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Abstract
Introduction Differences in the metabolite profiles between serum and plasma are incompletely understood.
Objectives To evaluate metabolic profile differences between serum and plasma and among plasma sample subtypes.
Methods We analyzed serum, platelet rich plasma (PRP), platelet poor plasma (PPP), and platelet free plasma (PFP), col-
lected from 8 non-fasting apparently healthy women, using untargeted standard 1D and CPMG 1H NMR and reverse phase 
and hydrophilic (HILIC) UPLC-MS. Differences between metabolic profiles were evaluated using validated principal com-
ponent and orthogonal partial least squares discriminant analysis.
Results Explorative analysis showed the main source of variation among samples was due to inter-individual differences 
with no grouping by sample type. After correcting for inter-individual differences, lipoproteins, lipids in VLDL/LDL, lactate, 
glutamine, and glucose were found to discriminate serum from plasma in NMR analyses. In UPLC-MS analyses, lysophos-
phatidylethanolamine (lysoPE)(18:0) and lysophosphatidic acid(20:0) were higher in serum, and phosphatidylcholines (PC)
(16:1/18:2, 20:3/18:0, O-20:0/22:4), lysoPC(16:0), PE(O-18:2/20:4), sphingomyelin(18:0/22:0), and linoleic acid were lower. 
In plasma subtype analyses, isoleucine, leucine, valine, phenylalanine, glutamate, and pyruvate were higher among PRP 
samples compared with PPP and PFP by NMR while lipids in VLDL/LDL, citrate, and glutamine were lower. By UPLC-MS, 
PE(18:0/18:2) and PC(P-16:0/20:4) were higher in PRP compared with PFP samples.
Conclusions Correction for inter-individual variation was required to detect metabolite differences between serum and 
plasma. Our results suggest the potential importance of inter-individual effects and sample type on the results from serum 
and plasma metabolic phenotyping studies.
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1 Introduction

Human blood contains a multitude of proteins and metabo-
lites and is commonly used in epidemiological and meta-
bolic phenotyping studies (Tzoulaki et al. 2014). Although 
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serum and plasma both originate from whole blood, they 
are drawn into distinct phlebotomy tubes, undergo different 
biochemical processing after collection, and contain differ-
ent constituents.

Serum is obtained from whole blood collected without an 
anticoagulant. The blood is allowed to clot, and the fibrin 
clot, blood cells, and a majority of residual cellular mate-
rial are removed by centrifugation (some cell fragments 
and microvesicles remain) (Colombo et al. 2014). Platelets 
are activated during this process and release proteins and 
metabolites into the serum (Schnabel et al. 2010; Yatomi 
et al. 1997). Therefore, while serum has major modifica-
tions of coagulation factors, it also contains secreted compo-
nents (e.g., cytokines and growth factors) from platelets and 
other cells including neutrophils and monocytes. Even when 
inhibited with an additive, glucose utilization by platelets 
and leukocytes continues while the blood is clotting at a rate 
of ~ 5–7%/h (5–10 mg/dL) (Chan et al. 1989).

Plasma is obtained from blood collected with an anti-
coagulant (e.g., EDTA, heparin, citrate) and centrifugation 
during sample processing eliminates glucose utilization 
and removes the white blood cells, red blood cells, and a 
variable amount of platelets depending on the centrifugation 
protocol. Similar to serum, any microvesicles present are 
mostly retained by standard centrifugation protocols. Conse-
quently, plasma contains relatively unmodified coagulation 
proteins with variable degrees of platelet components pre-
sent in platelet rich plasma (PRP) and platelet poor plasma 
(PPP) but not in platelet free plasma (PFP). Freezing plasma 
samples results in platelet lysis and release of the compo-
nents (e.g., membranes and intracellular molecules). There-
fore, platelet-derived metabolites are likely to contribute to 
overall differences between serum and plasma metabolite 
profiles.

As serum and plasma possess both shared and unique 
components, these differences may be an important consid-
eration for biospecimen selection and metabolite identifi-
cation in metabolic phenotyping studies. A few studies in 
humans have compared serum and plasma samples (Teahan 
et al. 2006; Liu et al. 2010; Wedge et al. 2011; Denery et al. 
2011; Yu et al. 2011; Ishikawa et al. 2013, 2014; Hirayama 
et al. 2015). These studies utilized different nuclear mag-
netic resonance (NMR) or mass spectrometry (MS) tech-
niques and reported several metabolites that differentiated 
the sample types. To date, no single study has evaluated 
differences between serum and plasma using both NMR 
and MS analyses and to our knowledge, differences among 
plasma subtypes have not been investigated. We performed 
a comprehensive untargeted analysis of serum, PRP, PPP, 
and PFP using Carr-Purcell-Meiboom-Gill (CPMG), stand-
ard 1D, and lipoprotein subclass 1H NMR and hydrophilic 
interaction chromatography (HILIC) and reverse phase (RP) 
ultra-performance liquid chromatography-MS (UPLC-MS) 

to evaluate metabolic profile differences across blood sample 
types.

