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Abstract
Introduction  The absolute quantitation of lipids at the lipidome-wide scale is a challenge but plays an important role in the 
comprehensive study of lipid metabolism.
Objectives  We aim to develop a high-throughput quantitative lipidomics approach to enable the simultaneous identification 
and absolute quantification of hundreds of lipids in a single experiment. Then, we will systematically characterize lipidome-
wide changes in the aging mouse brain and provide a link between aging and disordered lipid homeostasis.
Methods  We created an in-house lipid spectral library, containing 76,361 lipids and 181,300 MS/MS spectra in total, to 
support accurate lipid identification. Then, we developed a response factor-based approach for the large-scale absolute 
quantifications of lipids.
Results  Using the lipidomics approach, we absolutely quantified 1212 and 864 lipids in human cells and mouse brains, 
respectively. The quantification accuracy was validated using the traditional approach with a median relative error of 12.6%. 
We further characterized the lipidome-wide changes in aging mouse brains, and dramatic changes were observed in both glyc-
erophospholipids and sphingolipids. Sphingolipids with longer acyl chains tend to accumulate in aging brains. Membrane-
esterified fatty acids demonstrated diverse changes with aging, while most polyunsaturated fatty acids consistently decreased.
Conclusion  We developed a high-throughput quantitative lipidomics approach and systematically characterized the lipidome-
wide changes in aging mouse brains. The results proved a link between aging and disordered lipid homeostasis.
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1 � Abbreviations

aLPC	� Plasmanyl-lysoglycerophosphatidylcholine
Car	� Carnitine
CE	� Cholesteryl ester
Cer	� Ceramide
CerP	� Ceramide-1-phosphate

CL	� Cardiolipin
DG	� Diacylglycerol
GM1	� GM1 ganglioside
Hex2Cer	� Dihexosylceramide
HexCer	� Hexosylceramide
LPA	� Lysoglycerophosphatidic acid
LPC	� Lysoglycerophosphatidylcholine
LPE	� Lysoglycerophosphatidylethanolamine
LPG	� Lysoglycerophosphatidylglycerol
LPI	� Lysoglycerophosphatidylinositol
LPS	� Lysoglycerophosphatidylserine
MG	� Monoacylglycerol
PA	� Glycerophosphatidic acid
PC	� Glycerophosphatidylcholine
PE	� Glycerophosphatidylethanolamine
PG	� Glycerophosphatidylglycerol
PhytoCer	� Phytoceramide
PhytoSph	� Phytosphingosine
PI	� Glycerophosphatidylinositol

Electronic supplementary material  The online version of this 
article (https://doi.org/10.1007/s11306-017-1304-x) contains 
supplementary material, which is available to authorized users.

 *	 Zheng‑Jiang Zhu 
	 jiangzhu@sioc.ac.cn

1	 Interdisciplinary Research Center on Biology and Chemistry, 
Shanghai Institute of Organic Chemistry, Chinese Academy 
of Sciences, Shanghai 200032, People’s Republic of China

2	 University of Chinese Academy of Sciences, Beijing 100049, 
People’s Republic of China

http://orcid.org/0000-0002-3272-3567
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-017-1304-x&domain=pdf
https://doi.org/10.1007/s11306-017-1304-x


	 J. Tu et al.

1 3

5  Page 2 of 11

PIP2	� Glycerophosphoinositol bisphosphate
pLPE	� Plasmenyl-lysoglycerophosphatidylethanola-

mine
pPC	� Plasmenyl-glycerophosphatidylcholine
pPE	� Plasmenyl-glycerophosphatidylethanolamine
PS	� Glycerophosphatidylserine
S1P	� Sphingosine-1-phosphate
SM	� Sphingomyelin
Sph	� Sphinganine
ST	� Sulfatide
TG	� Triacylglycerol

