2011). In addition, QUADOMICS, a quality assess-
ment panel specialized for omics-based diagnostic assess-
ment studies was also adopted and applied simultaneously 
(Lumbreras et al. 2008).

2.5  Pathway enrichment analysis

The compound name standardization was conducted 
using Human Metabolome Database version 4.0 prior to 
the analysis (Wishart et al. 2017). The pathway analysis 
was conducted using MetaboAnalyst version 3.5 (http://
www.metab oanal yst.ca) (Xia and Wishart 2016). The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and the small molecule pathway (SMP) were used as the 
knowledgebase to identify relevant pathways. The analysis 
algorithm was a hypergeometric test for over-representa-
tion analysis, and the relative betweenness centrality was 
selected for pathway topology analysis. The pathway that 
has an adjusted P-value (false discovery rate, FDR) of less 
than 0.05 was considered to be significantly enriched.

3  Results

The whole process of the screening step is shown in Fig. 1. 
From 972 reports of Web of Science, Scopus, and PubMed, 
664 studies were included for title and abstract screening 
after deleting duplications. We then excluded 590 studies 
that were not related to the study question, conducted on ani-
mal tissues or cell lines, or had no suitable control groups or 
no reliable data. Letters, reviews, theses, conference posters 
or proceedings were also ruled out. Only 74 studies were eli-
gible for further full-text assessment. We excluded 49 pub-
lications because they also met the exclusion criteria. There 
were no other papers identified by cross-referencing the rel-
evant articles. Eventually, the final list of included studies 
that contained 25 papers was subjected to systematic review.

3.1  Characteristics of included studies

The main characteristics of included studies are described 
in Table 1. There were three studies collecting samples 
from two distinct populations [Xie et al. (2015) from USA 
and China, Ritchie et al. (2013) from Japan and USA, and 
Lindahl et al. (2017) from Germany and Sweden]. Biologi-
cal samples utilized for metabolomic analysis included: 
serum/plasma (22 studies), urine (two studies), and saliva 
(one study). Apart from the study of Fukutake et al. (2015) 
in which 360 cancer and 8400 control cases were involved, 
the sample size of the remaining studies was relatively 
small, in which only three studies contained more than 
100 PC patients (median of 40, range from 5 to 360). The 
mean/median age of PC samples seems to be higher than 
the mean/median age of the control groups. The male/
female ratio among studies was greater than one. Never-
theless, 11 studies utilized age- and gender-matched con-
trol samples. Healthy controls were used in 22 studies. 
Twelve studies used one or a mixture of non-cancerous 
or other cancerous conditions. One study used retrospec-
tive, 21 used prospective, and two studies used both retro-
spective and prospective methods for sample allocation. 
Noticeably, clinical and laboratory criteria for the diagno-
sis of PC in metabolomics-based biomarker studies were 
not adequately reported. Particularly, ten studies (40%) 
explicitly described that pathological information was 
used for the diagnosis. Tumor stage was provided in 19 
studies, in which the number of samples in the resect-
able stages (0–II) accounted for approximately nearly a 
half portion. The training set of Hirata et al. (2017), the 
test set of Xie et al. (2015), and the whole data set of 
Suzuki et al. (2017) and Urayama et al. (2010) included PC 
patients who were only in resectable stages. In the study 
of Sugimoto et al. (2010), all patients were diagnosed with 
primary disease. External validation was employed in nine 

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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studies (36%). Follow-up of non-cancerous controls was 
not a common practice as only 24% of the studies applied 
it to ensure the diagnosis and grouping.