2  Materials and methods

2.1  Sample collection and processing

Serum, PRP, PPP, and PFP blood samples were collected 
from 8 apparently healthy non-fasting female volunteers 
(n = 32 total samples). For preparation of serum, blood was 
drawn into 10-mL Serum Separator Tubes (SST; contain-
ing clot activator and serum separator gel) (BD Bioscience, 
Franklin Lakes, NJ, USA). Samples were inverted 5 times 
and allowed to clot at room temperature (RT) for 45 min 
prior to centrifugation (2000×g 10 min at RT).

Plasma samples were prepared from blood collected into 
10-mL lithium heparin tubes. PRP was prepared by one cen-
trifugation at 200×g 10 min (no brake) and PPP was pre-
pared by one centrifugation at 2000×g 10 min (low brake). 
PFP was prepared by centrifugation at 2000×g 10 min (low 
brake), aliquoting the plasma into 1-mL conical vials, and 
performing a second centrifugation at 15,000×g 7 min (all 
centrifugations at RT). Following centrifugation, samples 
were aliquoted into 1-mL conical vials and frozen at − 80 °C.

In order to evaluate the day-to-day biovariability of the 
metabolites we identified in our analyses, we collected a 
separate set of serum samples from those used for the serum-
plasma comparison. Samples were collected from 7 non-
fasting apparently healthy female volunteers into SST on 
days 0, 3, and 6, and prepared using the serum sample pro-
cessing methods described above. Samples were analyzed 
in a single batch, separate from the serum-plasma sample 
analysis and run in random order.

A quality control (QC) sample was generated by pooling 
50 µL of each sample from the serum-plasma study. QC 
samples were used for the assessment of instrument stabil-
ity and data quality throughout the study. For UPLC-MS, 
the QC spectra were viewed during the run to check that the 
mass correction was applied, the instrument pressure was 
stable, and the retention time drift between QC samples was 
acceptable. The coefficient of variation (CV) of the ionic fea-
tures across the QC samples were used to assess the stability 
of the analytical run. A QC filter was applied to remove 
any features from the analysis with a CV > 30%. For NMR, 
the QC and experimental samples were assessed visually 
by PCA. Instrument stability was considered acceptable if 
QC samples had low intra-group variability compared with 
the inter-group variability among the experimental samples.



A comparison of human serum and plasma metabolites using untargeted 1H NMR spectroscopy and…

1 3

Page 3 of 12 32

2.2  Metabolic profiling of serum and plasma 
samples using 1H NMR spectroscopy

Samples were prepared and analyzed in a single batch in ran-
dom order using an in-house protocol adapted from stand-
ard Bruker methods (Dona et al. 2014). Samples (300 µL) 
were prepared in 300 µL of phosphate buffer and QC spec-
tra were acquired after every 10 study samples. 1H NMR 
standard 1D (NOESYPR1D) with water pre-saturation and 
CPMG spectra were recorded on a 600 MHz Avance III 
Bruker NMR spectrometer (Bruker Biospin, Rheinstetten, 
Germany) operating at 600.13 MHz. All experiments were 
performed with 32 scans, 4 dummy scans, a 10 ms mixing 
time, and 96 k data points at a temperature of 310K. The 
1H NMR standard 1D analyses were acquired with a sweep 
width of 30 ppm resulting in an acquisition time of 2.73 s. 
The time between the two 90° RF pulses was 3 µs and the 
relaxation delay between each FID acquisition was 4 s. For 
the CPMG NMR spectra, a sweep width of 20 ppm was 
employed resulting in an acquisition time of 3.07 s. A spin 
echo delay of 0.3 ms and 128 loops were used resulting in 
a total T2 relaxation delay of 76.8 ms. The relaxation delay 
between two FIDs was set at 4 s. Spectral processing was 
performed as described in the Supplementary Information. 
All spectra underwent a probabilistic quotient normalisation 
(Dieterle et al. 2006).