2  Introduction

Lipids play numerous functions in physiology, such as 
energy storage, constitution of cell membranes, and cellular 
signaling, as well as in many diseases, such as cancer, neu-
rodegenerative diseases, and cardiovascular disease (Wenk 
2010; Han 2016; Rohrig and Schulze 2016). The compre-
hensive study of the roles and functions of lipids in molecu-
lar biology requires accurate identification and quantification 
of lipid species. The high structural diversity of lipids (e.g., 
> 40,000 lipids in the LIPID MAPS) presents a significant 
challenge for lipidomics (Fahy et al. 2009; van Meer 2005). 
The first popular mass spectrometry (MS)-based lipidomics 
technique, namely, shotgun lipidomics, was introduced by 
Han and Gross in 2003 (Han and Gross 2003). The method 
employs direct infusion to introduce lipids into a mass 
spectrometer (mostly triple quadrupole instrument) com-
bined with either precursor ion scanning (PIS) or neutral 
loss scanning (NLS) (Han and Gross 2005). Later, a direct 
infusion approach with data-dependent acquisition using 
high-resolution MS was developed (Schwudke et al. 2006). 
Hundreds of lipids from complex biological samples can 
be directly identified and quantified without any chromato-
graphic separation. However, this method is limited by ion 
suppression and the lack of discrimination between isomeric 
lipid species (Kofeler et al. 2012). Alternatively, coupling of 
liquid chromatographic (LC) separation to data-dependent 
MS/MS acquisition for lipidomics can effectively reduce 
matrix effects and resolve isobaric lipids (Cajka and Fiehn 
2014; Sandra et al. 2010). The acquired MS/MS spectra 
provide rigorous identification of lipids through a spectral 
match with a standard or predicted MS/MS spectral library 
(Ivanisevic et al. 2013; Cajka and Fiehn 2017). Recently, a 
large-scale predicted MS/MS spectral library, LipidBlast, 
was developed to facilitate lipid identification using LC–MS/
MS (Kind et al. 2013).

Absolute quantitation of a wide range of lipids is another 
challenge for lipidomics that is highly important for its 
applications in biological and clinical research (Lam et al. 
2017; Heymsfield et al. 2015). Traditional approaches, such 

as multiple-reaction monitoring (MRM)-based targeted lipi-
domics, shotgun lipidomics or LC–MS/MS-based lipidom-
ics, use lipids with odd-chain fatty acids or stable isotope-
labeled internal standards (SIL-IS) to quantify a class of 
lipid (Shui et al. 2010; Ejsing et al. 2006; Heymsfield et al. 
2015). However, only limited internal standards are available 
for many lipid classes. Recently, an alternative approach was 
developed to use a single SIL-IS and response factors (RFs) 
for simultaneous quantitation of multiple lipid classes; the 
quantitation accuracy is comparable to an MRM-based tar-
geted approach (Cifkova et al. 2012). However, the method 
was only applied to limited lipid classes. Therefore, the 
absolute quantitation of lipids at the lipidome-wide scale is 
still very challenging and not yet readily realized.

In this work, we first developed a large-scale and absolute 
quantitative lipidomics approach, which enables the simul-
taneous identification and absolute quantitation of hundreds 
of lipids in a single experiment. The workflow is character-
ized by three features: (1) it embeds an in-house lipid MS/
MS spectral library, containing 76,361 lipids and 181,300 
MS/MS spectra, which provides accurate lipid identifica-
tions; (2) it supports the absolute quantitation of hundreds 
to thousands of lipids in one experiment using a single SIL-
IS lipid; and (3) all identifications and quantifications are 
automatically achieved in one step. Using this lipidomics 
approach, we globally analyzed the lipidomes for various 
biological samples and absolutely quantified up to 1212 and 
864 lipids in human cells and mouse brains, respectively. 
The quantitative accuracy was compared to the traditional 
approach with a median relative error (MRE) of 12.6%. The 
inter-day reproducibility was determined with a median rela-
tive standard deviation (RSD) of 14.4% over several weeks.

