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Abstract
Introduction There has been a growing interest towards creating defined mixed starter cultures for alcoholic fermentations. 
Previously, metabolite differences between single and mixed cultures have been explored at the endpoint of fermentations 
rather than during fermentations.
Objectives To create metabolic footprints of metabolites that discriminate single and mixed yeast cultures at two key time-
points during mixed culture alcoholic fermentations.
Methods 1H NMR- and GC–MS-based metabolomics was used to identify metabolites that discriminate single and mixed 
cultures of Lachancea thermotolerans (LT) and Saccharomyces cerevisiae (SC) during alcoholic fermentations.
Results Twenty-two metabolites were found when comparing single LT and mixed cultures, including both non-volatiles 
(carbohydrate, amino acid and acids) and volatiles (higher alcohols, esters, ketones and aldehydes). Fifteen of these com-
pounds were discriminatory only at the death phase initiation (T1) and fifteen were discriminatory only at the death phase 
termination (T2) of LT in mixed cultures. Eight metabolites were discriminatory at both T1 and T2. These results indicate 
that specific metabolic changes may be descriptive of different LT growth behaviors. Fifteen discriminatory metabolites 
were found when comparing single SC and mixed cultures. These metabolites were all volatiles, and twelve metabolites 
were discriminatory only at T2, indicating that LT-induced changes in volatiles occur during the death phase of LT in mixed 
cultures and not during their initial growth stage.
Conclusions This work provides a detailed insight into yeast metabolites that differ between single and mixed cultures, and 
these data may be used for understanding and eventually predicting yeast metabolic changes in wine fermentations.

Keywords Single and mixed cultures · Yeast growth behaviors · Metabolic footprints · Metabolomics · Alcoholic 
fermentations

1 Introduction

A growing number of studies suggest that non-Saccharo-
myces species may contribute positively to the final taste 
and flavor of wine during mixed or sequential culture 

fermentation with Saccharomyces cerevisiae. Thus, there 
has been a growing interest towards creating defined mixed 
or sequential starter cultures for alcoholic fermentations in 
which S. cerevisiae at some point grows together with the 
non-Saccharomyces species. In these kinds of fermentations, 
the non-Saccharomyces yeasts will grow together with S. 
cerevisiae during the first 1–2 days after inoculation with 
S. cerevisiae, but as the fermentation progresses the non-
Saccharomyces species will typically die off leaving S. cer-
evisiae to dominate and complete the fermentation (Ciani 
et al. 2010; Liu et al. 2017; Wang et al. 2017; Comitini et al. 
2011; Alonso-del-Real et al. 2017).

Metabolomics is defined as the quantitative analysis of 
all metabolites of a given cell or biofluid and has developed 
following the advances in data analytical methods as well 
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as in MS and NMR instrumentation and sample prepara-
tion (Nicholson and Lindon 2008). GC–MS is a very high 
sensitivity (typically µg  kg−1 level) metabolomics method, 
but largely limited to volatile compounds (Kim et al. 2011; 
Ward et al. 2003). Liquid-state 1H NMR can also be used for 
metabolomics studies and can simultaneously detect a range 
of proton-bearing compounds in a sample such as carbohy-
drates, amino acids, organic and fatty acids, amines, esters, 
ethers and lipids (Ward et al. 2003). Compared with MS, how-
ever, liquid-state 1H NMR spectroscopy is characterized by 
relatively low sensitivity (Kim et al. 2011). In the context of 
alcoholic fermentations, GC–MS is often used to detect and 
analyze volatile compounds (Peng et al. 2013; Renault et al. 
2015; Sadoudi et al. 2012; Tredoux et al. 2008) and 1H NMR 
is applied for analysis of the non-volatiles (Nilsson et al. 2004; 
López-Rituerto et al. 2009, 2012, 2013; Son et al. 2009).

By metabolomics a metabolic footprint can be obtained. 
This is defined as an “imprint” of the extracellular metabolites 
of interest (Mapelli et al. 2008). Metabolic footprint analysis is 
typically performed during different growth phases of a micro-
bial community, so metabolites of interest can be associated 
with any physiological changes in the microbial population 
(Mapelli et al. 2008).

Previous metabolomics studies of wine fermentations have 
shown that the metabolite compositions and/or concentrations 
in mixed yeast cultures may differ from those in their respec-
tive single cultures (Renault et al. 2015; Sadoudi et al. 2012; 
Howell et al. 2006). Those studies, however, focused on the 
metabolic differences at the endpoint of fermentation rather 
than during the fermentation. That is, these metabolic differ-
ences are the outcomes of the fermentations, and they do not 
necessarily reflect those occurring during the fermentations. 
Thus, there seems to be a lack of knowledge as to when spe-
cific yeasts contribute with specific metabolites during mixed 
culture fermentations. That kind of knowledge would provide 
valuable physiological insight into the dynamics of yeast 
interactions.

In this work, 1H NMR- and GC–MS-based metabolomics 
was used for metabolic footprint analysis and identification 
of metabolites enabling discrimination between single and 
mixed culture metabolites at two key time-points of mixed 
culture alcoholic fermentations.; that is, the time points where 
the death phase of the non-Saccharomyces yeast (Lachancea 
thermotolerans) was initiated (T1) and terminated (T2) in 
mixed cultures with S. cerevisiae.