3.2  Metabolomics design properties of included 
studies

The study design and metabolomics approaches of the 
included studies can be found in Table 2. Most studies 
were untargeted metabolomics (14 studies at 56%), lipid-
omics (two studies at 8%), or both (three studies at 12%). 
Four studies were targeted metabolomics, which focused 
on amino acids (Fukutake et al. 2015; Hirata et al. 2017; 
Leichtle et al. 2013) or fatty acids (Di Gangi et al. 2016). 
Mass spectrometry (MS) was the most commonly used plat-
form for the assessment of novel biomarkers in PC (19 stud-
ies), followed by NMR (four studies), or both (one study). 
Serum and plasma were the two most important biologi-
cal specimens in finding potential biomarkers for accurate 
diagnosis of PC. Thirteen studies employed samples col-
lecting under fasting condition. Samples in the included 
studies were generally stored at − 80 °C after collection 
(22 studies). Before the analysis, sample preparation was 
essentially performed using defined protocols. The use of 
internal standards was common and observed in 17 studies. 
However, only 14 studies reported having analytical valida-
tion using quality control samples. The compound identifica-
tion using authentic standards was described in ten studies. 
Also, in-house library and database matching were the two 
popular methods. Finally, although outlier detection is useful 
for the statistical analysis and modeling, only three studies 
performed outlier detection, mostly using the PCA method.

3.3  Metabolite‑based biomarkers are novel 
for early diagnosis of PC from healthy controls 
and other non‑cancerous conditions

The study design of the included studies focused mainly on 
the differentiation of PC from healthy controls, PC from 
non-malignant diseases, and PC from other malignant con-
ditions. There was only one study that applied the “multi”-
benign conditions for the control group (Bathe et al. 2011). 
In general, the reported quantitative values (AUC, accuracy, 
sensitivity, and specificity) were promising. The AUC of 
diagnostic models constructed using multivariate analysis 
ranged from 0.68 to 1.00. The accuracy varied from at least 
0.78 to 0.99, while sensitivity and specificity varied from 
0.43 to 1.00 and 0.73 to 1.00, respectively. The performance 
of the biomarker panels in the included studies can be found 
in Table 3 and the properties of the included studies are 
extensively depicted in Supplementary File 2.

3.4  Reporting methodological quality assessment

The two quality assessment results of the included stud-
ies can be found in Fig. 2 and Supplementary File 3. Our 
in-house quality assessment contains 16 domains based 
on both the diagnostic study and the metabolomics study 
aspects. Twenty of 25 studies (80%) adequately reported 
at least eight per 16 domains. The remaining five studies 
reported at least six domains. Characteristics of the diagnos-
tic criteria, criteria for inclusion and exclusion, follow-up, 
comparative analysis with reference, and outlier detection 
were among the least adequately reported domains (Fig. 2a). 
Only five studies had the follow-up program. According to 
the QUADOMICS tool, 21 of 25 studies (84%) adequately 
reported at least eight per 16 items (Fig. 2b). All 25 studies 
were either phase I or phase II. Therefore, items 2 and 14 
regarding the use of metabolomics testing in practice were 
not applicable for all of the studies. According to item 16, 
the risk of over-fitting presented in 16 of the studies (64%) 
owing to the lack of an independent validation set.

3.5  Pathway enrichment analysis of potential 
biomarkers

From the included studies, we extracted 132 potential bio-
marker candidates. Among them, amino acids were domi-
nant. Glutamic acid and histidine were reported in seven 
studies, followed by glutamine and isoleucine both of which 
were revealed in five studies. Only 46 compounds that 
were estimated more than once were submitted to conduct 
pathway enrichment analysis. As shown in Fig. 3, alanine, 
aspartate and glutamate metabolism (impact value of 0.75, 
FDR of 8.44E−04); glycine, serine and threonine metabo-
lism (impact value of 0.42, FDR of 3.39E−04); and taurine 
and hypotaurine metabolism (impact value of 0.36, FDR 
of 3.67E-02) were the most prominent pathways derived 
from the selected biomarkers. In addition, seven other path-
ways were also enriched: Arginine and proline metabolism; 
aminoacyl-tRNA biosynthesis; methane metabolism; valine, 
leucine and isoleucine biosynthesis; nitrogen metabolism; 
cyanoamino acid metabolism; and synthesis and degrada-
tion of ketone bodies. Detailed information regarding the 
reported metabolites and enriched pathways can be found 
in Supplementary File 4.