Aging is characterized by a physiological decline in vari-
ous biological functions towards high risk for many diseases, 
such as neurodegenerative diseases, and eventually death 
(Lopez-Otin et al. 2013; Wyss-Coray 2016; Ivanisevic et al. 
2016). Discovering the molecular basis of aging is one of the 
greatest challenges and interests in the field. Many studies 
have discovered that lipids are associated with aging and 
age-related neurodegenerative diseases, such as Alzheimer’s 
disease (AD) (Lam et al. 2016; Xiang et al. 2015; Atherton 
et al. 2009; Shmookler Reis et al. 2011). Previous studies 
have demonstrated that the level of cholesterol and sphin-
golipids in the cerebral cortex progressively increased in an 
age-dependent manner (Cutler et al. 2004). Several findings 
also disclosed the abnormality of sphingolipid metabolism 
in the brain of AD patients (Touboul and Gaudin 2014; Han 
2010). Additionally, a set of glycerophospholipids were 
reported as potential biomarkers of the diagnosis of pre-
clinical AD (Mapstone et al. 2014). In this work, we further 
applied our absolute quantitative lipidomics to reveal the 
lipidome-wide consequences of aging in mouse brains. Dra-
matic changes were observed in lipid profiles, such as the 
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age-dependent reduction in glycerophospholipids and the 
increase in sphingolipids. Interestingly, the changes in sphin-
golipids occurred in an acyl-chain length-dependent manner 
with aging. The absolute quantitative analysis of membrane-
esterified fatty acids further validated their dependency with 
aging. For example, the major components of polyunsatu-
rated fatty acids (PUFAs, C20:3, C20:4, C22:5 and C22:6) 
in glycerophospholipids were preferentially reduced in old 
mouse brains. Thus, with our developed large-scale and 
absolute quantitative lipidomics approach, we systematically 
characterized lipidome-wide alterations in mouse brain dur-
ing aging and identified a link between aging and disordered 
lipid homeostasis.

3 � Materials and methods

Lipids from human plasma, Jurkat cells and mouse brains 
were extracted using a modified MTBE extraction method 
(Matyash et al. 2008). Detailed descriptions of chemicals, 
sample preparation, LC–MS/MS data acquisition, cura-
tion of an in-house MS/MS spectral library, and calcula-
tion of recovery rate are provided in the Supplementary 
Information.

3.1 � Measurements of response factor values

The response factor is defined as a relationship between the 
SIL-IS and an individual lipid class. To obtain the RF val-
ues, we first measured the linear standard curves of 34 lipid 
standards with our chosen SIL-IS [d7-PE (15:0/18:1)]. Sec-
ond, we calculated the RF value according to Eq. 1, referring 
to the ratio between the slope of the SIL-IS-based calibration 
curve and the slope of the lipid standard-based calibration 
curves. Experiments were independently analyzed at least 
two to three times over several months to obtain reproduc-
ible RF values (Supplementary Table 1). RF values were 
expected to range from 0.1 to 10. However, several lipid 
classes [carnitine (Car), monoacylglycerol (MG), sphin-
gosine-1-phosphate (SIP), GM1 ganglioside (GM1) and 
cholesteryl ester (CE)], with RF values outside this range, 
were removed from the quantitation. Finally, a total of 29 
lipid classes were simultaneously absolutely quantified with 
only one SIL-IS using the RF-based approach. For each lipid 
class, the appropriate polarity and ion adducts were selected 
for sensitive quantitation (Supplementary Table 1). 