2  Materials and methods

2.1  Yeast strains, growth media, and inoculation 
cultures

Saccharomyces cerevisiae BY4741 (Euroscarf, Germany) 
(SC) and Lachancea thermotolerans CBS6340 (Centraal-
bureau voor Schimmelcultures, The Netherlands) (LT) were 
maintained at pH 5.6 and 4 °C on Yeast Peptone Dextrose 
medium (YPG), containing 5 g/L yeast extract, 10 g/L pep-
tone and 10 g/L glucose. To mimic natural grape must and 
winemaking practices, and ensure reproducibility of media 
composition, Synthetic Grape Must (SGM) (Viana et al. 
2014) with defined composition was used to inoculate cul-
tures and for the fermentation experiments. Briefly, it con-
tains glucose (125 g/L), fructose (125 g/L), 19 amino acids, 
3 weak organic acids (malic acid, citric acid and tartaric 
acid), 5 vitamins and different inorganic salts. Also,  SO2 
was added (final concentration of 50 ppm), and the pH was 
adjusted to 3.3. It should be noted that S. cerevisiae BY4741 
is an auxotrophic haploid strain derived from S. cerevisiae 
S288C, which is a well-characterized laboratory strain that 
was shown to have similar growth and fermentative profiles 
as an enological strain of S. cerevisiae in SGM fermentations 
(Viana et al. 2014). It may, however, have different metabo-
lite production properties than those of industrial wine yeasts 
due to e.g. different ploidy of the two types of yeast. This 
issue needs further investigation. The inoculation of cultures 
was prepared by transferring 1 mL cells from YPG medium 
to glass tubes containing 10 mL SGM and incubation with 
agitation (140 rpm) at 25 °C for 24 h. Subsequently, these 
cells were transferred to 60 mL SGM in 100 mL shake flasks 
to an initial concentration of 2 × 106 cells/mL and incubated 
with agitation (140 rpm) at 25 °C for 48 h.

2.2  Single and mixed culture fermentations of S. 
cerevisiae and L. thermotolerans

Single and mixed culture fermentations of SC and LT 
were performed in 1 L blueCap bottles containing 0.8 L 
of SGM. In the mixed cultures, the initial viable cell den-
sity of SC and LT was 6 × 105 and 1.5 × 105 CFU/mL, 
respectively, resulting in a ratio between SC and LT of 
4:1. In single cultures, the initial viable cell density of SC 
and LT was 1.2 × 106 and 3 × 105 CFU/mL, respectively. 
Fermentations were carried out under microaerobic condi-
tions (with cotton caps) at 25 °C, without agitation, and all 
experiments were performed in duplicate.

Samples were withdrawn daily and diluted appropri-
ately and SC and LT were enumerated using Wallerstein 
laboratory nutrient (WLN) agar (Oxoid). WLN plates were 
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incubated at 25 °C for 5 days before counting. Ethanol, 
glucose and fructose were measured daily by high-per-
formance liquid chromatography (HPLC; HP series 1100, 
Hewlett-Packard Company, USA) as described by Kem-
sawasd et al. (2015).

Cell-free supernatants from single and mixed cultures 
were sampled at two key time-points and stored at − 20 °C 
for subsequent analysis by 1H NMR and GC–MS. A sim-
plified scheme of the experimental approach is shown in 
Fig. 1a.

2.3  1H NMR spectroscopy analysis and processing

Cell-free supernatants from single and mixed fermentations, 
harvested at key time-points as indicated, were defrosted, 
and the pH was measured and adjusted to 3.5 by the drop-
wise addition of an aqueous solution of 1 M NaOH. Cell-
free supernatants (540 µL) were transferred into a 5 mm 

NMR tube together with 60 µL  D2O (containing 5.8 mM 
of the sodium salt of (trimethylsilyl) propanoic-2,2,3,3-
d4 acid (TSP-d4)). 1H NMR spectra were recorded on a 
Bruker Avance III 600 spectrometer operating at a Larmor 
frequency of 600.13 MHz for 1H and equipped with a dou-
ble tuned cryoprobe (TCI) for 5 mm (o.d.) sample tubes. 
The 1H NMR spectra were recorded using the noesygppr1d 
pulse sequence to obtain an efficient suppression of the water 
resonance. All spectra were recorded using a recycle delay 
of 4 s, a spectral width of 30.04 ppm, an acquisition time of 
2.73 s, 128 scans, 2 dummy scans and a receiver gain of 4.5. 
Subsequently the FID’s were zero filled to 128 K data points, 
apodized by a Lorentzian linebroadning of 1 Hz and Fourier 
transformed. The spectra were hereafter phase and baseline 
corrected, and chemical shifts were referenced to the TSP-d4 
resonance at 0.0 ppm. Metabolites were assigned based on 
Chenomx NMR suite 8.1 (Chenomx Inc. Edmonton, Can-
ada) and literature, and the MSI levels of metabolites were 

Fig. 1  Simplified scheme (a) of the experimental approach for met-
abolic footprint analysis of the differences between single (S) and 
mixed (M) cultures of L. thermotolerans (LT) and S. cerevisiae (SC) 
at two key time-points (T1 and T2) during mixed culture alcoholic 

fermentation. Cell concentrations of LT (○) and SC (•) in mixed (b) 
and single (c) cultures. Data presented are mean values of two inde-
pendent experiments ± standard deviation (error bars)
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specified according to the Metabolomics Standards Initiative 
(MSI) (Sumner et al. 2007).

To compensate for chemical shift differences due to dif-
ferences in pH or ionic strength amongst the samples, the 
icoshift program enabling alignment of resonances was 
employed (Savorani et al. 2010).

2.4  Dynamic headspace sampling (DHS)

Volatile compounds were collected in a dynamic head-
space sampling (DHS) system. For each analysis, 20 mL 
sample was placed in a 100-mL gas washing flask equipped 
with a purge head, and 1.00 mL internal standard (5 ppm 
4-methyl-1-pentanol) was added. A trap containing Tenax-
TA (250 mg, mesh size 60/80, Buchem BV, Apeldoorn, The 
Netherlands) was attached to the purge head. The flask con-
taining the sample was immersed in a laboratory water bath 
and held at 37 °C. Under magnetic stirring (200 rpm), the 
sample was then purged with nitrogen (100 mL/min) for 
20 min to collect the volatiles. The traps were dry purged 
with nitrogen (100 mL/min) for 15 min to remove excess 
water trapped during purging. Sealed Tenax-TA traps with 
caps were kept at 5 °C before GC–MS analysis. The dynamic 
headspace collection was carried out in duplicate for all 
samples.