4  Discussion

CA19.9 has been the only approved biomarker for clini-
cal management of PC by Food and Drug Administration 
(Partyka et al. 2012). However, the level of CA19.9 also 
increases in other malignancies and even benign condi-
tions while cannot be detected in Lewis antigen-negative 
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patients (Ballehaninna and Chamberlain 2012). Not to 
mention, CA19.9 had poor clinical utility as a diagnos-
tic biomarker of PC, and its level did not have the power 
to help clinicians make additional testing or procedures, 
as well as manage patients (Singh et al. 2011). Although 
many papers encompassing various disciplines have intro-
duced novel biomarker candidates for early detection and 
diagnosis of PC, most of the markers have not proceeded 
beyond the discovery phase (Chan et al. 2013). Moreover, 
the reporting quality of the development and validation 
of the proposed markers has been generally poor among 
medical disciplines, including cancer research (Moons 
et al. 2015). The important role of cellular metabolism 
has been recently acknowledged as a hallmark of cancer, 
which can facilitate the discovery of promising metabo-
lomics-based biomarkers and novel treatments (Halbrook 
and Lyssiotis 2017; Pavlova and Thompson 2016). A 
metabolite that significantly alters its expression in PC 
and can be detected accurately may become a biomarker 
candidate. Nevertheless, PC cells are highly heterogene-
ous, and this characteristic hampers the development of 
a straightforward method for accurate diagnosis of this 
cancer (Sidaway 2017). In a recent literature review, Tan-
ase et al. (Tanase et al. 2009) concluded that only the 

combination of soluble biomarkers could provide adequate 
sensitivity and specificity for clinical applications. Addi-
tionally, circulating biomarkers are of great interest for 
developing promising biomarker panels (Cappelletti et al. 
2015; Konforte and Diamandis 2013). In this paper, we 
examined the status of the oncometabolomics-based bio-
marker study for the diagnosis of PC. Many individual 
markers and marker panels were introduced, and some 
of them were externally validated. Despite the promising 
results, these studies primarily focused on the identifica-
tion of the potential biomarkers rather than validation of 
their predictive capacity. There are also some remaining 
issues, which may affect the value of the proposed markers 
for a broader range of clinical use. For example, the sam-
ple size was generally small except the study of Fukutake 
et al. (Fukutake et al. 2015). Concrete epidemiological 
characteristics, diagnostic criteria, and tumor grading were 
usually missing. Similar problems were also reported in a 
systematic review of metabolomic profiling of oesophago-
gastric cancer (Abbassi-Ghadi et al. 2013). Moreover, the 
transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis (TRIPOD) state-
ment recommended for multivariate prediction model 
studies was not yet applied (Moons et al. 2015). Herein, 
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Fig. 2  The two quality assessment results of the included studies. a Our self-developed quality assessment. b QUADOMICS tool. Items 2 and 14 
regarding the use of metabolomics testing in practice are not applicable for all of the studies, and then, are not presented in the figure



 N. P. Long et al.

1 3

109 Page 20 of 26

we discuss crucial aspects and provide recommendations 
for future investigations on metabolomics-based diagnostic 
biomarker study.

Problems with study design and validation protocol of 
a biomarker study lead to the suggestion of false positive 
candidates or rejection of the false negative candidates. In 
biomarker research, essential information is usually not suf-
ficiently provided in diagnostic studies, which eventually 
hinders the study assessment, replication, and application 
(Azuaje et al. 2009; Bossuyt et al. 2015). The lack of clini-
cally relevant biomedical context in the investigations on 
diagnostic accuracy is also a major shortcoming (Irwig et al. 
2002; Pepe et al. 2008). According to our assessment, the 
quality of scientific reporting regarding the metabolomic 
aspects was not strictly followed. Hence, there is an urgent 
need to improve important reported elements in diagnostic 
accuracy research. The Standards for Reporting of Diag-
nostic Accuracy (STARD), updated in 2015, is an impor-
tant source for reference to improve the accurate reporting 
of diagnostic studies (Bossuyt et al. 2015). It is also worth 
mentioning that a biomarker study for diagnostic purpose 
may require different criteria in terms of clinical indicators 
than a screening-based biomarker study (Pepe et al. 2008). 
This domain-specific property requires intensive consid-
erations regarding the particular purpose of the biomarker 
research. For instance, the prospective-specimen-collection, 

retrospective-blinded-evaluation (ProBE) study design 
guideline suggests that a diagnostic study should demand a 
very high sensitivity while the acceptable value of a false-
positive rate (1—specificity) can be up to 75% (Pepe et al. 
2008). In addition, a diagnostic biomarker does not have to 
be the gold standard for the diagnosis of PC to be valuable. 
Instead, it can be a companion tool to assist other clinically 
relevant biomarker panels or diagnostic tests, such as endos-
copy ultrasound, enhanced MRI, and ultrasound-guided fine-
needle aspiration (Ryan et al. 2014; Takhar et al. 2004).

