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Abstract
Introduction  Zonisamide is a new-generation anticonvulsant antiepileptic drug metabolized primarily in the liver, with 
subsequent elimination via the renal route.
Objectives  Our objective was to evaluate the utility of pharmacometabolomics in the detection of zonisamide metabolites 
that could be related to its disposition and therefore, to its efficacy and toxicity.
Methods  This study was nested to a bioequivalence clinical trial with 28 healthy volunteers. Each participant received a 
single dose of zonisamide on two separate occasions (period 1 and period 2), with a washout period between them. Blood 
samples of zonisamide were obtained from all patients at baseline for each period, before volunteers were administered any 
medication, for metabolomics analysis.
Results  After a Lasso regression was applied, age, height, branched-chain amino acids, steroids, triacylglycerols, diacyl 
glycerophosphoethanolamine, glycerophospholipids susceptible to methylation, phosphatidylcholines with 20:4 FA (arachi-
donic acid) and cholesterol ester and lysophosphatidylcholine were obtained in both periods.
Conclusion  To our knowledge, this is the only research study to date that has attempted to link basal metabolomic status 
with pharmacokinetic parameters of zonisamide.

Keywords  Zonisamide metabolomics · Personalized medicine · High dimensional data · Penalized regression

1  Introduction

Zonisamide, (ZNS) is a new-generation anticonvulsant 
with a unique chemical structure unrelated to other antie-
pileptic drugs (AED) (Masuda et al. 1980; Uno et al. 1979) 

(1,2-benzisoxazole-3-methanesulfonamide), a sulphonamide 
derivative. In Japan ZNS was first approved for clinical use 
in 1989, followed by South Korea in 1992, the USA in 2000 
and Europe in 2005. Its indications includes partial seizures 
as monotherapy in adults with newly diagnosed epilepsy 
with or without secondary generalization; and adjunctive 
therapy for the treatment of partial seizures in adults, adoles-
cents and children aged 6 years and above, with or without 
secondary generalization.

Blockage of voltage-sensitive sodium channels and 
T-type calcium channels are the predominant effects 
involved of ZNS (Kito et al. 1996; Rock et al. 1989; Schauf 
1987; Suzuki et al. 1992). These mechanisms of action con-
tribute to the stabilization of neuronal membranes and to the 
suppression of hypersynchronization (Romigi et al. 2015). In 
addition, ZNS appears to alter dopamine, 5-HT (serotonin) 
and acetylcholine metabolism, increasing striatal and hip-
pocampal concentrations of dopamine and serotonin (total 
and extracellular) (Kaneko et al. 1993; Mizuno 1997; Okada 
et al. 1992, 1995, 1999). Also the gamma-aminobutyric acid 
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and glutamate neurotransmitter systems appears to be modu-
lated by ZNS (Mimaki et al. 1990; Okada et al. 1998; Ueda 
et al. 2003).

ZNS is rapidly and completely absorbed after oral admin-
istration, with a bioavailability of 100% (Kochak et al. 1998; 
Schulze-Bonhage 2010), and an extensively distribution in 
tissues (volume of distribution about 1.1–1.7 l/kg). Maxi-
mum serum concentrations achieved within 2–5 h under 
fasting conditions and 4–6 h with food (Sills and Brodie 
2007). ZNS has a linear pharmakinetics after single doses of 
100–800 mg and after multiple doses of 100–400 mg daily 
(Kochak et al. 1998; Sills and Brodie 2007), and it is par-
tially bound to human serum albumin (approximately 50%) 
and preferentially accumulated in erythrocytes (Faught et al. 
2001; Peters and Sorkin 1993). ZNS has a terminal plasma 
elimination half-life (t½) of ~ 60 h, independent of dose and 
dosing regimen, which allows it to be administered either 
once or twice daily (Sills and Brodie 2007). The mainte-
nance dosage is 8 mg/kg per day in children and 100–600 mg 
per day in adults.