2.5  Gas chromatography–mass spectrometry (GC–
MS)

Volatile compounds were analyzed using Gas chromatogra-
phy–mass spectrometry (GC–MS) as described by Liu et al. 
(2015) Volatile compounds were identified by probability 
based matching of their mass spectra with those of a com-
mercial database (Wiley275.L, HP product no. G1035A) 
and the minimum matching factor was set at 70%. Volatile 
compound identification was confirmed by comparison with 
retention indices (RI) of authentic reference compounds or 
retention indices reported in the literature. The MSI levels 
of volatiles were specified according to the Metabolomics 
Standards Initiative (MSI) (Sumner et al. 2007). All identi-
fied compounds were semi-quantified as peak areas in the 
total ion chromatogram (TIC).

2.6  Multivariate statistical analysis

The 1H NMR spectra from the previous preprocessing 
steps were imported to Matlab R2016b (The Mathworks 
Inc. Natick, MA, USA). GC–MS data processing was car-
ried out using MSD Chemstation G1701EA software (Ver-
sion E.01.00.237, Agilent Technologies), and values were 
normalized by dividing peak areas of volatiles by that of 
internal standard from the same sample and were given as 
means based on independent duplicates. Interval partial least 

squares discriminant analysis (iPLS-DA) (Kristensen et al. 
2010; Nørgaard et al. 2000), principal component analysis 
(PCA) (Vold 1987), and studentʼs t test were combined and 
used for variable selections from the acquired 1H NMR and 
GC–MS data (see below). iPLS-DA was performed using the 
PLS toolbox in Matlab, PCA using LatentiX 2.1 (Latent5, 
Copenhagen, Denmark) and t test using SPSS statistical 
package version 25.0 (SPSS Inc. Chicago, IL, USA).

For analysis of the 1H NMR data, iPLS-DA was used for 
variable selections with respect to discrimination between 
samples from single or mixed culture fermentations and 
prior to iPLS-DA the 1H NMR data were mean centered. 
Firstly, reference values of 0 and 1 for the PLS procedure 
were selected for the two different groups of fermentation. 
Then 1H NMR spectra (0.0–11.4 ppm) were analyzed by 
iPLS-DA based on 100 intervals and the iPLS-DA proce-
dure was performed with maximum number of ten latent 
variables. Hereafter intervals with a root mean square error 
of cross validation (RMSECV) lower than the full spectrum 
were selected. PCA and visual inspection of selected interval 
spectra were used for verifications. Intervals of interest were 
targeted as discriminatory metabolites, where PCA score 
plots of the mean-centered putative intervals, as well as vis-
ual inspections of the 1H NMR spectra of putative intervals, 
showed clear differences between single and mixed cultures. 
For GC–MS data, iPLS-DA and t test were combined and 
used for variable selections. Prior to iPLS-DA the GC–MS 
data were autoscaled. The maximum number of latent vari-
ables was three. Then, every variable selected by iPLS-DA 
was verified again by t test of the given variable. Only the 
variables that had both low RMSECV and p value < 0.05 of 
t tests were determined as discriminatory metabolites.

3  Results

3.1  Identifying key time‑points of mixed culture 
alcoholic fermentations

During the first day of both single LT and mixed cultures, 
LT grew at similar rates with a fivefold increase in the two 
cultures (Fig. 1b, c). Also, SC grew at similar rates both in 
single SC and mixed cultures during the first day (Fig. 1b, c). 
After the first day, the viable cell density of LT in single LT 
culture increased to between 1 and 3 × 107 CFU/mL and kept 
that value till day 10 (Fig. 1c). Conversely, in the mixed cul-
ture the LT cells began to die off after the first day, reaching 
a level below the detection limit at day 5 (Fig. 1b). However, 
in both single SC and mixed cultures, the cell viability of 
SC remained almost unchanged after day 1 at a level in the 
range of 1–10 × 107 CFU/mL (Fig. 1b, c).

Based on these observations, we defined the first key 
time-point (T1) of mixed culture alcoholic fermentations as 
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day 2 and the second key time-point (T2) as day 5. Sugar 
consumption and ethanol production rates were similar for 
the single SC and mixed cultures but slower in the single LT 
culture (Fig. S1).

3.2  Metabolic footprints of differences 
between the single LT and mixed cultures

The 1H NMR spectra of single LT and mixed cultures at T1 
and T2 are shown in Fig. S2. By comparison of the 1H NMR 
spectra from the mixed cultures to those of the single LT 
cultures using iPLS-DA (Fig. 2a, b) and subsequent PCA, 
9 discriminatory resonances were identified at T1 (0.88(d), 
1.13(d), 1.27(t), 1.38(d), 2.07(s), 2.21(s), 2.23(d), 9.67(q), 
and 5.17(d) ppm, Fig. S3). These originate from the follow-
ing 8 metabolites: isopentanol, 2,3-butanediol, ethyl acetate, 
lactic acid, acetic acid, acetoacetic acid, acetaldehyde and 
d-trehalose (Table S1 and Fig. 2c). At T2, the following 4 

discriminatory metabolites were identified: 2,3-butanediol, 
lactic acid, acetic acid and 3-methyl-histidine (Table S1, 
Figs. 2c and S4). Three common discriminatory metabo-
lites were found at T1 and T2, namely 2,3-butanediol, lactic 
acid and acetic acid (Fig. 2c). Thus, the main part of the 
metabolites discriminating the single LT and mixed cultures 
was observed at T1.

GC–MS analysis of single and mixed yeast cultures 
revealed a total of 50 volatiles that could be identified and 
quantified (Table S2). It should, however, be noted that there 
was a big difference in ethanol concentrations between sin-
gle LT and mixed cultures; i.e. the ethanol concentrations 
at T2 reached 45 and 65 g/L in single LT and mixed cul-
tures, respectively (Fig. S1). It is well-known that ethanol 
affects the extraction efficiency of volatiles during analy-
sis (Cacho et al. 2013; Zhou et al. 2015). Through GC–MS 
and the multivariate statistical analysis described above, 
we found that, among the 50 volatiles, the concentrations 

Fig. 2  iPLS-DA plot of 1H NMR spectra discriminating between 
single LT and mixed cultures at T1 (a) and T2 (b) and correspond-
ing discriminatory metabolites shown in Venn diagram (c). The car-
bohydrate region is surrounded by the dashed black boxes and the 
RMSECV of the global model is indicated by the dashed black hori-

zontal line. For further details on identifying intervals of interest, see 
Sect. 2. 1H NMR spectra are those of two independent growth experi-
ments. The overlap of Venn diagram (c) represents discriminatory 
metabolites between single LT and mixed cultures common to both 
T1 and T2
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of 4-methyl-2-heptanone, ethyl pyruvate and acetoin were 
significantly affected (p value < 0.05) by different concentra-
tions of ethanol (45 and 75 g/L), but those of the 47 other 
volatiles were only affected to a small extent (p value > 0.05) 
(data not shown). Thus, when comparing single LT and 
mixed cultures, 4-methyl-2-heptanone, ethyl pyruvate and 
acetoin were not considered.