2.3  Lipoprotein profiles from deconvolution of NMR 
peaks

Quantification of lipoprotein subclasses were obtained using 
Bruker IVDr LIpoprotein Subclass Analysis (B.-LISA, 
Bruker, Biospin) (Petersen et al. 2005; Flote et al. 2016). For 
QC, Bland–Altman prediction errors and correlation coeffi-
cients were calculated between the NMR measurements and 
standard clinical chemistry values for total-cholesterol, high 
density lipoprotein (HDL)-cholesterol, low density lipopro-
tein (LDL)-cholesterol, and total triglycerides. The correla-
tion between clinical values and Bruker measurements of 
total-cholesterol, LDL-cholesterol, and triglycerides were 
r > 0.72, therefore the analysis of 105 lipoprotein subclasses 
was performed. The lipoprotein densities and Bruker nomen-
clature for the lipoprotein components are described in the 
Supplementary Information (Supplementary Materials and 
Methods and Table S-1).

2.4  Metabolic profiling of serum and plasma 
samples using HILIC and RP UPLC‑MS

Samples (200 µL) were treated with isopropanol (1:3), incu-
bated at − 20 °C for 24 h, centrifuged (2700×g 10 min) and 
aliquoted. Chromatography was performed with a Waters 
Acquity Ultra Performance LC system (Waters Corp., 

Milford, MA, USA) using both HILIC and RP chroma-
tographic methods. HILIC separation was performed as 
described previously (Want et al. 2010). RP UPLC-MS 
procedures were according to Waters (Isaac et al. 2011). 
Electrospray ionization (ESI) mass spectrometry acquired in 
both positive (ESI+) and negative (ESI−) ionization modes 
was performed using a Xevo G2 Q-TOF (Waters Corp.). The 
capillary voltages were 1.5 kV (ESI+) and 2 kV (ESI−). The 
cone voltage was 20 V, desolvation temperature 600 °C, and 
the source temperature was 120 °C. The cone gas flow rate 
was 150 L/h and the desolvation gas flow rate was 1000 L/h. 
The Xevo G2 Q-TOF was operated in sensitivity mode with 
a scan time of 0.1 s. Data were collected in centroid mode 
with a scan range of 50–1200 m/z. Lock-mass scans were 
collected every 30 s to perform mass correction. Leucine 
Enkephalin (555.2645 amu) (20 µg/L) at a flow rate of 
15 µL/min was used for lock-mass correction. The same 
parameters were used For  MSe experiments with a high col-
lision energy voltage of 30 eV. Samples were analyzed in a 
single batch in random order with QC spectral acquisition 
after every 5 samples. XCMS (Smith et al. 2006) with cent-
Wave peak detection was used for pre-processing of the raw 
UPLC-MS data in R (version 3.1.2).

2.5  Statistical analysis, feature selection, 
metabolite identification, and biovariability 
assessment

NMR and MS data were analyzed using principal com-
ponents analysis (PCA) with SIMCA-P software (version 
13.0.3, Umetrics, Sweden) to assess the main sources of 
variation. Variation due to differences among individu-
als dominated the separation of the data, so a method to 
remove the contribution from inter-individual variation was 
employed. To achieve this, the mean spectra of all samples 
collected from one blood donor was subtracted from the 
same donor’s individual serum or plasma sample’s spectra. 
This approach (which we have termed “individual correc-
tion”) was used to compare serum and plasma and the dif-
ferent plasma subtypes.

We used pairwise discriminant analysis based on 
orthogonal partial least squares discriminant analysis 
(OPLS-DA) using SIMCA-P software to build classifica-
tion models. Each variable was auto-scaled (mean-cen-
tered and scaled to unit variance) prior to OPLS-DA. Mod-
els that were significant (assessed by analysis of variance 
of the cross-validated residuals (CV-ANOVA) p < 0.05) 
based on sevenfold cross-validation were used to deter-
mine features that differentiated the sample types. From 
the OPLS-DA models we obtained the correlation between 
the feature and the predictive OPLS-DA score (correlation 
loadings, p(corr)) and the importance of the feature to the 
model (variable influence on projection (VIP)) for each 
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feature. Features from each of the statistically significant 
OPLS-DA models were chosen if they had a VIP value 
above 1 since the influence of variables with a VIP > 1.0 
on the explanation of the Y matrix is considered above 
average (Umetrics 2005; Galindo-Prieto et al. 2014). Next, 
a Wilcoxon-Mann-Whitney (WMW) test was performed 
on each selected NMR and MS feature and the p-values 
were adjusted using a false discovery rate (FDR) approach 
(FDR-adjusted p < 0.05) as described by Storey (Storey 
2002). All statistically significant OPLS-DA models were 
used for metabolite identification.