3.2 � Data processing

An in-house program, namely, LipidAnalyzer, was developed 
using R for automatic data analysis. The raw data files (.wiff 
format) were converted to files in mzXML format using the 

(1)RFlipid = SlopeIS∕Slopelipid

“msconvert” program from ProteoWizard (version 3.0.6150). 
Then, the mzxML files were loaded into LipidAnalyzer for 
data processing. Peak detection was first applied to the MS1 
data. The CentWave algorithm in XCMS was used for peak 
detection (Tautenhahn et al. 2008). The parameter “peak-
width” was set as (5, 25) in units of seconds, referring to the 
minimum and maximum peak widths for peak detection. The 
parameter ‘‘snthresh’’ is set as 3 for sensitive peak detection. 
For multiple LC–MS data files, an ordered bijective interpo-
lated warping (OBI-Warp) algorithm in XCMS was used for 
peak alignment (Prince and Marcotte 2006). The CAMERA 
package is used for peak annotation (Kuhl et al. 2012). As a 
result, a peak table including m/z, retention time (RT), and 
peak area information was generated.

Next, we extracted the MS/MS spectra for each feature 
according to the m/z and RT. If one precursor ion is frag-
mented multiple times, the MS/MS spectrum closest to the 
peak apex was extracted and subjected to de-noising process-
ing. Specifically, fragment ions in the MS/MS spectrum with 
an intensity of less than 30 counts or less than 3% of the most 
abundant fragment ions (except precursor ion) were discarded. 
In addition, satellite ions (due to the ringing effect) close to 
the main peak with a mass difference of less than 0.3 Da and a 
relative intensity of less than 20% were also removed. With the 
MS/MS spectrum, lipid identification was achieved through 
a spectral match using an in-house MS/MS spectral library. 
First, an accurate mass match was performed to search all lipid 
species in the library with a mass tolerance of 25 ppm. Next, 
for each matched lipid, the corresponding experimental MS/
MS spectrum was used to calculate the similarity to the MS2 
spectrum in the library. A similarity score was calculated using 
the dot product function (Eq. 2) (Stein and Scott 1994). 

where mz and I refer to the mass-to-charge value and inten-
sity from the library (L) or experimental (E) data, respec-
tively, while m and n represent the weight of mz and inten-
sity, respectively. Here, we set m = 1 and n = 0.6 (positive 
mode) or 1 (negative mode). The similarity score ranges 
from 0 to 1, referring to no similarity and a perfect match, 
respectively. Lipid matches with scores larger than 0.8 were 
kept as true identifications. The values for the weights of mz 
(m) and intensity (n) are optimized systematically, as shown 
in Supplementary Fig. S1.

Finally, the absolute quantitation of lipids can be achieved 
using the peak area, SIL-IS and RF information (Eq. 3). 
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3.3 � Animals

Forty mice (c57BL/6J strain, SPF level) at five different ages 
(4, 12, 24, 32 to 52 weeks, n = 8 in each group) were pur-
chased from the HFK Bioscience Company (Beijing, China). 
Mice were anesthetized with isoflurane and sacrificed by 
cervical dislocation. Heads were removed using a surgi-
cal scissor. The skulls were freed by flipping the skin and 
cut through the most anterior part. The parietal bones were 
tilted and broken off. The brains were freed from meninges 
and removed from the skull. Brains were washed to wipe 
off excess blood and immediately collected for storage at 
− 80 °C.

4 � Results and discussion

To enable a fully automated approach towards the identifica-
tion and absolute quantification of lipids, we developed an 
integrated workflow to process multi-dimensional LC–MS/
MS data files (Fig. 1), including the following steps: (1) 
Perform peak detection and alignment on MS1 data to form 
an MS1 peak table with m/z, RT and peak area information. 
(2) For each peak, automatically extract the corresponding 
MS/MS spectrum and match with our in-house MS/MS 
spectral library for lipid identification. A similarity score of 
a spectral match above 0.8 was regarded as true identifica-
tion. (3) Lipid absolute quantification is further achieved 
using peak area, its corresponding RF for the identified lipid 
class and SIL-IS information. This unattended workflow is 
highly-efficient, requiring ~ 1 h to simultaneously identify 
and absolutely quantify hundreds of lipids from ten LC–MS/
MS data files.