Forty seven volatiles from the mixed cultures were com-
pared to those of the single LT cultures by using iPLS-DA 
and t test (Fig. 3a, b). Eight discriminatory volatiles were 
identified at T1: ethyl acetate, 2-butanone, ethyl propion-
ate, ethyl butanoate, 2-heptanone, ethyl octanoate, 2-methyl-
tetrahydrothiophen-3-one and 2-phenethyl acetate (Fig. 3c). 

At T2, 11 discriminatory volatiles were identified: ethyl 
propionate, ethyl butanoate, hexanal, 3-methyl-3-buten-
1-ol, 2-heptanone, ethyl lactate, ethyl decanoate, 2-methyl-
tetrahydrothiophen-3-one, octanol, ethyl 9-decenoate and 
2-phenethyl acetate (Fig. 3c). Five discriminatory vola-
tiles were found at both T1 and T2: ethyl propionate, ethyl 
butanoate, 2-heptanone, 2-methyl-tetrahydrothiophen-3-one 
and 2-phenethyl acetate (Fig. 3c).

Metabolic footprints of metabolites discriminating 
single LT and mixed cultures at T1 and T2 were con-
structed by combining the results from 1H NMR and 
GC–MS (Fig. 5). At T1 the levels of d-trehalose, acetic 
acid, acetoacetic acid, 2,3-butanediol, 3-methylbutanol, 

Fig. 3  iPLS-DA plot of GC–MS data discriminating between single 
LT and mixed cultures at T1 (a) and T2 (b) and corresponding dis-
criminatory metabolites shown in Venn diagram (c). GC–MS data are 
mean values of two independent growth experiments and were ana-
lyzed by iPLS-DA based on 47 intervals. The RMSECV of the global 

model was indicated by the dashed black horizontal line. For further 
details on identifying volatiles of interest, see Sect.  2. Black cross 
symbols denote significant difference (p < 0.05). The overlap of Venn 
diagram (c) represents discriminatory metabolites between single LT 
and mixed cultures common to both T1 and T2
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ethyl acetate, ethyl octanoate, ethyl butanoate, 2-phenethyl 
acetate, 2-heptanone, 2-methyl-tetrahydrothiophen-3-one, 
and acetaldehyde were higher, and the levels of lactic acid, 
ethyl propionate and 2-butanone were lower in mixed cul-
tures than in the single LT cultures (Fig. 5).

At T2 the levels of 3-methyl-histidine, acetic acid, 
2,3-butanediol, octanol, ethyl butanoate, ethyl decanoate, 
ethyl 9-decenoate, 2-phenethyl acetate, 2-heptanone and 
2-methyl-tetrahydrothiophen-3-one were higher, and the 
levels of lactic acid, 3-methyl-3-buten-1-ol, ethyl propion-
ate, ethyl lactate, and hexanal were lower in mixed cultures 
than in the single LT cultures (Fig. 5).

At both time points the levels of acetic acid, 2,3-butan-
ediol, ethyl butanoate, 2-phenethyl acetate, 2-heptanone, 
and 2-methyl-tetrahydrothiophen-3-one were higher, and 
the levels of lactic acid and ethyl propionate were lower 
in mixed cultures than in the single LT cultures (Fig. 5).

3.3  Metabolic footprints of differences 
between the single SC and mixed cultures

The 1H NMR spectra of single SC and mixed cultures at 
T1 and T2 are shown in Fig. S2. Even though a couple of 
spectral intervals were identified by iPLS-DA, the subse-
quent PCA and visual inspection of the selected intervals 
did not provide a clear difference between single SC and 
mixed cultures (Figs. S5 and S6). These results indicate that 
the NMR detectable metabolites in the mixed cultures were 
not changed by the presence of LT in comparison to single 
SC cultures.

Fifty volatiles from the mixed cultures were compared 
to those of the single SC cultures by using iPLS-DA and 
t test (Fig. 4a, b). At T1, 3 volatiles provided discrimina-
tion between single SC and mixed cultures. These were 
3-methylbutanal, ethyl 9-decenoate and ethyl decanoate 
(Fig.  4c). At T2, 14 discriminatory volatiles were 

Fig. 4  iPLS-DA plot of GC–MS data discriminating between single 
SC and mixed cultures at T1 (a) and T2 (b) and corresponding dis-
criminatory metabolites shown in Venn diagram (c). GC–MS data are 
mean values of two independent growth experiments and were ana-
lyzed by iPLS-DA based on 50 intervals. The RMSECV of the global 

model was indicated by the dashed black horizontal line. For further 
details on identifying volatiles of interest, see Sect.  2. Black cross 
symbols denote significant difference (p < 0.05). The overlap of Venn 
diagram (c) represents discriminatory metabolites between single SC 
and mixed cultures common to both T1 and T2
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identified as 2-methylpropanal, acetone, ethyl propionate, 
ethyl decanoate, diacetyl, 1-propanol, ethyl lactate, ethyl 
octanoate, 1-heptanol, 2,3-butanediol, phenylacetaldehyde, 
ethyl 9-decenoate, ethyl dodecanoate and 2-phenyletha-
nol (Fig. 4c). Two volatiles enabling discrimination were 
found at both T1 and T2, namely ethyl decanoate and ethyl 
9-decenoate (Fig. 4c). Thus, the volatile composition in the 
mixed cultures differed more at T2 than at T1, as compared 
with the single SC cultures.