Metabolite assignments of NMR features were performed 
using 1D and 2D NMR experiments (1H-1H homonuclear 
COrrelation SpectroscopY (COSY), TOtal Correlation 
Spectroscopy (TOSCY), and 1H-13C Single Quantum Coher-
ence spectroscopy (HSQC)) by matching the recorded sig-
nals with NMR spectral databases (Human Metabolome 
Database (HMDB), Biological Magnetic Resonance Data 
Bank (BMRB)), and published assignments (Nicholson et al. 
1995). Statistical total correlation spectroscopy (STOCSY) 
was used to locate potentially correlated peaks in complex 
spectral regions (Cloarec et al. 2005).

For UPLC-MS feature identification, molecular formulas 
and structural elucidation were assessed by matching accu-
rate mass-to-charge (m/z) measurements to metabolites from 
available online databases (https ://metli n.scrip ps.edu/index 
.php, http://www.lipid maps.org/, and http://www.hmdb.
ca). Our database searches included both adduct and par-
ent ions. Initial searches were performed with the tolerance 
of the detected mass accuracy set to ± 50 ppm in order to 
identify candidate compounds. Assignment of the candidate 
metabolites were subsequently made using information from 
fragmentation experiments and previously published studies 
that used the same analytical methods. To make direct com-
parisons of spectral data from different blood sample types, 
the relative levels of selected molecules were assessed using 
TargetLynx software (Waters Corp.).

Metabolite identification was given the following level of 
assignment (LoA), as adapted from Sumner et al. (Sumner 
et al. 2007): (1) Identified compound, confirmed by spiking 
sample with an authentic chemical reference, (2) MS/MS 
spectrum or 1H NMR chemical shifts and their multiplicity 
matched to compounds using publically available databases 
or published literature, (3) Detection of common fragment 
ions used to characterize compound classes and an accurate 
mass matched to a reference database and, (4) Accurate mass 
matched to a database to make a tentative assignment.

For biovariability assessment, random effects nested 
ANOVA was used to estimate components of variance 
using the aov function in R statistical software. The ana-
lytical (CVa), within-subject (CVi), and between-subject 
(CVg) coefficients of variation were calculated (Fraser and 
Harris 1989; Sakkinen et al. 1999). NMR biovariability 

samples were only analyzed once and CVa values could not 
be calculated.

3  Results

3.1  Removing inter‑individual variation 
from metabolite profiles by mean‑correction

The blood donors’ ages ranged from 27 to 62 years (mean 
41.6 years; standard deviation (SD): 13.5 years). The mean 
(SD) body mass index (BMI) was 27.4 kg/m2 (4.4 kg/m2) 
(range 17.8–33.1 kg/m2). Typical spectral data from serum, 
PRP, PPP, and PFP samples analyzed using standard 1D 1H 
NMR are shown in Supplementary Fig. S-1 and reveal the 
presence of a range of amino acids, organic acids, lipids, 
and glucose.

Figure 1a, d show the PCA scores plots of standard 1D 
NMR and RP UPLC-MS (ESI+) data summarizing the 
main sources of variation among the different sample types. 
Serum and plasma samples were clustered by individual 
donor with no grouping by sample type. This indicated the 
main source of variation among the samples was due to 
inter-individual differences. A similar trend was observed for 
CPMG NMR and RP and HILIC UPLC-MS (ESI−) analyses 
(Fig. S-2). In the HILIC UPLC-MS (ESI+) analysis, the 
main source of variation was from the serum and plasma 
samples (Fig. S-2J).

To investigate potential differences between serum and 
plasma samples that were not attributed to inter-individual 
variation, we adjusted the samples using “individual cor-
rection”, as described in Methods Section 2.5. Figure 1b, e 
show the PCA scores plots for the serum and plasma stand-
ard 1D NMR and RP UPLC-MS (ESI+) data after individ-
ual correction was applied. The main source of variation 
described by the first principal component was serum vs. 
plasma samples. A similar trend was observed for all NMR 
and UPLC-MS data sets (Fig. S-2).

The PCA scores plots in Fig. 1c, f compare the plasma 
subtypes alone after individual correction. Following indi-
vidual correction, the PRP samples clustered together and 
were grouped away from PPP and PFP samples in the NMR 
analyses (Fig. 1c; Fig. S-2c & f). PRP samples were also 
grouped away from PPP and PFP samples by RP (ESI−) 
(Fig. S-2i), but not in the other UPLC-MS analyses (Fig. 1f; 
Fig. S-2l & o).