4.1 � Curation of an in‑house MS/MS library 
for accurate lipid identification

Fragmentation in MS/MS spectra is significantly influenced 
by the instrument platform and level of collision energy 
(Supplementary Fig. S2). We also found that publicly avail-
able lipid MS/MS spectral libraries such as LipidBlast are 
not suitable for inter-lab applications (Supplementary Fig. 
S3). Therefore, curation of an in-house library is necessary 
to improve the accuracy of lipid identification. An experi-
mental workflow to curate an in-house MS/MS spectral 
library is illustrated in Fig. 2a and Supplementary Fig. S4, 
including three major steps: (1) acquisition of standard MS/
MS spectra, (2) generation of rules for fragmentation and 
relative intensities, and (3) prediction of the MS/MS spec-
tral library with the generated rules. More detailed descrip-
tions are provided in the Supplementary Information. In 
total, our in-house MS/MS spectral library includes 34 lipid 
classes, 76,361 lipids, and 181,300 predicted MS/MS spectra 

(Fig. 2b and Supplementary Table 2). Compared to Lipid-
Blast, our in-house library has a broader coverage of lipid 
classes (Supplementary Table 3). MS/MS spectra for several 
common adductive forms, including [M+H]+, [M+NH4]+, 
[M+Na]+, [M−H]−, and [M+HCOO]−, were also provided 
in our library.

To demonstrate the advantages of our in-house MS/MS 
library in lipid identification, we compared the performance 
of our library with that of LipidBlast. Commercially avail-
able glycerophospholipid mixtures were used to estimate 
the number of true positive and false positive identifications 
of lipids. As shown in Fig. 2c, the use of our in-house MS/
MS library provides more true positive identifications in 
both positive and negative modes compared to LipidBlast, 
while both libraries have similar numbers of false positive 
identifications (Supplementary Fig. S5). In addition, various 
biological samples, including human plasma, Jurkat cells 
and mouse brain samples, were used to estimate the cover-
age of both libraries for lipid identification. As shown in 
Fig. 2d, the use of our in-house library provides 1000–1800 
lipid identifications for positive and negative modes, which 
is generally 60–100% more than found using LipidBlast 
(600–1100 lipids in total). In addition, we also found that 

Fig. 1   Schematic illustration of the workflow for automated lipid 
identification and absolute quantification from multiple LC–MS/MS 
data files
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Fig. 2   Curation of an in-house MS/MS spectral library for accurate 
lipid identification. a The experimental workflow to predict the MS/
MS spectra for PS lipids. b Numbers for MS/MS spectra in our in-
house MS/MS library. c Comparison of the true positive identifica-

tions of lipids using either in-house MS/MS library or LipidBlast in 
both positive and negative modes. d Comparison of the identified 
lipid numbers of various biological samples (n = 10) using either our 
in-house MS/MS library or LipidBlast



	 J. Tu et al.

1 3

5  Page 6 of 11

our in-house library provides accurate lipid identification 
and is able to distinguish structural and positional lipid 
isomers. For example, using the different relative intensi-
ties derived from the sn1/sn2 position, it readily identified 
the unknown lipid as PS (18:0/20:3) (score: 0.995) and not 
the positional isomer PS (20:3/18:0) (score: 0.885) (Sup-
plementary Fig. S6a). For comparison, LipidBlast cannot 
differentiate the sn1/sn2 positional isomers (Supplementary 
Fig. S6b). In summary, our in-house library provides high 
coverage, accurate lipid identifications for various complex 
biological samples.