Based on the results mentioned above, metabolic foot-
prints of the metabolites discriminating single SC and 
mixed cultures at T1 and T2 were established (Fig. 5). At 
T1, the level of 3-methylbutanal was higher in the mixed 
cultures than in the single SC cultures, and the levels of ethyl 
decanoate and ethyl 9-decenoate were lower (Fig. 5). At T2, 
the levels of 2,3-butanediol, 1-propanol, 2-phenylethanol, 
ethyl lactate, ethyl propionate, diacetyl and 2-phenylacetal-
dehyde were higher in the mixed cultures than in the single 
SC cultures, and the levels of 1-heptanol, ethyl octanoate, 

ethyl decanoate, ethyl laurate, acetone, 2-methylpropanal 
and ethyl 9-decenoate were lower (Fig. 5). At both T1 and 
T2, the levels of ethyl decanoate and ethyl 9-decenoate were 
lower in the mixed cultures than in the single SC cultures 
(Fig. 5).

4  Discussion

To the best of our knowledge, this study is the first of its 
kind investigating metabolic differences between single and 
mixed cultures during alcoholic fermentations using both 
1H NMR- and GC–MS-based metabolomics. 1H liquid-
state NMR is used to analyze the liquid part of the samples, 
whereas GC–MS is applied for analysis of the volatiles. 
Besides analyzing different parts of the samples the two ana-
lytical methods differ in their sensitivity (Kim et al. 2011; 
Ward et al. 2003). The detection limit for GC–MS is often 
in the order of ppb (parts per billion), whereas compounds 

Fig. 5  Metabolic footprints 
of metabolites discriminating 
single and mixed cultures of 
L. thermotolerans (LT) and 
S. cerevisiae (SC) at T1 and 
T2, represented as increased 
(red), unchanged (green), and 
decreased (purple) levels in 
mixed cultures (M) as compared 
to those of single cultures
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with a concentration below 0.1 mM are difficult to observe 
by 1H NMR. Combined the two methodologies provide com-
plementary information about a range of compounds of the 
samples at specific stages of fermentation.

Known metabolic pathways of the different discrimi-
natory metabolites at T1 and T2 found in this study can 
be seen in Fig. 6. Most esters in yeast are formed by a 
condensation reaction between acetyl/fatty acid-CoA and 
an alcohol, and the use of acetyl-CoA or fatty acid-CoA 

divides esters into two different categories, acetate esters 
and fatty acid ethyl esters, respectively (Dzialo et  al. 
2017). Interestingly, among the volatiles providing dis-
crimination between single and mixed cultures at either 
T1 or T2, five compounds belong to the ethyl esters: ethyl 
octanoate, ethyl propionate, ethyl lactate, ethyl decanoate, 
and ethyl 9-decenoate. The physiological significance of 
this observation, however, still needs to be elucidated.

Fig. 6  Pathways of metabolites 
that increased (red), remained 
unchanged (grey), or decreased 
(purple) in mixed cultures as 
compared to those of single 
LT cultures (a) and single SC 
cultures (b) at T1 (italic), T2 
(upright), or both at T1 and T2 
(box)
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Higher alcohols are formed by decarboxylation and sub-
sequent reduction of α-keto acids produced as intermedi-
ates of amino acid catabolism; i.e. by the so-called Ehrlich 
pathway (Ugliano and Henschke 2009; Dzialo et al. 2017). 
Accordingly, amino acid degradation accounts for most of 
the higher alcohols formed during alcoholic fermentations 
(Ugliano and Henschke 2009). In our study, the amino acid 
precursors for the discriminatory branched chain aliphatic 
alcohols 3-methylbutanol (or isoamyl alcohol) and 1-pro-
panol are leucine and threonine, respectively, and for the dis-
criminatory aromatic alcohol 2-phenylethanol, it is phenyla-
lanine (Ugliano and Henschke 2009; Dzialo et al. 2017). It 
should be noted that metabolic pathways of the discrimina-
tory higher alcohols 1-heptanol, 3-methyl-3-buten-1-ol and 
octanol (Fig. 5) have not, as yet, been described in yeasts.

In yeasts, aldehydes and ketones are produced from sugar 
metabolism (Ugliano and Henschke 2009). Among the dis-
criminatory ketones and aldehydes, the metabolic pathways 
of acetaldehyde, two branched-chain aldehydes (3-methylbu-
tanal and 2-methylpropanal), diacetyl and 2-phenylacetalde-
hyde are described in yeasts (Ugliano and Henschke 2009; 
Dzialo et al. 2017); see Fig. 6. The metabolic pathways, 
however, of acetone, 2-butanone, 2-methyl-tetrahydrothio-
phen-3-one, 2-heptanone, and hexanal (Fig. 5) seem not, as 
yet, to have been described.

Previous metabolome studies from alcoholic fermenta-
tions using single and mixed yeast cultures typically report 
data from the end of fermentations (Renault et al. 2015; 
Sadoudi et al. 2012; Howell et al. 2006; Ciani et al. 2006). 
Thus, these studies report the metabolite differences between 
single and mixed cultures according to the final result of 
alcoholic fermentations. Also, these studies typically focus 
on analysis of volatiles by GC–MS. Here, we present both 
GC–MS- and 1H NMR-data describing the metabolic dif-
ferences between single and mixed cultures at two different 
stages during mixed culture alcoholic fermentations; i.e. at 
the beginning (T1) and the end (T2) of the death phase of 
the non-Saccharomyces yeast in mixed cultures. In order to 
check, whether data from these time-points actually differ 
from those at the end of fermentation, we made a metabolic 
footprint analysis of the metabolites discriminating the sin-
gle and mixed cultures at day 10 similar to those at day 2 
(T1) and day 5 (T2), the results of which are shown in Figs. 
S7–S9. The fact that different metabolites enabled discrimi-
nation between single and mixed cultures at day 10 (Figs. 
S7–S9) and day 5 (Figs. 2, 3, 4) suggests that the dominant 
yeast changes the metabolic profiles of mixed cultures from 
day 5 to day 10 after LT has died out.