Surgical resection of the primary tumor followed by adju-
vant chemotherapy is the only curable option for PC. The 
resectable PC is mainly regarded as stage I and stage II (Ryan 
et al. 2014). Therefore, biomarker panels that can accurately 
diagnose PC at those stages are essential. There is an agree-
ment that an effective approach for early diagnosis should be 
able to detect the PC at pancreatic intraepithelial neoplasia 
or T1N0M0 stage (Canto et al. 2013). However, our find-
ings show that none of the included metabolomics-based 
biomarker studies focused on the premalignant lesions, such 
as pancreatic intraepithelial neoplasia and intraductal papil-
lary mucinous neoplasm, and only five studies paid attention 
to the early stages of PC when introducing new biomarkers 
(Fukutake et al. 2015; Hirata et al. 2017; Suzuki et al. 2017; 
Urayama et al. 2010; Zhang et al. 2014). This may come 
from the fact that PC is usually asymptomatic and not visible 

Fig. 3  Pathway enrichment analysis of potential biomarkers. Alanine aspartate and glutamate metabolism; glycine serine and threonine metabo-
lism; and taurine and hypotaurine metabolism were three most prominent pathways
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on conventional imaging studies at early stages (Kamisawa 
et al. 2016). Furthermore, the inclusion of more PC patients 
of stage III or IV may cause an overoptimistic estimation in 
terms of early diagnosis (Kobayashi et al. 2013). A similar 
problem was also observed in diagnostic biomarkers of blad-
der cancer (Rodrigues et al. 2016).

Errors and biases can occur at all phases of biomarker 
discovery and validation studies that eventually increase the 
risk of misleading results (Diamandis 2010). As an example, 
the significant difference of the age of patients and controls 
may become the confounding factor that affects the reliabil-
ity of the biomarker panels (Kuan 2014). Hence, the effects 
of suspect confounding factors should be measured using 
proper analyses. In addition, there are several studies that 
applied a gender- and/or age-matched control approach. 
Although this method is statistically efficient and helps con-
trol potential confounders, it is usually problematic and is 
not preferred (Pepe et al. 2008).

Among statistical approaches, multivariate regression 
analysis, partial least squares discriminant analysis, and 
orthogonal projections to latent structures discriminant 
analysis have been the commonly applied methods in PC 
biomarker research. Nonetheless, there is an increasing trend 
of using the so-called “black-box” machine learning models. 
On the one hand, machine learning methods substantially 
increase the effectiveness of discriminant analysis, but on 
the other hand, they raise considerable concerns in the bio-
medical community, especially because of its lack of inter-
pretability (Foster et al. 2014). However, lack of interpret-
ability can partially be solved by applying local interpretable 
model-agnostic explanations (LIME) method to readily 
interpret how a particular model works (Ribeiro et al. 2016). 
It is important to note that the consecutive analyses using 
different statistical and machine learning methods on the 
same data set, in which the later analyses use the outcome 
of the previous models as the supervised methods for feature 
selection, may eventually provide overfitting results (Smi-
alowski et al. 2010). These data over-interpretation practice 
should be avoided. The clinical value of a set of biomarkers 
is reflected by positive predictive value, negative predic-
tive value, positive likelihood ratio, and negative likelihood 
ratio; these parameters, when applicable, are encouraged 
to be reported in future studies (Usher-Smith et al. 2016). 
Additionally, there is no universal rule to develop criteria 
for determining potential biomarkers. Our results show that 
most of the studies applied univariate and/or multivariate 
analysis for this purpose. However, the relative difference 
of a particular compound of different groups (fold change) 
is rarely employed as a criterion. A small change, such as 
0.9 or 1.1, may be purely due to the disturbance of the data-
gathering process and may not be reproducible. However, 
there is no consensus on what cut-off should be applied. 
For instance, Crews et al. (2009) suggested a fold change 

of greater than two in their variability analysis of human 
plasma while other authors applied a fold change of 1.5 for 
their analyses (Patti et al. 2012; Vinaixa et al. 2012). There-
fore, researchers may flexibly consider this indicator as an 
additional criterion when interpreting the metabolomics 
results.