4.2 � Development of the RF‑based approach 
for absolute quantitation

Several experimental factors are critically important for 
the development of the RF-based approach towards abso-
lute quantitation of lipids (Lam et al. 2017), including the 
choice of SIL-IS, the reproducibility of RF values, and the 

recovery rate. First, we chose a single standard lipid [d7-PE 
(15:0/18:1)] as SIL-IS (Fig. 3a). There is no ion interference 
in various biological samples and it provides good ioniza-
tion responses in both positive and negative modes. Then, 
we experimentally measured the linear calibration curves of 
34 lipid classes using this SIL-IS. Most lipids have quanti-
tative dynamic ranges ranging from 1 to 5000 ng/ml, while 
some lipids have narrower ranges (Supplementary Fig. S7). 
Using calibration curves, RF values for 34 lipid classes were 
calculated and are provided in Supplementary Table 1. Most 
RF values range from 0.1 to 10 and qualified for absolute 
quantitation (Fig. 3b). However, several lipid classes, such 
as Car, MG, SIP, GM1 and CE, have RF values out of the 
expected range and are removed from quantitative analysis. 
We also demonstrated that RF values have good reproduci-
bility over several months, with a median RSD of 14% (Sup-
plementary Fig. S8). Therefore, a total of 29 lipid classes 
can be simultaneously absolutely quantified with only one 
SIL-IS lipid, combined with the RF-based approach, which 

Fig. 3   a Chosen internal stand-
ard d7-PE (15:0/18:1) for abso-
lute quantitation. b Values of 
RF for 34 lipid classes. c Cor-
relation between concentrations 
of 406 plasma lipids obtained 
from the RF-based approach 
and traditional approach. d 
Inter-day reproducibility for 
lipid species in human plasma 
measured at three different time 
points (n = 3). e–f Bar plots for 
numbers of quantified lipids in 
Jurkat cell or mouse brain sam-
ples (n = 10 in each group)
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enables large-scale absolute quantification. To ensure the 
accurate absolute quantitation of various classes of lipids, 
we evaluated the recovery rate of each lipid class by spik-
ing 34 lipids in a 13C-labled bacteria sample. The results 
showed that recovery rates of lipids are mostly in the interval 
of 60–140%, except S1P, phytosphingosine (PhytoSph) and 
lysoglycerophosphatidylinositol (LPI), which have relatively 
low recovery rates (Supplementary Fig. S9).

We further evaluated the accuracy and inter-day reproduc-
ibility of RF-based quantification. We compared the absolute 
concentrations of 406 lipid species (covering 7 lipid classes) 
in human plasma using the RF-based approach and the tradi-
tional approach. The traditional approach requires the addi-
tion of the corresponding SIL-IS (Supplementary Table 4) 
for each lipid class (Fig. 3c). The regression coefficient is 
0.98, and the MRE is 12%, which demonstrated that the 
RF-based approach has a comparable quantitation accuracy 
to the traditional approach. Additionally, the inter-day repro-
ducibility for individual lipid species was determined with 
a median RSD of 14.4% over several weeks, and 82.3% of 
lipid species were within RSD < 30% (Fig. 3d).To assess the 
coverage of lipid quantitation, we globally analyzed various 
biological samples, and absolutely quantified up to 1212 and 
864 lipids in Jurkat cell and mouse brain samples, respec-
tively, covering 23 different lipid classes (Fig. 3e–f). The 
coverage of quantified lipid species is much higher than in 
previous publications (Sales et al. 2017; Zhang et al. 2015; 
Yang et al. 2009).

4.3 � Global lipidomics analysis of mouse brain 
during aging

Using the above workflow, we performed global lipidomic 
profiling on mouse brain tissues at five different ages (4, 12, 
24, 32, and 52 weeks). In total, 1430 lipid species (605 lipids 
in positive mode, 825 in negative mode) were identified. 
Among them, 992 lipid species were absolutely quantified, 
covering 22 lipid classes (Supplementary Fig. S10).