We have found two compounds in alcoholic fermenta-
tions that have never been described within this context 
before: d-trehalose and 3-methyl-histidine. d-Trehalose is 
well-known for its role as a carbohydrate reserve and stress 
protectant in yeast, and it accumulates intracellularly during 

adverse environmental conditions (Bandara et al. 2009; 
Ocón et al. 2007; Puig-Castellví et al. 2015). However, it has 
never been reported as part of the extracellular environment 
during alcoholic fermentations. Whether this phenomenon 
is due to trehalose being secreted out of intact yeast cells or 
to lysis of dead yeast cells during fermentation, or perhaps 
to a combination of both, remains to be investigated. In the 
yeast SC, histidine protein methylation is an unusual post-
translational modification and the large ribosomal subunit 
protein Rp13p is methylated at histidine 243 (Al-Hadid et al. 
2014). Histidine is available in the SGM and methylation 
may be induced at T2 due to a metabolic pathway that has 
not, as yet, been described.

Takahashi et al. (2008) reported that metabolic footprint 
analysis was a useful method to build growth-metabolite 
associations; that is, the relationship between growth and 
metabolites based on metabolomics approaches, and they 
used a metabolomics approach to analyze growth-specific 
metabolites of bacteria by constructing a linear relationship 
between OD600 values and metabolites profiles (Takahashi 
et al. 2008). Also, the relationship between growth and 
metabolites in plants has been explored (Lee et al. 2012). 
Metabolites of different-sized Aloe vera plants were deter-
mined using MS-based metabolomics approaches, and 
metabolite changes associated with growth and develop-
ment were revealed (Lee et al. 2012). Here, we are the first 
to describe yeast growth-metabolite associations at two key 
time-points of mixed culture alcoholic fermentations.

Twenty-two metabolites provided discrimination between 
single LT and mixed cultures and comprised both non-vol-
atiles (carbohydrate, amino acid and acids) and volatiles 
(higher alcohols, esters, ketones and aldehydes). Some 
metabolites were important at the LT death phase initiation 
(T1) and some at the death phase termination (T2). These 
results indicate that specific metabolic changes may be 
descriptive of different LT growth behaviors during mixed 
culture alcoholic fermentations.

The higher levels of 3-methyl-histidine, acetic acid, ace-
toacetic acid, 2,3-butanediol, 3-methylbutanol, octanol, ethyl 
butanoate, ethyl octanoate, ethyl acetate, ethyl decanoate, 
ethyl 9-decenoate, 2-phenethyl acetate, 2-methyl-tetrahy-
drothiophen-3-one, 2-heptanone and acetaldehyde in mixed 
cultures compared to single LT cultures, combined with 
the observed inhibition of LT in mixed cultures but not 
in single LT cultures, indicate that these compounds have 
inhibiting effects on the growth of LT. Further work is, how-
ever, required to better understand the roles of these com-
pounds on the growth of LT during mixed culture alcoholic 
fermentations.

For the mixed cultures, levels of lactic acid, 3-methyl-
3-buten-1-ol, ethyl propionate, ethyl lactate, 2-butanone 
and hexanal were lower than in single LT cultures. LT is a 
natural lactic acid producer (Zara et al. 2014), whereas SC 
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is not. As LT died in mixed cultures, it makes sense that the 
lactic acid concentration, and thereby also ethyl lactate that 
is synthesized from ethanol and lactic acid, were lower in 
mixed cultures than in single LT cultures. At T1, the levels 
of 2-butanone and ethyl propionate were lower than in any 
single cultures and the lower levels of these two metabo-
lites may be the result of negative metabolic interactions. 
At T2, the levels of 3-methyl-3-buten-1-ol and hexanal were 
much lower than in single LT cultures and the lower levels 
of these two metabolites may be caused by the death of LT 
in mixed cultures. These phenomena, however, need to be 
further investigated.

When comparing the mixed cultures with the single SC 
cultures, a rather different growth-metabolite association 
was observed. The cell viability of SC remained almost 
unchanged in the two cultures, but volatiles (higher alco-
hols, esters, ketones and aldehydes) enabling discrimina-
tion between the single SC and mixed cultures were found 
as seen in Figs. 4 and 5, especially at T2. It is well known 
that non-Saccharomyces yeasts contribute to the flavor of 
wine, as described by a plethora of authors (Ciani et al. 
2010; Renault et al. 2015; Sadoudi et al. 2012; Padilla et al. 
2016; Varela et al. 2016). This knowledge is mainly based 
on analysis of the final wines. Our study indicates that the 
changes in volatiles primarily occur during the death phase 
of the non-Saccharomyces yeasts in mixed cultures and not 
during their initial growth stage.

5  Conclusions

In conclusion, this work provides a detailed insight into 
metabolites that discriminate single and mixed yeast cul-
tures during alcoholic fermentations as determined by 1H 
NMR- and GC–MS-metabolomics. Our results show that 
metabolites enabling discrimination between single LT and 
mixed cultures were highly dependent on the LT growth 
behaviors during mixed culture alcoholic fermentations. 
Furthermore, when comparing single SC and mixed cul-
tures, the LT-induced changes in volatiles occurred during 
the death phase of LT in mixed cultures and not during their 
initial growth stage. These data may be used for understand-
ing and eventually predicting yeast growth behaviors and 
metabolic changes during wine fermentations, where mixed 
yeast starter cultures may be used.

Acknowledgements The authors would like to thank Janne Margrethe 
Benjaminsen for excellent technical assistance.

Author contributions NA, CP and TV conceived and designed 
research. CP conducted experiments. MAP and FHL contributed new 
reagents and analytical tools. CP and FHL analyzed data. CP and 
NA wrote the manuscript. All authors read, revised and approved the 
manuscript.

Funding This study was funded by Faculty of Science, University of 
Copenhagen and Chinese Scholarship Council (201406300048).

Data availability The data that support the findings of this study are 
available within the article and its supplementary information files.

