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throughout sample preparation, data acquisition, pre-pro-
cessing, and analysis.
Methods  The untargeted lipidomics workflow includes 
sample standardization prior to acquisition, blocks of QC 
standards and blanks run at systematic intervals between 
randomized blocks of experimental data, blank feature fil-
tering (BFF) to remove features not originating from the 
sample, and QC analysis of data acquisition and processing.
Results  The workflow was successfully applied to mouse 
liver samples, which were investigated to discern lipidomic 
changes throughout the development of nonalcoholic fatty 
liver disease (NAFLD). The workflow, including a novel 
filtering method, BFF, allows improved confidence in results 
and conclusions for lipidomic applications.
Conclusion  Using a mouse model developed for the study 
of the transition of NAFLD from an early stage known as 
simple steatosis, to the later stage, nonalcoholic steatohepati-
tis, in combination with our novel workflow, we have identi-
fied phosphatidylcholines, phosphatidylethanolamines, and 
triacylglycerols that may contribute to disease onset and/or 
progression.

Keywords  Lipidomics · Untargeted · LC–MS · NAFLD · 
Workflow

Abbreviations
BFF	� Blank feature filtering
Cer	� Ceramide
DG	� Diacylglyceride
LC	� Liquid chromatography
MS	� Mass spectrometry
NAFLD	� Nonalcoholic fatty liver disease
NASH	� Nonalcoholic steatohepatitis
QC	� Quality control
RT	� Retention time

Abstract 
Introduction  Untargeted metabolomics workflows include 
numerous points where variance and systematic errors can 
be introduced. Due to the diversity of the lipidome, manual 
peak picking and quantitation using molecule specific inter-
nal standards is unrealistic, and therefore quality peak pick-
ing algorithms and further feature processing and normali-
zation algorithms are important. Subsequent normalization, 
data filtering, statistical analysis, and biological interpreta-
tion are simplified when quality data acquisition and feature 
processing are employed.
Objectives  Metrics for QC are important throughout the 
workflow. The robust workflow presented here provides 
techniques to ensure that QC checks are implemented 

Electronic supplementary material  The online version of this 
article (doi:10.1007/s11306-017-1280-1) contains supplementary 
material, which is available to authorized users.

 *	 T. J. Garrett 
	 tgarrett@ufl.edu

1	 Southeast Center for Integrated Metabolomics (SECIM), 
University of Florida, Gainesville, FL, USA

2	 Department of Chemistry, University of Florida, Gainesville, 
FL, USA

3	 Department of Molecular Genetics and Microbiology, 
University of Florida, Gainesville, FL, USA

4	 Department of Endocrinology, Diabetes, and Metabolism, 
College of Medicine, University of Florida, Gainesville, FL, 
USA

5	 Department of Pathology, Immunology, and Laboratory 
Medicine, College of Medicine, University of Florida, 
Gainesville, FL, USA

6	 Department of Animal and Avian Sciences, University 
of Maryland, College Park, MD, USA

http://orcid.org/0000-0003-1623-009X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-017-1280-1&domain=pdf
http://dx.doi.org/10.1007/s11306-017-1280-1


	 R. E. Patterson et al.

1 3

142  Page 2 of 11

SS	� Simple steatosis
TG	� Triacylglyceride

1  Introduction

Untargeted metabolomics aims to measure the widest array 
of metabolites possible. Well-defined workflows maintain 
quality and reproducibility of metabolomics data, (Kirwan 
et al. 2014; Vorkas et al. 2015) but are often overlooked 
by researchers. Unfortunately, standard protocols do not 
exist for the evaluation of untargeted metabolomics despite 
advocacy from the Metabolomics Standards Initiative (Sum-
ner et al. 2007). Metabolite standards are generally used to 
equilibrate sample variation, but single internal standards 
are insufficient in untargeted metabolomics to provide ade-
quate downstream normalization, as noted by Speed et al. 
(De Livera et al. 2012). This workflow (Fig. 1) combines 
novel and adapted methods for quality control (QC) and 
evaluation of lipidomics data to enable reasonable biologi-
cal conclusions.