With the absolute quantities of lipids, we first calculated 
the mass percentages of the quantified 22 lipid classes in 
mouse brain (Fig. 4a and Supplementary Fig. S11). Obvi-
ously, the mass percentages of total glycerophospholipids 
consistently decreased in the brain with age, while the 
mass percentages of total sphingolipids showed an increas-
ing trend with age. Age-related changes in individual lipid 
classes were further analyzed and plotted in Fig. 4b. Simi-
larly, most glycerophospholipids such as cardiolipin (CL), 
glycerophosphatidylglycerol (PG), glycerophosphatidic acid 
(PA), glycerophosphatidylserine (PS), glycerophosphatidy-
lethanolamine (PE), glycerophosphatidylcholine (PC) and 
glycerophosphatidylinositol (PI) were clustered together, 
demonstrating a gradually decreasing trend with age. For 
example, the amount of PIs significantly decreased by 86.9% 

from week 4 to week 52. An appreciable accumulation of 
sphingolipids, such as ceramide (Cer), phytoceramide (Phy-
toCer), hexosylceramide (HexCer) and sulfatide (ST), was 
observed at week 52. For example, the amount of HexCers 
increased by 169% from week 4 to week 52. One possi-
ble reason is impaired sphingolipid-to-glycerophospholipid 
metabolism during aging. Another proposed interpretation 
may be derived from the competitive usage of acyl-CoAs 
(Kihara 2014) during aging. Acyl-CoAs are common sub-
strates for energy production, which can be either esterified 
to form membrane glycerophospholipids or incorporated 
into Cers to form sphingolipids (Cooper et al. 2015). Acyl-
CoAs may be incorporated to produce more sphingolipids 
in old mouse brains.

To analyze the trends for individual lipid species with 
age, we categorized lipids based on their similarities in tem-
poral variation. In a Kruskal–Wallis test analysis, 311 of 
992 lipids have p values less than 0.001 among the five ages 
and were further selected for hierarchical clustering analysis 
(Fig. 4c). Six distinct lipid clusters were clearly defined and 
demonstrated diverse temporal changes with aging (Fig. 4d 
and Supplementary Fig. S12). Among them, lipids in clus-
ters B and D were found to consistently increase or decrease 
with age, respectively. The lipids within each cluster dem-
onstrated a diverse composition, suggesting that clustered 
lipids might be co-regulated or functionally related. Interest-
ingly, sphingolipids showed an acyl-chain-length-dependent 
change with age. Specifically, sphingolipids such as sphin-
gomyelin (SM), HerCer, Cer and PhytoCer in cluster B pref-
erentially contain a longer acyl-chain ranging from C20 to 
C26. Conversely, sphingolipids in cluster D mostly contain 
the shorter acyl-chain. For example, HexCer(d18:1/24:1) 
and SM(d16:1/26:1) were significantly higher at week 
52, up to 227 and 84% increases compared to the levels at 
week 4, respectively. In contrast, HexCer(d18:1/18:0) and 
SM(d18:1/18:1) were significantly lower at week 52 and 
dropped by 14 and 41% compared to the levels at week 4 
(Fig. 4e).

4.4 � Alterations in fatty acid composition with age

We further studied the absolute quantities of 791 mem-
brane-esterified fatty acids in glycerophospholipids across 
five ages (Fig. 5a and Supplementary Fig. S13). The highly 
abundant fatty acids, such as C18:1, C18:0, C16:0, C20:4, 
and C22:6, account for approximately 70% of all fatty acids 
in glycerophospholipids. Among the saturated fatty acids 
(SFAs), the levels of C16:0 and C18:0 have no significant 
differences with age (Supplementary Fig. S14). The levels of 
C20:0 and C22:0 were significantly higher in week 52 than 
in week 12, up to 65 and 18% increases, respectively. For 
monounsaturated fatty acids (MUFAs), the levels of C20:1 
and C22:1 were significantly increased in week 52 relative 
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to those in week 12 mice, up by 62 and 101%, respectively. 
In contrast, the level of C18:1 decreased by 13% in week 52 
mice. Interestingly, a consistent decrease in PUFAs, such as 
C20:3 (14%), C20:4 (25%), C22:5 (31%) and C22:6 (2%), 
was observed at week 52 compared to week 4 (Fig. 5b). The 
level of C22:6 was first elevated in week 12 and continually 
decreased with age. In summary, old mouse brains dem-
onstrated both increased membrane-esterified fatty acids, 
including SFAs (C20:0 and C22:0) and MUFAs (C20:1 and 
C22:1), and significantly decreased levels of PUFAs (C20:3, 
C20:4, C22:5, and C22:6). PUFAs are susceptible to lipid 
peroxidation (Xu et al. 2009; Sultana et al. 2013), and the 
decrease in PUFAs may greatly alter the physicochemical 
properties of cell membranes during aging, resulting in 
severe cellular dysfunction. A significant reduction in the 
levels of PUFAs such as C20:3 and C20:4 has been reported 
in the brain tissues of AD patients (Snowden et al. 2017). 
These results proved that temporal changes in fatty acid 
composition in the aging brain are caused by dysregulated 