The class-imbalanced problem, even though is usually 
neglected in biomarker research, often results in poor per-
formance of a diagnostic model for the minority class in 
clinical utility (Kondo 2014; Saito and Rehmsmeier 2015). 
This issue becomes even more problematic when it comes 
up with the high-dimensional nature of a high-throughput 
study (Yin et al. 2013). Besides, some additional factors 
that affect the performance of the prediction include, but 
are not limited to the inadequate numbers of the explora-
tory data (e.g., small sample size), data complexity, and the 
considerable similarity of the metabolomes of different con-
ditions. Excellent discussions of this particular issue can be 
found elsewhere (Chen et al. 2014; Lin and Chen 2013). It 
is of importance to mention that untargeted metabolomics 
data contain many redundant and noisy features that nega-
tively affect the performance of the classification models 
(Grissa et al. 2016). Feature selection aims to reduce the 
data complexity derived from a high-throughput experiment 
by selecting the discriminatory features between cases and 
control samples. The smaller subset of valuable features 
can be used to build different supervised learning models 
for the classification purpose. However, a separate portion 
of data for feature selection may be required before typi-
cal training and test sets are used to search for the optimal 
predictive models to avoid overfitting results. Besides, the 
integration of demographic information, clinical signs and 
typical laboratory tests, and the metabolomics-based bio-
marker panels may significantly enhance the diagnostic per-
formance (Liesenfeld et al. 2013). For instance, hyperglyce-
mia, increased CA19-9, and elevated branched-chain amino 
acids (BCAAs) are strongly associated with the status of 
the PC (Pannala et al. 2009). However, this approach is cur-
rently not widely applied to metabolomics-based biomarker 
discovery and validation studies.

Lately, common pre-analytical, analytical, and data pro-
cessing pitfalls and best practices for different platforms 
of metabolite measurement are intensively addressed 
(Baran 2017; Lu et al. 2017). Nevertheless, the applica-
tion of reporting standards has not been strictly followed 
in metabolomics studies. According to The Metabolomics 
Society Data Quality Task Group, there is still a lack of a 
consensus on quality assurance (QA) and quality control 
(QC) practices among metabolomics laboratories, suggest-
ing the need of courses, specialist meetings and reports, and 
expert panels to create practical QA and QC recommenda-
tions and guidelines as well as to enhance the practice in the 
metabolomics community (Dunn et al. 2017). Besides the 
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lack of QC methods, errors in sample processing and stor-
age can also cause misleading results in biomarker discov-
ery. Moreover, the metabolic perturbation during quenching 
and extraction can be avoided by rapid manipulation, or the 
metabolite degradation and interconversion after extraction 
can be addressed by shortening the time interval between 
sample preparation and analysis or by using preservatives 
(Lu et al. 2017). One prominent problem is the short-term 
and long-term stability of metabolites in biospecimens since 
the process of sample acquisition in a biomarker study usu-
ally takes months or years (Dunn et al. 2011; Yang et al. 
2013). Yang et al. indicated that the concentration of some 
common metabolites in plasma was altered as rapidly as 
one hour when stored at 4 °C. Moreover, the metabolome 
of the specimens could be changed significantly even when 
stored at − 80 °C in a 5-year period (Yang et al. 2013). The 
vulnerable metabolites, therefore, should be considered for 
exclusion from the biomarker panel. The harmonization in 
quantitative untargeted lipidomics has been an issue that pre-
vents inter-study and inter-laboratory comparisons (Bowden 
et al. 2017). However, a recent comparative investigation 
on 126 identical plasma and 29 quality control samples of 
nine MS instruments has demonstrated that the untargeted 
lipidomics analysis using different instruments can achieve 
almost comparable results. The study partly answered a 
long-standing question of whether different conclusions in 
biological studies are mainly affected by the MS instruments 
(Cajka et al. 2017).