In the original (uncorrected) data, 6 pairwise OPLS-
DA models significantly discriminated serum from plasma 
(standard 1D NMR, CPMG NMR, RP (ESI±), and HILIC 
(ESI±) UPLC-MS). After individual correction, all 7 
OPLS-DA models were significant (Tables S-2 and S-3 
in the Supplementary Information). The most significant 
model discriminating serum from plasma by NMR was 

https://metlin.scripps.edu/index.php
https://metlin.scripps.edu/index.php
http://www.lipidmaps.org/
http://www.hmdb.ca
http://www.hmdb.ca
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from standard 1D data (CV-ANOVA p = 2.2 × 10− 19). The 
RP (ESI+) data generated the most significant UPLC-MS 
model (CV-ANOVA p = 1.2 × 10− 18). The scores plots for 
the cross-validated models are shown in Fig. 2 and Fig. S-3.

Prior to individual correction none of the OPLS-DA mod-
els comparing the plasma subtypes were predictive (all CV-
ANOVA p > 0.05) (Tables S-3 & S-4). After individual cor-
rection, all 7 models significantly discriminated PRP from 
PPP; the most significant was CPMG NMR (CV-ANOVA 
p = 2.9 × 10− 5). Six models significantly discriminated PRP 
from PFP; the most significant was RP (ESI−) UPLC-MS 
(CV-ANOVA p = 2.2 × 10− 5). For comparisons between PPP 
and PFP only the CPMG (CV-ANOVA p = 0.008) and stand-
ard 1D (CV-ANOVA p = 0.01) NMR models were statisti-
cally significant.

3.2  Metabolites distinguishing serum from plasma

In standard 1D NMR analysis, we identified 4 metabo-
lites that significantly differentiated serum from plasma 
samples. The methyl group of lipids in VLDL and LDL 
(at 0.85 ppm); the methyl group of lactate (at 1.33 ppm); 
and, the methylene group of glutamine (at 2.44  ppm) 

were higher in serum than plasma. Conversely, glucose 
(at 5.23 ppm) was higher in plasma than serum (Table 1). 
Specific features could not be assigned in the CPMG anal-
yses, as statistically significant data points were located in 
the spectral baseline (Table S-5). In the NMR lipoprotein 
subclass analysis, 47 lipoprotein subclasses significantly 
differed between serum and plasma samples. Of these, 37 
lipoprotein subclasses were higher in serum, including 
18 subclasses from the HDL fraction (Table S-6). Some 
intermediate density lipoprotein (IDL), VLDL, and LDL 
subclasses were higher in plasma (Table S-6).

By UPLC-MS analyses we identified 10 metabolites 
that discriminated serum from plasma with an LoA ≤ 3 
(n = 8 were higher in plasma) (Table 2). A majority of 
the metabolites were glycerophospholipids including 
lysophosphatidylcholine (lysoPC)16:0, phosphatidyl-
cholines (PC)16:1/18:2, 20:3/18:0 and O-20:0/22:4, and 
phosphatidylethanolamine (PE)(O-18:2/20:4) which 
were higher in plasma than serum. LysoPE(18:0) and 
lysophosphatidic acid (lysoPA)(20:0) were higher in serum 
than plasma (Table 2). The sphingolipid sphingomye-
lin(18:0/22:0), and fatty acids linoleic acid and linoleyl 
carnitine were higher in plasma than serum (Table 2).

Fig. 1  Principal components analysis (PCA) scores plots of 1H NMR 
standard 1D and RP UPLC-MS (ESI+) data evaluating variation 
among serum and plasma samples. PCA scores plots (PC1 and PC2) 
from serum (red), platelet rich plasma (yellow), platelet poor plasma 

(blue), and platelet free plasma (green) are presented before (a, d) 
and after applying individual correction using all sample types (b, e) 
or using plasma samples only (c, f). The numbers correspond to the 
individual donors who provided the samples
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Fig. 2  Pairwise orthogonal partial least squares discriminant analysis 
(OPLS-DA) of 1H NMR standard 1D serum and plasma data. Cross-
validated scores (TCV1 vs. TCV2, corresponding to the orthogonal 
component) of the metabolic data are shown for serum (red) vs. plate-
let rich plasma (PRP) (yellow), platelet poor plasma (PPP) (blue), and 
platelet free plasma (PFP) (green) before applying individual correc-
tion (a). Comparison of serum vs. plasma is shown after applying 
individual correction using all samples (b) and comparison of PRP 

vs. PFP is shown after applying individual correction using plasma 
samples only (c). The numbers correspond to the individual donors 
who provided the samples. The corresponding OPLS-DA loadings 
plots (d, e, f) show the NMR data points (1H ppm) colored by their 
squared correlation to the sample type. The covariance of each NMR 
feature to the class variable is indicated by the magnitude and direc-
tion. BCAAs, branched chains amino acids; UA: unassigned
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3.3  Metabolites distinguishing plasma subtypes