Zonisamide is mainly metabolized in the liver by the 
CYP3A4 isoenzyme to the open-ring metabolite 2-sul-
famoylacetyl phenol, to its N-acetyl derivative by N-acetyl-
transferase (metabolites pharmacologically inactive) and to 
a lesser extent, directly conjugated to glucuronic acid. So 
the elimination half-life of ZNS in plasma depends on the 
presence of CYP3A4 enzyme inducers (e.g., phenobarbi-
tal, carbamazepine, and phenytoin), which reduce the t½ 
of ZNS to 25–35 h (Italiano and Perucca 2013; Levy et al. 
2004; Ojemann et al. 1986). The CYP3A4 induction effects 
are unlikely to be clinically significant when zonisamide 
is added to existing therapy; however, changes in zon-
isamide concentrations could occur if doses of concomitant 
CYP3A4-inducing agents are changed or withdrawn, which 
might necessitate zonisamide dose adjustment (Brodie et al. 
2012). Excretion in feces is a minor elimination route (Lep-
pik 2004). Of the excreted dose, 15–30% was recovered as 
an unchanged drug, 20% as ZNS glucuronide and N-acetyl 
ZNS and 50% as the 2-sulfamoylacetyl phenol glucuronide 
(Frampton and Scott 2005; Sills and Brodie 2007).

Metabolomics is a multi-analytical technology that can 
assess the complete set of small molecules (< 1500 Da) in 
a specific matrix (cell, tissue or organism) under a given 
set of conditions (Goodacre 2007); this involves analysis 
of high-throughput data. Mass spectrometry, MS, couple to 
chromatography, gas (GC) or liquid (LC) and nuclear mag-
netic resonance (NMR) are the most widely used detection 
technologies (Fuhrer and Zamboni 2015; Lenz and Wilson 
2007).

There are key aspects to take into account in a metabo-
lomics project: the development of detection technologies, 
statistical methods to provide accurate and robust statisti-
cal analysis and potential patient confounders such as age, 

gender, comedications and diet (Gieser et al. 2011). Metab-
olomics has the potential to transform our understanding 
of mechanisms of pharmacokinetics, drug action and the 
molecular basis for variation in drug response. The vari-
ous metabolites, their concentration and fluxes, represent 
the final products of cellular interactions that extend from 
gene sequence to gene expression, protein expression, and 
ultimately, to the total cellular environment (including drug 
exposure) (Kaddurah-Daouk and Weinshilboum 2015). 
Pharmacometabolomics is emerging as a discipline of 
metabolomics which involves determining an individual’s 
metabolic state as influenced by environment, genetics and 
gut microbiome (metabotype) to define signatures pre- and 
post-treatment that might explain variability in the drug 
pharmacokinetics (PK) or pharmacodynamics (PD) pheno-
type, and also predict treatment outcomes (Kaddurah-Daouk 
and Weinshilboum 2015; Kantae et al. 2017).

Statistical methods are used to connect the detected 
metabolites with the biological system. Statistical learning 
(Hastie et al. 2009) addresses the classical problem of con-
trol group versus treatment group or healthy patients vs. ill 
patients, but sparsity and robustness are needed to deal with 
more variables, such as high dimensional data and outliers 
that bias the results (Kurnaz et al. 2017). In some cases, the 
experimental design of the project implies a repeated meas-
ures structure and a methodological improvement is used to 
take into account the variability due to samples and partici-
pants. Methods such as a generalized linear mixed model 
with Lasso penalty is used to avoid these problems (Schell-
dorfer et al. 2011). Finally, once the important metabolites 
have been detected and their importance assessed in a robust 
manner, the biological interpretation and utility of the results 
in the daily routine are also key problems.

The aim of this work was to evaluate the utility of metab-
olomics in the prediction of ZNS disposition, evaluated as 
ZNS AUC.