lipid metabolism and may significantly contribute to the 
pathogenesis of age-dependent neurodegenerative diseases.

5 � Conclusions

In conclusion, we developed a large-scale lipidomics work-
flow for the simultaneous identification and absolute quanti-
fication of hundreds to thousands of lipids in biological sam-
ples. Our approach has comparable accuracy in quantitation 
to the traditional approach. With the availability of automatic 
data analysis software, the identification and absolute quan-
tification of lipids was readily achieved in a high-efficient 
and automatic manner. We applied this workflow to reveal 
lipidome-wide consequences of aging in mouse brains. Dra-
matic changes were observed in brain lipid profiles during 
aging, with significant reductions in glycerophospholipids 
and increased sphingolipids. Interestingly, sphingolipids 
exhibited an acyl-chain-length-dependent change with age. 
Specifically, sphingolipids with longer acyl-chains tend to 
accumulate in brains with aging, while those with shorter 
acyl-chains tend to decrease with aging. The levels of 
membrane-esterified fatty acids perform diverse temporal 
changes, while most polyunsaturated fatty acids consistently 
decrease with aging. These results illustrate a link between 
aging and dysregulated lipid metabolism in the aging mouse 

Fig. 4   a Pie diagrams for mass percentages of 22 quantified lipid 
classes (992 lipids) in mouse brain across different ages. b Clusters of 
different lipid classes according to hierarchical clustering. The chang-
ing trends of clustered lipid classes with age were also provided. c 
Correlation matrix of dysregulated lipid species (p value < 0.001, 311 
lipids in total) during aging. d Age-dependent trend for lipid species 
in clusters B and D. e Sphingolipids with different acyl-chain lengths 
show an opposite trend with age

◂

Fig. 5   a Pie diagrams for mass percentages of 791 membrane-esterified fatty acids in glycerophospholipids across different ages. b Age-depend-
ent decrease in specific membrane-esterified PUFAs with aging
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brain and will significantly contribute to understanding the 
pathogenesis of age-dependent neurodegenerative diseases.

In this work, we demonstrated high-throughput identifica-
tion and absolute quantification of lipids on a lipidome-scale 
level. However, it should be noted that the lipid identification 
in the work is only maintained at the level 2 according to 
the Metabolomics Standards Initiative (MSI) (Salek et al. 
2013; Sumner et al. 2007). As considering the confidence 
level of identification is critical for lipidomics, we suggest 
one should use the purchased/synthesized lipid standard to 
achieve the highest level of identification especially when 
one lipid is considered to be extremely important (e.g. as 
a biomarker for disease diagnosis). Alternatively, other 
orthogonal information, such as retention time (RT) on the 
chromatographic separation (Aicheler et al. 2015; Broeck-
ling et al. 2016) or collision cross section (CCS) from ion 
mobility-mass spectrometry (Zhou et al. 2017) can be read-
ily predicted to provide better confidence in lipid identifica-
tion. Therefore, a combination of accurate mass, MS/MS 
spectrum, CCS and RT will be very significant to improve 
the identification accuracy in the near future.
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