Specifically, elements of experimental design, includ-
ing randomization during preparation and analysis, sim-
plify data preprocessing (Dunn et al. 2011). One challenge 
of metabolomics is ensuring differences in signal between 
samples are due to independent variable(s), despite every-
thing a sample endures from exposure (e.g. diet), prepara-
tion (e.g. storage, extraction, drying, reconstitution), data 

acquisition (e.g., ion suppression, column performance), and 
data processing (e.g. peak picking, normalization, scaling, 
statistics). Historically, homogenized tissue is subjected to 
analysis, followed by post-acquisition normalization to total 
protein, total ion signal (TIC), or a housekeeping metabolite 
(Silva et al. 2014; Worley and Powers 2013). Highly concen-
trated samples cause inconsistent ion suppression through-
out chromatography, while less concentrated samples may 
have lower signal-to-noise, preventing proper filtration of 
background ions. The usual correction includes pre-process-
ing data normalization, but small differences at each step 
become confounded, leading to under or over-correction post 
acquisition (Redestig et al. 2009). Therefore, meticulously 
adjusting solvent volume based on weight or protein prior to 
extraction negates excess normalization. Injection of equal 
concentrations (w/v) reduces the variables contributing to 
error in raw signal comparisons.

Internal and injection standards indicate sample prepara-
tion quality, ion suppression, and source cleanliness, which 
combined with randomization within sequence setup, 
ensures trends are not artificial. Deliberate integration of 
blanks and standards allows for quality checking and eases 
further data processing.

Further, data quality validation is imperative prior to 
further analysis, enabling confidence in results including 
inspection of: TIC variation, retention time (RT) drift, con-
tamination, and injection standard peak area (PA). Feature 
detection and injection quality were assessed with metrics 
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Fig. 1   Workflow demonstrating checks and steps for high throughput untargeted lipidomics analysis. The workflow is divided into three stages 
with each stage important to the overall success of the experiment
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such as Bland–Altman (BA) plots (Broadhurst and Kell 
2006), Standardized Euclidean distance plots (Qi and Voit 
2016), distribution plots and the variation in RT and signal 
for the same features across samples within a condition.

Chromatogram and RT inspection indicates column integ-
rity throughout the sequence and between batches. Contami-
nation inspection ensures minimal interference of common 
contaminants including polyethylene glycol and polysilox-
ane (Dunn et al. 2011). Injection standard inspection, com-
pleted during data acquisition, maintains sample integrity 
for re-injection. Unsupervised multivariate statistics such as 
PCA identifies extreme outlying samples, indicating separa-
tion of blanks, QCs, samples and technical replicates. We 
analyzed QC parameters after each stage of filtering and pro-
cessing to ensure data were of sufficient quality to proceed. 
All of these steps provided a quality comparison of healthy 
and diseased livers to improve the biological interpretation 
concerning lipid changes and disease manifestations.

Pre-processing aligned the features across the data set. 
Features were defined by a specific m/z and RT representing 
a single ion or group of co-eluting isomeric ions. Untargeted 
collection resulted in features from which those of biologi-
cal origin must be distinguished from noise. Therefore, we 
introduced Blank Feature Filtering (BFF), where features 
with high signal in the extraction blank compared to the 
sample were removed, eliminating features with low S/N. 
This workflow improves confidence in results and evaluates 
quality in untargeted metabolomics experiments.

Nonalcoholic fatty liver disease (NAFLD) affects nearly 
one-third of Americans and the number is expected to dou-
ble by the year 2025 (Browning et al. 2004). Closely asso-
ciated with insulin resistance, obesity and type 2 diabetes 
mellitus (Koliaki and Roden 2013), NAFLD is comprised 
of a few stages. Triglyceride accumulation alone or with 
mild liver inflammation is diagnosed as simple steatosis (SS) 
(Pellicoro et al. 2014). The SS stage of NAFLD is reversible 
with diet and exercise, but rarely is the disease caught early 
due to asymptomatic nature and the need for a liver biopsy 
for diagnosis. Chronic disease is often associated with hepat-
ocyte injury, chronic liver inflammation and fibrosis (i.e., 
formation of scar tissue), known as nonalcoholic steatohepa-
titis (NASH) (Chalasani et al. 2012; Patterson et al. 2016). 
The presence of NASH carries a significant risk of end-stage 
liver disease (cirrhosis), and even hepatocellular carcinoma 
(Bril and Cusi 2016).