Compliance with ethical standards 

Conflict of interest Chuantao Peng, Tiago Viana, Mikael Agerlin Pe-
tersen, Flemming Hofmann Larsen and Nils Arneborg declares that 
they have no conflict of interest.

Ethical approval This article does not contain any studies with human 
or animal subjects performed by any of the authors.

References

Al-Hadid, Q., Roy, K., Munroe, W., Dzialo, M. C., Chanfreau, G. F., 
& Clarke, S. G. (2014). Histidine methylation of yeast riboso-
mal protein Rpl3p is required for proper 60S subunit assembly. 
Molecular and Cellular Biology, 34, 2903–2916.

Alonso-del-Real, J., Contreras-Ruiz, A., Castiglioni, G. L., Barrio, E., 
& Querol, A. (2017). The use of mixed populations of Saccha-
romyces cerevisiae and S. kudriavzevii to reduce ethanol content 
in wine: Limited aeration, inoculum proportions, and sequential 
inoculation. Frontiers in Microbiology, 8, 2087.

Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2009). Tre-
halose promotes the survival of Saccharomyces cerevisiae during 
lethal ethanol stress, but does not influence growth under sublethal 
ethanol stress. FEMS Yeast Research, 9, 1208–1216.

Cacho, J. I., Campillo, N., Viñas, P., & Hernández-Córdoba, M. (2013). 
Stir bar sorptive extraction with EG-silicone coating for bisphe-
nols determination in personal care products by GC-MS. Journal 
of Pharmaceutical and Biomedical Analysis, 78–79, 255–260.

Ciani, M., Beco, L., & Comitini, F. (2006). Fermentation behaviour 
and metabolic interactions of multistarter wine yeast fermenta-
tions. International Journal of Food Microbiology, 108, 239–245.

Ciani, M., Comitini, F., Mannazzu, I., & Domizio, P. (2010). Con-
trolled mixed culture fermentation: A new perspective on the 
use of non-Saccharomyces yeasts in winemaking. FEMS Yeast 
Research, 10, 123–133.

Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencioni, L., Man-
nazzu, I., et al. (2011). Selected non-Saccharomyces wine yeasts 
in controlled multistarter fermentations with Saccharomyces cer-
evisiae. Food Microbiology, 28, 873–882.

Dzialo, M. C., Park, R., Steensels, J., Lievens, B., & Verstrepen, K. J. 
(2017). Physiology, ecology and industrial applications of aroma 
formation in yeast. FEMS Microbiology Reviews, 41, S95–S128.

Howell, K. S., Cozzolino, D., Bartowsky, E. J., Fleet, G. H., & Hen-
schke, P. A. (2006). Metabolic profiling as a tool for revealing 
Saccharomyces interactions during wine fermentation. FEMS 
Yeast Reviews, 6, 91–101.

Kemsawasd, V., Viana, T., Ardö, Y., & Arneborg, N. (2015). Influ-
ence of nitrogen sources on growth and fermentation performance 
of different wine yeast species during alcoholic fermentation. 
Applied Microbiology and Biotechnology, 99, 10191–10207.

Kim, H. K., Choi, Y. H., & Verpoorte, R. (2011). NMR-based plant 
metabolomics: Where do we stand, where do we go? Trends in 
Biotechnology, 29, 267–275.

Kristensen, M., Savorani, F., Ravn-Haren, G., Poulsen, M., Markowski, 
J., Larsen, F. H., et al. (2010). NMR and interval PLS as reliable 



 C. Peng et al.

1 3

93 Page 12 of 12

methods for determination of cholesterol in rodent lipoprotein 
fractions. Metabolomics, 6, 129–136.

Lee, S., Do, S., Kim, S. Y., Kim, J., Jin, Y., & Lee, C. H. (2012). Mass 
spectrometry-based metabolite profiling and antioxidant activity 
of Aloe vera (Aloe barbadensis Miller) in different growth stages. 
Journal of Agricultural and Food Chemistry, 60, 11222–11228.

Liu, J., Arneborg, N., Toldam-Andersen, T. B., Zhang, S., Petersen, 
M. A., & Bredie, W. L. (2017). Impact of sequential co-culture 
fermentations on flavour characters of Solaris wines. European 
Food Research and Technology, 243, 437–445.

Liu, J., Toldam-Andersen, T. B., Petersen, M. A., Zhang, S., Arneborg, 
N., & Bredie, W. L. P. (2015). Instrumental and sensory charac-
terisation of Solaris white wines in Denmark. Food Chemistry, 
166, 133–142.

López-Rituerto, E., Avenoza, A., Busto, J. H., & Peregrina, J. M. 
(2013). NMR study of histidine metabolism during alcoholic and 
malolactic fermentations of wine and their influence on hista-
mine production. Journal of Agricultural and Food Chemistry, 
61, 9464–9469.

López-Rituerto, E., Cabredo, S., López, M., Avenoza, A., Busto, J. H., 
& Peregrina, J. M. (2009). A thorough study on the use of quanti-
tative 1H NMR in Rioja red wine fermentation processes. Journal 
of Agricultural and Food Chemistry, 57, 2112–2118.

López-Rituerto, E., Savorani, F., Avenoza, A., Busto, J. H., Peregrina, 
J. M., & Engelsen, S. B. (2012). Investigations of La Rioja terroir 
for wine production using 1H NMR metabolomics. Journal of 
Agricultural and Food Chemistry, 60, 3452–3461.

Mapelli, V., Olsson, L., & Nielsen, J. (2008). Metabolic footprinting in 
microbiology: Methods and applications in functional genomics 
and biotechnology. Trends in Biotechnology, 26, 490–497.

Nicholson, J. K., & Lindon, J. C. (2008). Systems biology: Meta-
bonomics. Nature, 455, 1054–1056.

Nilsson, M., Duarte, I. F., Almeida, C., Delgadillo, I., Goodfellow, B. 
J., Gil, A. M., et al. (2004). High-resolution NMR and diffusion-
ordered spectroscopy of port wine. Journal of Agricultural and 
Food Chemistry, 52, 3736–3743.

Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., 
& Engelsen, S. B. (2000). Interval partial least squares regres-
sion (iPLS): A comparative chemometric study with an example 
from the near infrared spectroscopy. Applied Spectroscopy, 54, 
413–419.

Ocón, A., Hampp, R., & Requena, N. (2007). Trehalose turnover during 
abiotic stress in arbuscular mycorrhizal fungi. New Phytologist, 
174, 879–891.

Padilla, B., Gil, J. V., & Manzanares, P. (2016). Past and future of non-
Saccharomyces yeasts: From spoilage microorganisms to biotech-
nological tools for improving wine aroma complexity. Frontiers 
in Microbiology, 7, 411.

Peng, C. T., Wen, Y., Tao, Y. S., & Lan, Y. Y. (2013). Modulating the 
formation of Meili wine aroma by prefermentative freezing pro-
cess. Journal of Agricultural and Food Chemistry, 61, 1542–1553.

Puig-Castellví, F., Alfonso, I., Piña, B., & Tauler, R. (2015). A quan-
titative 1H NMR approach for evaluating the metabolic response 
of Saccharomyces cerevisiae to mild heat stress. Metabolomics, 
11, 1612–1625.

Renault, P., Coulon, J., de Revel, G., Barbe, J. C., & Bely, M. (2015). 
Increase of fruity aroma during mixed T. delbrueckii/S. cerevisiae 

wine fermentation is linked to specific esters enhancement. Inter-
national Journal of Food Microbiology, 207, 40–48.

Sadoudi, M., Tourdot-Maréchal, R., Rousseaux, S., Steyer, D., Gal-
lardo-Chacón, J. J., Ballester, J., et al. (2012). Yeast-yeast inter-
actions revealed by aromatic profile analysis of Sauvignon Blanc 
wine fermented by single or co-culture of non-Saccharomyces and 
Saccharomyces yeasts. Food Microbiology, 32, 243–253.

Savorani, F., Tomasi, G., & Engelsen, S. B. (2010). icoshift: A versa-
tile tool for the rapid alignment of 1D NMR spectra. Journal of 
Magnetic Resonance, 202, 190–202.

Son, H. S., Hwang, G. S., Kim, K. M., Kim, E. Y., van den Berg, F., 
Park, W. M., et al. (2009). 1H NMR-based metabolomic approach 
for understanding the fermentation behaviors of wine yeast strains. 
Analytical Chemistry, 81, 1137–1145.

Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., 
Daykin, C. A., et al. (2007). Proposed minimum reporting stand-
ards for chemical analysis. Metabolomics, 3, 211–221.

Takahashi, H., Kai, K., Shinbo, Y., Tanaka, K., Ohta, D., Oshima, T., 
et al. (2008). Metabolomics approach for determining growth-
specific metabolites based on Fourier transform ion cyclotron 
resonance mass spectrometry. Analytical and Bioanalytical Chem-
istry, 391, 2769–2782.

Tredoux, A., De Villiers, A., Májek, P., Lynen, F., Crouch, A., & San-
dra, P. (2008). Stir bar sorptive extraction combined with GC-MS 
analysis and chemometric methods for the classification of South 
African wines according to the volatile composition. Journal of 
Agricultural and Food Chemistry, 56, 4286–4296.

Ugliano, M., & Henschke, P. A. (2009). Yeasts and wine flavour. In 
M. V. Moreno-Arribas & M. C. Polo (Eds.), Wine chemistry and 
biochemistry (pp. 313–392). New York: Springer.

Varela, C., Sengler, F., Solomon, M., & Curtin, C. (2016). Volatile 
flavour profile of reduced alcohol wines fermented with the non-
conventional yeast species Metschnikowia pulcherrima and Sac-
charomyces uvarum. Food Chemistry, 209, 57–64.

Viana, T., Loureiro-Dias, M. C., & Prista, C. (2014). Efficient fermen-
tation of an improved synthetic grape must by enological and lab-
oratory strains of Saccharomyces cerevisiae. AMB Express, 4, 16.

Vold, S. (1987). Principal component analysis. Chemometrics and 
Intelligent Laboratory Systems, 2, 37–52.

Wang, X. C., Li, A. H., Dizy, M., Ullah, N., Sun, W. X., & Tao, Y. S. 
(2017). Evaluation of aroma enhancement for “Ecolly” dry white 
wines by mixed inoculation of selected Rhodotorula mucilaginosa 
and Saccharomyces cerevisiae. Food Chemistry, 228, 550–559.

Ward, J. L., Harris, C., Lewis, J., & Beale, M. H. (2003). Assessment 
of 1H NMR spectroscopy and multivariate analysis as a technique 
for metabolite fingerprinting of Arabidopsis thaliana. Phytochem-
istry, 62, 949–957.

Zara, G., Ciani, M., Domizio, P., Zara, S., Budroni, M., Carboni, A., 
et al. (2014). A culture-independent PCR-based method for the 
detection of Lachancea thermotolerans in wine. Annals of Micro-
biology, 64, 403–406.

Zhou, Q., Qian, Y., & Qian, M. C. (2015). Analysis of volatile phenols 
in alcoholic beverage by ethylene glycol-polydimethylsiloxane 
based stir bar sorptive extraction and gas chromatography-mass 
spectrometry. Journal of Chromatography A, 1390, 22–27.


	Metabolic footprint analysis of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations
	Abstract
	Introduction 
	Objectives 
	Methods 
	Results 
	Conclusions 

	1 Introduction
	2 Materials and methods
	2.1 Yeast strains, growth media, and inoculation cultures
	2.2 Single and mixed culture fermentations of S. cerevisiae and L. thermotolerans
	2.3 1H NMR spectroscopy analysis and processing
	2.4 Dynamic headspace sampling (DHS)
	2.5 Gas chromatography–mass spectrometry (GC–MS)
	2.6 Multivariate statistical analysis

	3 Results
	3.1 Identifying key time-points of mixed culture alcoholic fermentations
	3.2 Metabolic footprints of differences between the single LT and mixed cultures
	3.3 Metabolic footprints of differences between the single SC and mixed cultures

	4 Discussion
	5 Conclusions
	Acknowledgements 
	References