Peak misidentification of significantly different com-
pounds in untargeted metabolomics settings, especially 
in LC–MS based untargeted metabolomics, is currently a 
bottleneck that prevents the application of metabolomics 
in clinical settings (Kind et al. 2017). Peak misidentifica-
tion may be brought about by co-eluting isomers, similar 
molecular-weight interferences, or in-source fragmenta-
tion products (Lu et al. 2017). The estimation of false dis-
covery rate is recommended to improve the robustness of 
the metabolite annotation in untargeted MS experiments 
(Scheubert et al. 2017). In silico prediction algorithms and 
computational annotation solutions for putatively identifying 
compounds have been recently become an active research 
area (Aksenov et al. 2017; Domingo-Almenara et al. 2017). 
Besides, the aid of ion mobility spectrometry to the typi-
cal LC–MS-based metabolomics or lipidomics study will 
also improve the reliability of the metabolite identification 
(Paglia and Astarita 2017). Another consideration that needs 
to be mentioned is that the authors are also encouraged to 
include the corresponding Human Metabolome Database 
(HMDB), PubChem, KEGG, and Chemical Entities of Bio-
logical Interest (ChEBI) Compound Identifier number of the 
identified metabolites for further analysis.

The repository of raw data will greatly contribute to the 
development of biomarker study. Thus, there is an urgent 

need for publishing the paper together with the incorporation 
of data on MetaboLights, Metabolomics Workbench, Metab-
olomics Repository Bordeaux, XCMS online, or Metabo-
lomeXpress to facilitate the validation, comparison, and 
meta-analysis of proposed biomarkers (Spicer and Steinbeck 
2017). Along with data sharing, national and international 
efforts to establish and maintain repositories or biobanks 
of specimens will hopefully accelerate the discovery and 
validation of new biomarkers.

Among differentially expressed metabolites, amino acids 
were mostly reported. This suggested that amino acid-related 
pathways might play an important role in the differentiation 
between PC and non-malignant conditions. Alanine, aspar-
tate and glutamate metabolism and taurine and hypotaurine 
metabolism pathways were also enriched in lung cancer 
(Kumar et al. 2017). Taurine and hypotaurine metabolism 
pathway was also associated with renal clear cell carcinoma 
(Yang et al. 2014). In addition, the role of serine and glycine 
metabolism in cancer cell growth was thoroughly reviewed 
and discussed (Amelio et al. 2014). Noticeably, our study 
indicated that the valine, leucine and isoleucine biosynthe-
sis pathway was significantly enriched in PC, agreeing with 
a previous study stating that the concentrations of BCAAs 
(valine, leucine, and isoleucine) were elevated in the early 
stage of PDAC development (Mayers et al. 2014). Insulin 
resistance-related conditions, such as diabetes and obesity, 
are well-known risk factors of PC, and the circulating bio-
markers of peripheral insulin resistance were found to be 
significantly associated with a higher risk of developing PC 
(Bao et al. 2013; Li 2012; Wolpin et al. 2013). The increased 
level of BCAAs was associated with type 2 diabetes mellitus 
and metabolic syndrome that may eventually contribute to 
the PC carcinogenesis (Lynch and Adams 2014). Indeed, 
a recent study suggested that the elevated level of BCAAs 
in plasma was an independent risk factor of PC (Leake 
2014). Furthermore, the altered metabolism of BCAAs was 
observed in many other cancer types such as glioblastoma, 
lung cancer, and breast cancer (Ananieva and Wilkinson 
2018). It is worthy to note that we only performed pathway 
enrichment analysis for biomarkers reported in all groups of 
patients. At this time, it was not feasible to conduct subgroup 
pathway analysis of each patient characteristic such as age, 
tumor stage, or prior treatment.

5  Conclusions

The specific properties of PC have made it a legitimate tar-
get for numerous efforts to improve the current diagnos-
tic approaches. Most of the current studies suggest that 
the accurate diagnosis of PC using metabolic alterations 
of biospecimens is a practical certainty, although there is 
a need for further improvements and standardizations. Our 
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systematic review and discussion on the current issues of 
the oncometabolomics-based diagnostic biomarker discov-
ery and validation may assist the advancement in this area. 
Given the strong potential of the metabolomics approach, 
further investigations on the multi-center scale with rigor-
ous study designs should be conducted to fully explore the 
potential of the metabolomics-based diagnostic approach.
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