2 � Methods

2.1 � Design and participants

The present study was performed within a randomized 
crossover trial with two periods to evaluate the bioequiva-
lence of two 100-mg ZNS formulations (EUDRA-CT: 2013-
004465-14). Twenty-eight healthy volunteers were included. 
All the participants received a test or reference formulation 
of ZNS in the first period (P1), and the other formulation in 
the second period (P2), with a washout period of at least 28 
days between both periods. Blood samples for drug phar-
macokinetics and metabolomics study were collected from 
all participants in each period, for a total of 28 × 2 observa-
tions (2 observations per participant). Bioequivalence of the 
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two formulations was demonstrated, following the criteria 
accepted by current European Medicines Agency regulations 
(Committee for medicinal products for human use 2010). 
In addition, variables including age, sex, weight and height 
were obtained for each participant.

2.2 � Pharmacokinetic study

The blood samples for drug pharmacokinetics were collected 
from all participants and placed in serum tubes at the follow-
ing times: basal, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 
6, 8, 10, 12, 24, 32, 48 and 72 h after drug administration. 
ZNS and the internal standard were measured by reversed 
phase high performance liquid chromatography coupled to a 
tandem mass spectrometry detector (LC/MS/MS). The phar-
macokinetic analysis was performed using WinNonlin 6.3 
software (Pharsight Corporation, Cary, USA) by means of a 
noncompartmental analysis.

Maximum concentration (Cmax) and the time to reach 
it (Tmax) were directly obtained from the plasma concen-
tration results. AUC0-∞ (total area under the concentra-
tion–time curve; ng/ml*h) was calculated from the addition 
of two partial AUCs: (a) AUClast, area between the dosage 
time and the last time with detectable concentrations, cal-
culated by the trapezoidal rule; and (b) AUCinf, calculated 
as the ratio C/k, where C is the last detectable concentration 
and k is the slope obtained in the lineal regression calcu-
lated from the points corresponding to the elimination phase 
of the drug. Pharmacokinetic data were log-transformed; 
Cmax and AUC were adjusted to dose/weight administered. 
AUCinf presents less variability than other pharmacokinetic 
variables; given a certain drug and a set of drug dosages and 
their corresponding AUC0inf, it is possible to estimate the 
dosage. We used〖log〗_10 (〖AUC〗_0∞) as the depend-
ent variable.

2.3 � Metabolomic profiling

The 3-ml blood samples for metabolomics analysis were 
collected from all the participants and placed in EDTA-K2 
tubes at baseline of each period, before any medication was 
administered, and were stored at − 80 °C. Due to the wide 
concentration range of metabolites coupled with their exten-
sive chemical diversity, there is no single platform or method 
to analyze the entire metabolome of a biological sample 
(Baker 2011; Duportet et al. 2012). In this study, multiple 
UPLC–MS platforms were used to optimize the coverage of 
the plasma metabolome (Barr et al. 2012).

Metabolite extraction was accomplished by fractionating 
the samples into pools of species with similar physicochemi-
cal properties, using appropriate combinations of organic 
solvents. Three separate UPLC–MS-based platforms were 
used to perform optimal profiling of fatty acids, bile acids, 

steroids and lysoglycerophospholipids (platform 1); glyc-
erolipids, cholesteryl esters, sphingolipids and glycerophos-
pholipids (platform 2) and amino acids (platform 3). Char-
acteristics of each platform can be found in Supplementary 
Table S1.

Two types of quality control (QC) samples were used to 
assess the data quality. These were reference serum samples, 
which were evenly distributed over the batches and extracted 
and analyzed at the same time as the individual samples:

–	 QC calibration sample: used to correct the various 
response factors between and within batches;

–	 QC validation sample: used to assess how well data pre-
processing procedures improved data quality.

Data preprocessing, using the TragetLynx application 
manager for MassLynx 4.1 software(Waters Corp., Milford, 
USA), generated a list of chromatographic peak areas for the 
metabolites detected in each sample injection. An approxi-
mate linear detection range was defined for each identified 
metabolite, assuming similar detector response levels for all 
metabolites belonging to a given chemical class represented 
by a single standard compound. Data points lying outside 
their corresponding linear detection range were replaced 
with missing values, and those metabolites for which more 
than 30% of data points were found outside their corre-
sponding linear detection range were not used for statistical 
analyses.