Mouse models of NAFLD by genetic knockout or diet/
drug treatment (Nagarajan 2012) have been used to shed 
light upon the progression of SS to NASH and fibrosis. This 
work used a diet treatment to probe the progression of SS 
to NASH. Previous work (Patterson et al. 2016) has demon-
strated the large change in diacylglycerides, ceramides, and 
acylcarnitines in disease onset and progression. Untargeted 
lipidomics provides an opportunity to assess how lipids 

differ in disease progression for a mouse model. These 
changes may shed light on disease mechanisms and targets 
for treatment.

2 � Materials and methods

2.1 � Animals and diets

Animal studies were approved by the Institutional Animal 
Care and Use Committee at the University of Florida, and 
were the same mice used in a previous Patterson et al. pub-
lication (Patterson et al. 2016). Mice (C57BL/6) purchased 
from Jackson Laboratories (Bar Harbor, ME) at 6–8 weeks 
were fed either a control diet: (CTRL; 10% fat calories; 
Research Diets, Inc., New Brunswich, NJ. # D09100304) 
or a high trans-fat high fructose diet (TFD; 40% fat calories; 
Research Diets, Inc.# D09100301) for 8 or 24 weeks. At 
8 weeks of TFD feeding, mice had already developed SS, 
whereas 24 weeks of the TFD resulted in development of 
the histological features of NASH, which are consistent with 
previous literature reports (Clapper et al. 2013; Trevaskis 
et al. 2012).

2.2 � Storage and handling of samples

Mouse livers were flash frozen in liquid nitrogen immedi-
ately after collection of whole blood from the aorta. Frozen 
livers were individually cryogenically ground using a liq-
uid nitrogen-insulated mortar and ceramic pestle into a fine 
powder for weighing. Upon sample preparation, liver masses 
were recorded for all experiments. Stock powder and freshly 
weighed tissue were kept in liquid nitrogen until quenched 
with solvent during sample preparation.

2.3 � Solvents and standards

Folch extraction solvents included methanol (Fisher Scien-
tific, San Jose, CA) containing 1 mM butylhydroxytoluene 
(BHT) (Sigma Aldrich, St. Louis, MO), chloroform, and 
water (both Fisher Scientific). Isopropanol used for reconsti-
tution was purchased from Fisher Scientific (San Jose, CA).

Internal standards used in the untargeted liver lipid anal-
ysis covered a range of lipid classes and structures. Gen-
erally, non-endogenous chain lengths were used (Castro-
Perez et al. 2010) including PC 19:0/19:0, DG 14:0/14:0, 
TG 15:0/15:0/15:0 (1 ppm final concentration injected), 
SM d18:1/17:0, 13C2-cholesterol, PE 15:0/15:0 (0.15 ppm), 
and LPC 19:0, PG 14:0/14:0, PS 14:0/14:0, Cer d18:1/17:0 
(50 ppb). The differing concentrations coincided with con-
centration variations among lipid classes within the liver. 
These standards, except for TG and 13C2-cholesterol were 
purchased from Avanti Polar Lipids Inc (Alabaster, AL). 



	 R. E. Patterson et al.

1 3

142  Page 4 of 11

TG 15:0/15:0/15:0 was purchased from Sigma (St. Louis, 
MO), and 13C2-cholesterol was purchased from Cambridge 
Isotope Laboratories (Andover, MA). A stock mix dissolved 
in Folch extraction solvent [chloroform:methanol (2:1, v:v)] 
was prepared to spike into the liver prior to homogenization, 
and simultaneously with extraction solvent.