In comparisons of the different plasma subtypes, we identi-
fied 12 statistically significant metabolites by standard 1D 
NMR that discriminated PRP from PFP and 10 metabolites 
that differentiated PRP from PPP; 7 of these metabolites 
were also detected in the respective CPMG NMR analy-
sis. Isoleucine, leucine, valine, phenylalanine, glutamate, 

pyruvate, and signals from N-acetylglycoproteins were 
consistently higher among plasma samples with increased 
platelet content whereas the resonances of the fatty acyl moi-
eties in VLDL/LDL, citrate, and glutamine were consist-
ently lower (Table 1 and Table S-5). The LDL-triglyceride 
subfraction, L2TG, was consistently lower among samples 
with higher platelet content by lipoprotein subclass analy-
sis (Table S-6). No statistically significant differences were 

Table 1  Metabolites 
discriminating serum and 
plasma and plasma subtypes 
identified by 1H NMR standard 
1D analyses

The levels of assignment (LoA) were defined as: (1) Identified compounds, confirmed with chemical refer-
ence standards and (2) 1H NMR chemical shifts and their multiplicity matched to compounds using publi-
cally available databases or published literature. The (+) or (-) symbols listed in the sample type categories 
correspond to the directionality of the relationships between the OPLS-DA predictive score and sample 
types: a (+) symbol indicates a positive correlation between that sample type and metabolite; a (-) symbol 
indicates a negative correlation with that sample type. A positive correlation loading (p(corr)) value of a 
metabolite indicates a positive relationship with the sample type with a (+) symbol
*The peak at 0.84 to 0.88 ppm is the resonance of the  CH3 group of all lipids present in VLDL and LDL; 
the table reports information for the data point with the highest p(corr) in this range. † No features from the 
OPLS-DA models discriminating PPP vs. PFP were statistically significant following the false discovery 
rate (FDR) adjustment. VIP, variable influence on projection of the feature to the OPLS-DA model

Metabolite LoA 1H ppm FDR
p value

p(corr) VIP

Serum (+) vs. Plasma (-)
 Glutamine 1 2.444 2.5 × 10− 04 0.69 1.40
 Lipids in VLDL and LDL* 2 0.852 3.2 × 10− 04 0.90 1.75
 Lactate 2 1.332 3.2 × 10− 04 0.83 1.61
 Glucose 2 5.229 4.8 × 10− 03 -0.52 1.05

PRP (+) vs. PFP (-)
 Phenylalanine 2 7.319 2.3 × 10− 03 0.81 1.99
 Pyruvate 2 2.360 4.6 × 10− 03 0.95 2.36
 Glutamate 2 2.338 4.6 × 10− 03 0.95 2.35
 N-acetylglycoproteins 2 2.036 4.6 × 10− 03 0.89 2.20
 Isoleucine 2 0.943 4.6 × 10− 03 0.88 2.18
 Leucine 2 0.953 4.6 × 10− 03 0.84 2.08
 Valine 2 0.954 7.0 × 10− 03 0.83 2.05
 Lactate 2 1.315 1.6 × 10− 02 0.69 1.85
 Alanine 2 1.468 1.6 × 10− 02 0.79 1.74
 Glutamine 1 2.452 4.6 × 10− 03 -0.94 2.34
 Lipids in VLDL and LDL* 2 0.880 4.6 × 10− 03 -0.80 1.96
 Citrate 2 2.512 1.6 × 10− 02 -0.76 1.88

PRP (+) vs. PPP (-)
 Glutamate 2 2.336 6.2 × 10− 03 0.92 2.39
 Valine 2 0.954 6.2 × 10− 03 0.90 2.34
 N-acetylglycoproteins 2 2.036 6.2 × 10− 03 0.88 2.27
 Leucine 2 0.965 6.2 × 10− 03 0.86 2.24
 Isoleucine 2 0.944 6.2 × 10− 03 0.86 2.22
 Pyruvate 2 2.363 6.2 × 10− 03 0.83 2.13
 Phenylalanine 2 7.319 6.2 × 10− 03 0.79 2.03
 Glutamine 1 2.444 6.2 × 10− 03 -0.91 2.34
 Citrate 2 2.512 9.6 × 10− 03 -0.85 2.18
 Lipids in VLDL and LDL* 2 0.852 9.6 × 10− 03 -0.73 1.86

PPP (+) vs. PFP (-)
 No statistically significant features † – – – – –
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observed between PPP and PFP samples by standard 1D or 
CPMG NMR (Table 1 and Table S-5). In the RP UPLC-MS 
analysis, PE(18:0/18:2) and PC(P-16:0/20:4) were higher in 
PRP than PFP (Table 2).