Data normalization was performed following the proce-
dure described by Martínez-Arranz et al. (2015), in which 
normalization factors were calculated for each metabolite 
by dividing their intensities in each sample by the recorded 
intensity of an appropriate internal standard in that same 
sample.

–	 The most appropriate internal standard for each variable 
was defined as that which resulted in a minimum relative 
standard deviation after correction, as calculated from 
the QC calibration samples over all the analysis batches.

–	 Robust linear regression (internal standard corrected 
response as a function of sample injection order) was 
used to estimate any intra-batch drift in the QC calibra-
tion samples not corrected for by internal standard cor-
rection. For all variables, internal standard corrected 
response in each batch was divided by its corresponding 
intra-batch drift trend, such that normalized abundance 
values of the study samples were expressed with respect 
to the batch-averaged QC calibration serum samples.

–	 A Pareto scaling was also applied (van den Berg et al. 
2006).

From this metabolite profiling data set with 521 metab-
olites (MET), a second data set of chemical classes was 
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calculated as the sum of the normalized areas of all the 
metabolites with the same chemical characteristics, in total 
80 chemical classes (CHEM), taking into account that simi-
lar looking chemicals can ionize very differently. Finally, 
demographic variables, such as age, weight, height, body 
mass index and sex were added, resulting in 527 predictors 
for MET and 86 for CHEM, respectively.

2.4 � Statistical analysis

The chemical classes data set had no missing data, and the 
metabolites data set had only 25 observations missing, which 
were imputed using the random forest approach (Stekhoven 
and Bühlmann 2012).

Given that our dependent variable is a continuous 
variable, log10

(

AUCinf

)

 , we face a regression problem, 
� = X� + � , where y is a vector of n observations, X is a 
matrix of n observations and p predictors (527 or 86), � is 
the vector of regression coefficients and � the residual error. 
The well-known least squares estimator of the regression 
coefficients is defined as follows:

In case of high dimensional data, as in our case with 
more predictors than observations, the previous formula is 
not appropriate to solve the problem. Columns of X could 
be collinear, and on the other hand, overfitting could occur 
because there are many combinations of � which fit the data 
perfectly.

Modification of the sum of squared errors criterion via 
penalization (Witten and Tibshirani 2009) was the general 
approach used; we applied a Lasso penalty, with a more 
detailed explanation available in Hastie et al. 2009. Lasso 
computes some coefficients to zero; thus, these variables are 
not significant to explain the data.

There are also other approaches to this problem such 
elastic net regularization or partial least square regression. 
Elastic net (Zou and Hastie 2005) which select variables 
but allows correlation between them and methodological 
improvements over this procedures have been done when 
robust methods are applied together with elastic net (Kurnaz 
et al. 2017). Although Lasso is not the unique approach to 
this problem we decide to use it since the selection variable 
is done in order to built a future clinical practice ZNS dosage 
algorithm which should be sparse as possible in the number 
of variables as our previous knowledge point (Borobia et al. 
2012).

Lasso regression was applied first to the CHEM, and sec-
ond to the MET, by period. We fit models into two different 
periods to avoid the repeated measures problem.

After the variable selection via Lasso, a linear mixed model 
is fitted using the selected variables. To provide a measure of 

𝛽 =

(

XTX
)−1

XTy

performance, we use the root mean of the standard error of 
prediction (RMSEP), building a model with variables selected 
in both periods.

where yi is the observed value, ŷi , the predicted value based 
on our Lasso variable selection and n the number of elements 
to compare.

Statistical computations were performed using the statisti-
cal environment R (R Development Core Team 2013), and the 
glmnet package was used to fit Lasso regression (Friedman 
et al. 2010) and missForest (Stekhoven and Bühlmann 2012) 
for imputation of missing data.