2.4 � Homogenization and lipid extraction

Cryoground mouse livers stored at − 80 °C were transferred 
to liquid nitrogen before weighing. All liver samples were 
randomized prior to weighing in triplicate, and randomized 
again prior to subsequent sample preparation, with each rep-
licate treated as an individual sample in the randomization 
process. Masses were estimated at 15 mg (actual average 
19.4 ± 0.3 mg) and recorded to calculate volume of internal 
standard-spiked (IS-spiked) solvent used for homogeniza-
tion. Homogenization solvent volume was equal to 20 times 
the mg of liver weighed (e.g., 15.0 mg tissue = 300 mL 
IS-spiked solvent), allowing the ratio of liver to solvent to 
remain consistent. Folch solvent was added to the liver with 
homogenization beads (zirconium oxide 1.0 mm diameter, 
Next Advance, Averill Park, NY) and homogenized for 120 s 
(Bead Ruptor4, OMNI International, Kennesaw, GA). Fol-
lowing incubation on ice (20 min) with occasional vortexing, 
water was added at ¼ the volume used for Folch solvent 
addition (e.g., 75 µL water for 15.0 mg tissue). Further incu-
bation on ice (10 min) followed, with occasional vortexing 
and centrifugation (5 min, 6 °C, 20,000 rcf). The lower phase 
(170 µL) was transferred to a centrifuge tube and the remain-
ing phases were re-extracted with chloroform:methanol (2:1, 
v/v) at a volume of ½ of the IS-spiked solvent (e.g., 150 µL 
for 15.0 mg tissue). During incubation on ice (10 min), 
samples were occasionally vortexed and centrifuged. More 
organic phase (75 µL) was removed and combined with 
the clean organic phase, dried under nitrogen gas (30 °C), 
and reconstituted in 500 µL isopropanol. Reconstituted 
samples were vortexed, centrifuged (3 min), and stored at 
4 °C (20 min) to ensure clean injections. LC vials had SM 
d18:1/06:0, the injection standard (5 µL of 100 ppm) added 
and dried under nitrogen. SM d18:1/06:0 was chosen as an 
injection standard rather than an extraction standard because 
the short 06:0 fatty acid chain causes elution before most 
endogenous SMs, so SM d18:1/06:0 cannot be used for 
normalization purposes. An aliquot from each reconstituted 
sample (25 µL) was added to each corresponding LC vial 
followed by 975 µL isopropanol. A 10-fold dilution was nec-
essary to ensure prevention of signal saturation.

Each group was independently pooled to provide QCs. 
Controls, including 8 and 24 week samples were pooled to 
form QCA. QCB was a pooled sample of the 8 week TFD 
samples. QCC pooled the 24 week TFD samples. Finally, a 
total pooled sample was made from all groups, labeled QCD. 

A dilution series of 1:1, 1:2, 1:4, and 1:8 ratios of the QCD 
(Vorkas et al. 2015) was constructed.

Extraction blanks (referred to as blanks throughout) were 
subjected to the same conditions and solvents as the sam-
ples, but were not exposed to liver extracts. This accounts 
for signals arising from solvents and tubes as well as mobile 
phase and column background.

2.5 � Liquid chromatography—mass spectrometry 
methods

A Dionex 3000 Ultimate (Thermo, San Jose, CA) autosa-
mpler (4 °C) stored samples for injection onto a Waters 
Acquity C18 BEH column (50 mm × 2.1 mm, 1.7 µm pore 
size) (Milford, MA) at 50 °C with a 3 µL injection using a 
quaternary HPLC pump. Mobile phase A contained ace-
tonitrile and water (90:10, v:v). Mobile phase B included 
isopropanol, acetonitrile, and water (90:8:1, v:v:v). Both 
added 10 mM ammonium formate and 0.1% formic acid. 
The 23 min gradient began at 20% B and rose to 98% B at 
17 min, remained isocratic for 1 min before returning to 
starting conditions over another minute and re-equilibrating 
for 4 min.