3.4  Metabolite biovariability

We assessed biovariability of the identified metabolites by 
collecting serum samples from 7 donors at three time points 
(on days 0, 3, and 6). As observed in our experiments com-
paring different blood matrices, the main source of variation 
by PCA over the three time points was attributed to inter-
individual differences (Fig. S-4). After applying individual 
correction the main source of variation observed across the 
first principal component was sampling day (Fig. S-4).

As presented in Supplementary Table S-7, we used 
uncorrected data to calculate the within-subject (CVi) and 
between-subject (CVg) coefficients of variation for these 
metabolites. The CVi values ranged from 0.6% (glutamate, 
pyruvate) to 31.5% (linoleic acid) and CVg values ranged 
from 1.2% (citrate) to 59.1% (linoleic acid). For the UPLC-
MS measurements, run in triplicate, we calculated analytical 
variation (CVa); the range was 1.8% (PC(P-16:0/20:4)) to 
60.5% (lysoPE(18:0)). For the metabolites, lysoPC(16:0), 
PC(P-16:0/20:4), linoleic acid, and linoleyl carnitine, the 
analytical variation values were less than half of the indi-
vidual variation values (CVa < 1/2 CVi) indicating adequate 
precision (Fraser and Harris 1989). In general the magnitude 
of the CVi and CVg values were consistent with well-estab-
lished biomarkers of inflammation and coagulation used in 
epidemiological studies (Sakkinen et al. 1999). Exceptions 
included some amino acids, pyruvate, and citrate which had 
low between-subject and within-subject variation.

4  Discussion

We used untargeted NMR, lipoprotein subclass, and UPLC-
MS analyses to evaluate differences among the metabolic 
profiles of serum, PRP, PPP, and PFP. Our results demon-
strated that differences from inter-individual variation were 
greater than differences by sample type. Following adjust-
ment for inter-individual variation, we identified several 
metabolites, predominately glycerophospholipids, lipo-
proteins, and amino acids, that discriminated serum from 
plasma and distinguished PRP from PPP and PFP samples.

Previous studies have evaluated metabolite differences 
between serum and plasma using either NMR or MS profil-
ing in both targeted (n ranging from 4 to 377 samples) or 
untargeted modes (n ranging from 4 to 29 samples). These 
studies reported heterogeneous results and are summarized 
in Table S-8. Some overlapping findings were reported, 
including higher amino acids, arachidonic acid, lactate, 

hypoxanthine, glycerol, myo-inositol, and lower sarcosine 
in serum. Our study extends findings in the literature by 
utilizing multiple untargeted methods and by evaluating dif-
ferent plasma subtypes.

Our PCA results demonstrated that inter-individual dif-
ferences were greater than differences by sample type or 
from day-to-day biovariability. Likely sources of variability 
among individuals include age, sex, diet, and other environ-
mental influences (Lenz et al. 2003, 2004; Trabado et al. 
2017). In an attempt to limit such heterogeneity, all subjects 
in our study were women, therefore age, genetics, diet, and 
other external factors likely played roles in these differences. 
The dominance of the inter-individual variation was consist-
ent with results from previous studies (Teahan et al. 2006; 
Hirayama et al. 2015; Jonsson et al. 2015; Ishikawa et al. 
2013; Wedge et al. 2011) and indicated the importance of 
using mathematical methods to adjust for inter-individual 
variation in order to identify influences attributable to other 
sources. Results from our UPLC-MS biovariability assess-
ment showed that many of the metabolites we measured had 
larger between-subject variation than within-subject plus 
analytical variation over the course of 3–6 days. Although 
only a small number of participants were used for these esti-
mates, findings indicate a majority of the metabolites we 
identified are suitable for use in longitudinal epidemiologi-
cal studies.

After accounting for inter-individual variation, we iden-
tified 4 metabolites and 47 lipoprotein subclasses by NMR 
and 10 metabolites by UPLC-MS (with an LoA ≤ 3) that 
significantly differentiated serum from plasma samples. 
In NMR analyses, VLDL/LDL fatty acyl groups, lactate, 
glutamine, and 37 lipoprotein subclasses (mainly from the 
HDL fractions) were higher in serum than plasma while 
glucose and some VLDL, LDL, and IDL subclasses were 
lower. Higher levels of several lipids in serum have been 
reported previously (Teahan et al. 2006). Higher lactate and 
lower glucose in serum was identified previously by GC-MS 
and attributed to continued glycolysis and metabolism in the 
serum samples during clot formation (Teahan et al. 2006; 
Dettmer et al. 2010). A separate study also using GC-MS 
showed that incubation of EDTA plasma samples at 37 °C 
resulted in decreasing glucose levels (Liu et al. 2010), con-
sistent with ongoing cellular metabolism.