2.5 � Ethics

The bioequivalence clinical trial protocol was approved by 
the Ethics Committee of La Paz University Hospital, Madrid 
(EUDRA-CT Code: 2013-004465-14). This research project 
nested to the bioequivalence clinical trial was approved by 
the same Ethics Committee (Code: ZONIP3M). All partici-
pants gave their written consent before study initiation and 
after reception of written and oral information related to the 
objectives, characteristics, procedures, risks and rights of par-
ticipation in the study.

3 � Results

Table 1 presents pharmacokinetic variables by period, in terms 
of mean, first and third quartile (Q1, Q3). This table also pro-
vides information about demographic variables.

3.1 � Chemical classes

Variables selected in the chemical classes data set via Lasso 
(and so perceived to be important to the model) are presented 
in Table 2, the corresponding regression coefficients estimates 
are available in Table S2 in the supplementary material sec-
tion. Age, height, branched-chain amino acids, steroids, tria-
cylglycerols, diacyl glycerophosphoethanolamine, methyla-
tion-susceptible-glycerophospholipids, phosphatidylcholines 
with 20:4 FA (arachidonic acid) and cholesterol ester (ChoE) 
and lysophosphatidylcholine (LPC), were obtained in both 
periods. RMSEP using this model gives a value of 0.0312.

3.2 � Metabolomic profile

Table  3 shows variables selected via Lasso for each 
period using the metabolite dataset, the corresponding 
regression coefficients estimates are available in Table S3 

RMSEP =

�

∑n

i=1

�

yi − ŷi
�2

n
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in the supplementary material section. Only height, l-cys-
tine, diacylglycerophosphocholines and hexanoylcarni-
tine appear selected in both periods. Using this model, 
RMSEP results in 0.0295.

Predicted versus observed values using Lasso selected 
variables in a repeated measures model using both peri-
ods are shown in Fig. 1, for both the chemical class and 
metabolite datasets. Our data suggest that the use of 
metabolites instead of chemical class to predict AUC​inf 
produces more accurate predictions even though metabo-
lites show significant correlation between them.

4 � Discussion

The results presented in this study provide an example 
of the potential of pharmacometabolomics in the field 
of pharmacokinetics and pharmacodynamics, as other 
authors have shown (Elbadawi-Sidhu et  al. 2017; Lin 
et al. 2016). Related to PK, the main aim of pharmaco-
metabolomic studies is to identify endogenous metabo-
lite markers that allow for the stratification of patients 
into exposure groups, which is needed to individualize 
drug dosing regimens (Kantae et al. 2017). It offers an 

Table 1   Demographic and pharmacokinetic variables, mean and Q1, Q3. Original units

Age (years) Weight (kg) Height (cm) BMI (kg/m2)

23.8 (22.2, 25) 71.2 (58, 79.4) 174.2 (165.8, 181) 23.3 (21.6, 24.4)

log
10

Cmax (ng/mL) Tmax (h) AUClast (ht × ng/mL) AUC​0∞ (h × ng/mLg)

P1 814.1 (616.4, 1060.2) 5.567 (3, 5.5) 35965 (28363, 41215) 66267 (53675, 75159)
P2 862.2 (649.7, 1066.3) 3.661 (3, 4.5) 38162 (30571, 44931) 63997 (54644, 71310)

Table 2   Chemical class selected 
by Lasso regression. First 
period, P1, and second period, 
P2

P1 P2

Age ✓ ✓
Weight ✓
Height ✓ ✓
BCAAs ✓ ✓ Branched-chain amino acids
FBA ✓ Free bile acids
ST ✓ ✓ Steroids
UFA ✓ Unsaturated fatty acids. UFA and short FA lead to 