A Thermo Q-Exactive collected full scans in polarity 
switching mode with the following source parameters: spray 
voltage 3.5 kV, capillary temperature 300 °C, sheath gas 30 
arb, auxiliary gas 5 arb, probe heater temp 350 °C, s-lens 
RF level 35.0. One spectrum was collected per mode per 
second with 35,000 resolving power, 3 × 106 AGC, and m/z 
200–1100 scan range. Data files were converted to .mzXML 
using Proteowizard’s MSConvert. Although positive and 
negative mode data were collected, the data for this work-
flow processed the positive mode data only—the mode in 
which the chromatography conditions were optimized.

2.6 � Sequence setup

Systematic standards allowed monitoring of instrument per-
formance over time. QC standards and a blank were injected 
every ten samples including blank, pooled QC, neat QC. 
Following this systematic block of QCs, a randomized set 
of ten samples were selected, followed by another blank, QC 
block, and set of randomized samples. Technical replicates 
of each sample were treated as individual replicates for ran-
domization purposes. Randomization before data acquisition 
accounted for variability occurring with injection sequence, 
apart from sample preparation order variation.

2.7 � Quality control analysis of the data

In data quality evaluation, the injection standard SM 
d18:1/06:0 was processed in each injection using Thermo’s 
Xcalibur and Microsoft Excel, and inspected. A PCA scores 
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plot was created to determine injection and data quality by 
evaluating pooled QC clusters and disease state separation. 
Internal standard PAs were processed and inspected over the 
course of the sequence.

2.8 � Data pre‑processing and filtration

Files collected in polarity-switching mode were sliced using 
Thermo’s proprietary slice processing method. Thermo pro-
prietary .RAW files were converted to .mzXML format using 
Proteowizard’s MSConvert (proteowizard.sourceforge.net) 
(Chambers et al. 2012) with the following parameters: absolute 
0.001 most intense threshold and peak picking MS level 1–1.

These .mzXML file types were processed by open-source 
MZmine (version 2.15) (Pluskal et al. 2010) for peak picking, 
alignment, and gap-filling. LipidMatch, an R-based lipid iden-
tification software was used for lipid identifications (Koelmel 
et al. 2017). MZmine parameters can be found in Supplemen-
tary Table 1.

The extraction blanks allowed identification of background 
elements not of biological origin. Here the feature signals in 
the blanks were compared to the signals in the samples for 
each feature individually, in a novel method called BFF, where 
a threshold is calculated below which signals are excluded 
from further analysis. The BFF threshold (BFFthreshold) was 
computed as shown in Eq. 1. Equation 2 indicates the require-
ments for a signal to remain based on the average value for 
each group of samples (Saverage). If the average value for a par-
ticular feature in the blanks group was zero (not present in 
blanks), a threshold for the chromatographic background was 
used for filtering, in this case, 5000. 

The feature remains if this statement is true: 
(1)BFFthreshold = Baverage + 3 × Bstandard deviation

(2)Saverage − BFFthreshold > 100 × BFFthreshold

A caveat exists in that background signals from extrac-
tion and chromatography may behave differently in the 
solvent compared to the biological matrix, thus inappropri-
ately influencing BFF. This difference has not been fully 
evaluated.

For this experiment, 1000 features from the QC injec-
tions were visually inspected by a single individual (REP) 
and separated into true and false features according to: peak 
shape, signal intensity, and ability to consistently integrate 
using the same parameters. The performance of BFF was 
compared to feature classification based on expert judgement 
(REP) (Table 1). Two alternative filtering methods were 
evaluated. The first was based on a simple threshold per-
formed feature-wise, where all features with signals below 
30,000 (or 300,000) or missing signal in 50% of the samples 
in all groups were removed from the data. The simple thresh-
old method did not include blank samples in the mzMine 
analysis. The second method included a series of statisti-
cal summaries and tests for each feature based on BA plot 
(Bland and Altman 1986) outliers and RT distributions. BA 
outliers were obtained from a simple linear regression fitted 
to BA plots, where features more than 3 standard deviations 
from the fitted line were flagged. The line itself is a diag-
nostic as the slope is expected to be zero. If the difference 
in the RT between the 95th and 5th percentile was greater 
than 0.2 min or, in features where the difference between the 
RT maximum and median was greater than 0.1 min, or in 
features where the difference between the RT minimum and 
median was greater than 0.1 min, the feature was flagged. 
Each of the three filtration methods were compared to the 
expert judgement to estimate false positive and false nega-
tive rates.