The main metabolite subclass that differentiated serum 
from plasma by RP UPLC-MS analyses in our study was 
glycerophospholipids, including (lyso)PCs, (lyso)PEs, and 
lysoPA, which play central roles in cell membrane struc-
ture and signalling. Previous studies among fasting blood 
donors identified diacyl-PC(C38:1) and lysoPCs(C16:0, 
C17:0, C18:0, C18:1) as higher in serum than plasma (Yu 
et al. 2011; Ishikawa et al. 2014). Differences were attrib-
uted to platelet phospholipase activity during serum clot 
formation. We observed higher PC(16:1/18:2, 20:3/18:0, 
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and O-20:0/22:4) and lysoPC(16:0) in plasma using RP 
(ESI+) or HILIC UPLC-MS (ESI+). These discrepant 
results likely reflect differences among blood-donor fasting 
status (Ishikawa et al. 2013, 2014; Yu et al. 2011) or dif-
ferences in analytical techniques (Yu et al. 2011). Our RP 
UPLC-MS (ESI−) results showed that lysoPE(18:0) and 
lysoPA(20:0) were higher in serum which is more consist-
ent with studies that used fasting samples (Yu et al. 2011; 
Ishikawa et al. 2014; Breier et al. 2014).

To the best of our knowledge, our study is the first to 
evaluate metabolite differences among plasma subtypes. 
We hypothesized variation in platelet metabolism would 
contribute to metabolic phenotype differences among 
plasma subtypes. A previous study investigated metabo-
lism of platelet concentrates during sample storage and 
reported correlations with hypoxanthine, malate, lactate, 
and glucose (Paglia et al. 2015). In our NMR analyses, 
increased plasma platelet content was associated with 
higher levels of the glycolysis end-product pyruvate, the 
amino acids leucine, isoleucine, valine, phenylalanine, and 
glutamate, and signals from N-acetylglycoproteins. Lower 
plasma platelet content was associated with higher glu-
tamine, citrate, and VLDL/LDL lipid moieties. Ongoing 
platelet metabolism during sample processing may explain 
lower levels of citrate and pyruvate, whereas positive cor-
relations with glutamate and other amino acids may be 
explained by platelet transport of these molecules (Morrell 
et al. 2008). By UPLC-MS, we identified 2 metabolites 
(with an LoA ≤ 3) that were higher in PRP compared with 
PFP samples: PE(18:0/18:2) and PC(P-16:0/20:4). These 
findings are consistent with PC and PE as the most abun-
dant phospholipids in platelet membranes (Wang et al. 
1986). Further analysis of stimulated platelet supernatants 
and lysates are required to confirm platelet origins of the 
metabolites identified in our study.

Our study was limited by a small sample size comprised 
of non-fasting women across a broad age range from whom 
we did not have information on current medication use or 
hormonal status. A prior study reported a larger number 
of metabolites that discriminated serum from plasma in 
fasting compared with non-fasting donors and suggested 
fasting and non-fasting blood be considered distinct matri-
ces (Ishikawa et al. 2014). Gender-associated differences 
have been reported for glycerophospholipids and sphin-
gomyelins (Ishikawa et al. 2014; Trabado et al. 2017). 
An additional limitation is that although several tentative 
metabolite assignments were made, most were not con-
firmed with authentic chemical references. Strengths of 
our study include the comprehensive instrumental analy-
ses for untargeted metabolic phenotyping, statistical meth-
ods adjusting for inter-individual characteristics, and the 
evaluation of different plasma subtypes processed using 
standardized laboratory protocols.

5  Concluding remarks

In conclusion, we used multiple analytical methods to 
obtain a wide coverage of metabolites present among dif-
ferent blood matrices. Primary differences among blood 
sample types were explained by inter-individual variation 
and required individual correction techniques to detect dif-
ferences attributed to sample type. Metabolites that discrimi-
nated serum from plasma included glycerophospholipids, 
lipoproteins, and energy pathway metabolites, while amino 
acids, glycerophospholipids, and energy pathway metabo-
lites distinguished plasma samples with variable platelet 
content. As our study had only limited power, we would 
anticipate detection of additional metabolites in larger cohort 
studies. Therefore, our results underline the need for care-
ful consideration of the potential impact of inter-individual 
effects (other than the main variable(s) under investigation) 
and sample type on the design and results of metabolic phe-
notyping studies. These factors become particularly impor-
tant if consortia studies are being considered.
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