higher membrane fluidity
AC ✓ Acylcarnitines
NEFA total ✓ Nonesterified fatty acids
DAG ✓ Diacylglycerols
TAG​ ✓ ✓ Triacylglycerols
LPE ✓ Lysophosphatidylethanolamines
MAPI ✓ Monoacylglycerophosphoinositol
MEMAPC.O plasmanyles ✓ MEMAPC O_plasmanyles
DAPE ✓ ✓ Diacylglycerophosphoethanolamine
SM ✓ Sphingomyelins
LPI ✓ Lysophosphatidylinositols
SL ✓ Sphingolipids
Membrane Lipids ✓ Glycerophospholipids + Diacylglycerols
PE PEMT ✓ ✓ Glycerophospholipids susceptible of methylation
PC DHA ✓ Phosphatidylcholines with 22:6 FA
PC 20.4 ✓ ✓ Phosphatidylcholines with 20:4 FA (arachidonic 

acid)
PE 20.4 ✓ PE with 20:4 FA (arachidonic acid)
ChoE LPC ✓ ✓ ChoE and LPC
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advantage over phamacogenetics, which uses genetic poly-
morphisms to predict individual variations in responses, 
but does not take into account other factors that are known 
to have marked impact on the PK of drugs such as tissue 
composition or gut microbiome. Some studies have been 
published associating predose metabolomics information 
with drug exposure: Phapale et al. (Phapale et al. 2010) 

correlated predose urine metabolites to the AUC of tac-
rolimus and inferred a metabolomics phenotype that can 
predict exposure to tacrolimus. Huang et al. (2015) associ-
ated pre-dose plasma metabolic profiles with atorvastatin 
exposure. Another report by Muhrez et al. (2017) identi-
fied 28 endogenous urine metabolites before drug admin-
istration that were predictive of the clearance of high-dose 
methotrexate in patients with lymphoid malignancies. The 
design of Phapale and Huang is similar to our bioequiva-
lence clinical trial in sample size and predose samples.

However, most of the pharmacometabolomic studies 
aiming to examine PD and changes in (patho) physiol-
ogy upon drug exposure by investigating differences in 
pre- and postdose endogenous metabolomics profiles and 
identifying patterns that can explain interindividual dif-
ferences in treatment efficacy (Kantae et al. 2017). The 
applicability of this approach has been shown in several 
studies: Zhu et al. linked the response to sertraline for 
a depressed state to different metabolomics profiles pre- 
and post-treatment. (Zhu et al. 2013). A more recent study 
(Tan et al. 2017) reports differences in metabolic profiles 
of pretreatment serum between patients showing various 
responses to a standard cytarabine plus anthracycline regi-
men in acute myeloid leukemia.

Although a great number of metabolites related to inter-
individual variability in the PK–PD of drugs have been 
identified, its applications in clinical practice are still 
scarce. Descriptions of more metabolite signatures for drug 
response and adverse effects are required to allow the design 
of confirmatory personalized trials targeted to specific popu-
lations that can benefit the most from a certain drug.

Table 3   Metabolites selected by Lasso regression. First period, P1, 
and second period, P2

P1 P2

Weight ✓
Height ✓ ✓
AA03 ✓ Amino acids
AA04 ✓
AA17 ✓
AA23 ✓ ✓ l-Cystine
AA53 ✓
ChoE-06 ✓
Cer03 ✓ Ceramides
Cer14 ✓
CMH01 ✓ Monohexosyl ceramides
CMH09 ✓
DAPC20 ✓ Diacylglycerophosphocholines
DAPC47 ✓ ✓
DAPE08 ✓ Diacylglycerophosphoethanolamines
DAPE19 ✓
DAPE26 ✓
DAPI06 ✓
FAA01 ✓ Primary fatty amides
FAA06 ✓
MEMAPC35 ✓
MEMAPE09 ✓ 1-ether, 2-acylglycero phospho ethanola-

minesMEMAPE05 ✓
MEMAPE13 ✓
TG171 ✓ Glycerolipids
AC01 ✓ ✓ Acyl carnitines

Hexanoylcarnitine
FFA21 ✓ Non-esterifed fatty acids
FFA38 ✓
FFAox06 ✓
MAPC38 ✓
MAPE15 ✓ 1 or 2-Monoacyl glycero phosphoethano-

laminesMAPE30 ✓
MAPE31 ✓
MAPE36 ✓
MAPI02 ✓ Monoacyl glycerophosphoethanol inositols
MEPC18 ✓
NAE_05 ✓ N-Acylethanolamines
NAE_06 ✓
ST01 ✓ Steroids