2.9 � Normalization

Samples were calibrated to have equal concentration prior 
to injection, removing most of the expected artifacts from 

Table 1   False/true positive/negative rates of the different filtering methods compared to the gold standard (GS) a manual inspection by an 
expert

Thresholds of 30,000 and 300,000, a BA plot to identify poorly concordant features, and a RT filter are each compared to the GS. Thresholding 
was done on feature selection without blanks included (n = 943) while BFF was quantified using blanks (n = 1071). The features identified with-
out the blanks are not a subset of the features with the blanks (Supplemental Fig. 6). The BFF method alone provided the highest true rate with 
lowest false rates, good agreement (Kappa) and symmetry (McNemar’s test)

Filtering method False positive True positive False negative True negative Kappa (agreement) McNemar’s 
test pr > s

GS vs 30 k (1071) 72% (772) 0.6% (6) 0.4% (4) 27% (289) − 0.0033 < 0.0001
GS vs 300 k (1071) 49% (530) 23% (248) 6% (60) 22% (233) 0.0760 < 0.0001
GS vs BFF (943) 3.2% (30) 75% (708) 3.2% (30) 19% (175) 0.8130 1.000
GS vs BA (850) 2.9% (25) 21% (175) 59% (498) 18% (152) 0.0598 < 0.0001
GS vs RT (850) 2.4% (20) 27% (226) 53% (447) 18% (157) 0.1180 < 0.0001
GS vs BA + RT (850) 3.9% (33) 37% (311) 43% (362) 17% (144) 0.1636 < 0.0001
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technical variation, as discussed in the sample preparation 
section. Data was normalized to the PA median value of 
each sample.

2.10 � Differentially expressed features and related 
statistics

ANOVA identified differences between the four treatment 
groups, and significantly different features were identified. 
Furthermore, the compounds remaining after BFF were 
identified via LipidMatch. First, features were sorted by ten-
tative LipidMatch annotations based on MS/MS. All post-
BFF features (963) were analyzed with ANOVA, hierarchi-
cal clustering, and PCA. Annotated features were further 
examined. Compounds identified with fatty acyl constituents 
and headgroup, or headgroup and sum composition, were 
matched to those identified as significant in ANOVA analy-
sis. Sum composition indicates the total number of carbons 
and double bonds in the fatty acyl moiety, but not the indi-
vidual tails. MetaboAnalyst 2.0 visualized the data using 
heat maps and PCA.

3 � Results and discussion

3.1 � Quality control analysis of the results

The importance of consistent and reliable sample prepara-
tion in metabolomics cannot be overstated. The workflow 
described, as applied to mouse liver lipidomics, allows 
multiple quality checks ensuring proper data preparation, 

acquisition and analysis. Confirmation of the same ratio 
of weight to solvent allows the injections to be compared 
effectively. QC during data acquisition included inspection 
of chromatography, mass accuracy, and injection standard 
PA. Chromatography inspection of endogenous lipids in the 
same pooled sample demonstrated column integrity (Sup-
plemental Fig. 1). Profile chromatograms demonstrated 
consistency in RT and signal (Fig. 2). Internal standard 
mass accuracy were all < 2.5 ppm error. The PCA scores 
plot including pooled QCs (Supplemental Fig. 2) evaluated 
quality preparation and injection, and demonstrated QCs 
clustering and disease state separation.