Fig. 1   Predicted versus observed values using Lasso selected vari-
ables in a repeated measures model with all data, P1 and P2. Black: 
chemical classes, blue: metabolite data set
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In this pharmacometabolomic study we addressed the 
identification of endogenous metabolites predicting ZNS 
disposition. This approach would provide some insight in 
order to personalize ZNS drug dosages. To this end, we 
linked metabolite concentration with AUC​inf, using penal-
ized regression methods (Lin et al. 2016). These methods 
deal with one of the major problems in metabolomics 
research: more variables than observations. This study 
allowed us to develop a targeted metabolomic study in a new 
data set to validate the predictive ability of the metabolites 
as predictors for AUC.

Among the metabolites identified as possible predictors 
of ZNS bioavailability, hexanoylcarnitine pertains to the 
acylcarnitine group; these are vital for the transport of fatty 
acids into the mitochondrial matrix (Indiveri et al. 2011) 
and are good markers for mitochondrial function, because 
incomplete fatty acid oxidation results in elevated acylcar-
nitine concentrations (Koves et al. 2005). Cystine serves as 
a substrate for the cystine–glutamate antiporter. This trans-
port system increases the concentration of cystine inside the 
cell; cystine is then quickly reduced to cysteine, which is the 
limiting precursor for glutathione synthesis. Accordingly, 
this antiporter system is widely reported to support antioxi-
dant defenses in vivo (Lewerenz et al. 2013; McBean 2002). 
Diacylglycerophosphocholines are phospholipids, essential 
components of cell membranes. Regarding to the estimated 
coefficients via Lasso, hexanoylcarnitine has the large value 
in both periods with a negative sign, the larger the amount 
of hexanoylcarnitine, the lower the ZNS AUC. On the other 
hand, cystine estimated coefficient is 100 times smaller than 
hexanoylcarnitine with a positive sign. This means that the 
influence of cystine, exists but with lower impact in the final 
ZNS AUC. Finally, diacylglycerophosphocholines estimated 
coefficients have the same positive sign in both periods but 
with different magnitude indicating that the larger the Dia-
cylglycerophosphocholines the higher ZNS AUC.

With the aim of reducing one of the main difficulties in 
a metabolomics data set—the correlation between metabo-
lites—we adopted the chemical class approach of adding 
metabolites of the same chemical class in a single varia-
ble. Differences is RMSEP performance between models, 
CHEM versus MET, produced more error than expected 
when we planned these analyses. Thus we could show that 
a chemical classes approach would not be appropriate and 
correlation between metabolites should be addressed in the 
analysis, since similar looking chemicals can ionize very 
differently; however, this approach should be confirmed by 
further research.

The major limitations of our study are the absence of a 
validation set and the small sample size. Given our work 
is nested to a bioequivalence clinical trial in which the 
dependent variables are pharmacokinetics parameters, a 
smaller sample size results when the dependent variable is a 

clinical variable. Bioequivalence clinical trials are an impor-
tant source of information to make advances in personalized 
medicine via pharmacometabolomics. Although validation 
data are not available for the nature of the bioequivalence 
clinical trial, our results report an improvement using meta-
bolic information regarding ZNS.

Finally, this study shows the potential utility of using 
metabolomics within bioequivalence and other phase I trials 
to explore and find signatures associated with the disposi-
tion of new and old drugs. This approach could ultimately 
facilitate the individualization of drug therapies during and 
after drug development.

5 � Conclusions

To our knowledge, there is no current research exploring 
the link between endogenous metabolomics and disposi-
tion of ZNS. More research is required before this research 
will allow determination of an individualized dose of ZNS 
according to a metabolite signature that can be applied in 
clinical practice. However, the first steps performed here 
open a path for further research on this and other drugs to 
accomplish this aim.
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