A plot of injection standard (SM d18:1/17:0) signal over 
the sequence (RSD of 7.7%) (Supplemental Fig. 3) including 
blanks and the dilution series (last five injections), provides 
a tool indicating needs for reinjection if injection standard 
signal is low. Signal increase corresponded to pooled groups, 
which always followed a blank, indicating the blank injec-
tion had an effect on signal intensity and should be investi-
gated further. The lack of a negative slope indicated main-
tenance of source cleanliness, whereas tight PAs throughout 
the sequence indicate consistent injections. Signal at zero 
from the blanks indicated negligible carry over. The last few 
data points are representative of the dilution series injected 
at the end of the sequence used to find biologically relevant 
species (Vorkas et al. 2015).

Similar graphs inspected the extraction standards (Sup-
plemental Fig. 4). Note larger variability compared to injec-
tion standard, but similar trend in consistency. RSDs for the 
standards shown: 7.7% (SM), 20.5% (Cer), 21.9% (PC), and 
20.8% (LPC). Samples 9a and 7b (red) had higher signal in 

Fig. 2   Total ion chromato-
grams overlaid from eight 
random samples throughout the 
121 injection sequence. On the 
X axis is time in minutes and on 
the Y axis is relative abundance
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the extraction standards, but not the injection standard. This 
indicated that 9a and 7b had slightly more internal standard 
added but the injection volume remained precise. Monitor-
ing these samples after BFF, such as in Supplemental Fig. 5 
indicated that they were not different from other samples 
within the group.

Peak picking using MZmine selected 7812 features, and 
~ 1000 were evaluated by an expert. Table 1 demonstrates 
false positive values among three filtering methods in com-
parison to expert judgment. The BFF method demonstrated 
balanced, low false positives (3%) and negatives (3%), while 
threshold filtering performed particularly poorly, with 49% 
false positives and 6% false negatives for 300,000 threshold 
filter. Filtering data by BA plot outlier removal, or remov-
ing features with large deviations in RT between samples, 
did not perform as well as BBF when compared to expert 
judgement. Therefore, BFF was adopted to filter the features 
from all treatment groups. The Venn diagram shown (Sup-
plemental Fig. 6) compares peaks picked between a dataset 
processed with and without blanks using BFF or 30 k filter-
ing, respectively. Furthermore, it shows false positive rates 
of the features compared to expert judgement where BFF 
had only a 2% false positive rate.

To demonstrate filtration efficacy, Fig. 3 shows PCA 
before and after BFF, with better separation after applying 
BFF, which identified a substantial number of false features. 
This is a direct result of the liberal values set at peak picking, 
as more conservative MZMine values revealed more false 
negatives. We propose a liberal peak picking algorithm com-
bined with background filtering to minimize false negatives 
and false positives. After BFF the number of features was 
963 (a reduction in 87% from 7812). BFF allows for feature 
identification during peak calling by providing automatic 
filtering of anomalous results with a low false positive and 
false negative rate, as noted in Table 1. Low intensity peaks 
representing trace molecular species would not be detected 
using stringent peak processing parameters, but are retained 
using BFF. In order to deploy BFF properly, many blanks are 
necessary within the sequence. This data set had one blank 
for every ten samples. We do not recommend using BFF 
when the number of blanks is low relative to the number 
of samples.

Sample quality was further evaluated by examining differ-
ences between biological (A) and technical replicates (B) in 
the BA plots in Supplemental Fig. 7. The technical replicates 
are less variable than the biological replicates. All of these 
methods are implemented in SECIMTools (https://github.
com/secimTools/SECIMTools, Kirpich submitted).

3.2 � Univariate analysis

ANOVA indicated that 370 lipids were significantly differ-
ent between sample groups (p < 0.0001) in positive mode 

after BFF. Fifty-five annotated features had a p-value 
less than 0.0001. The primary goal was to understand the 
changes associated with disease progression, comparing 
8 week TFD (8T) to 24 week TFD (24T), while also noting 
changes associated with age instead of diet.

Fig. 3   PCA on the treatment groups alone before (a) and after BFF 
(b). BFF removes a substantial number of peaks with signals that are 
not consistently above background measured in blanks that are sam-
pled between each batch of samples. Separation of the disease from 
the control is improved after the removal of noise

https://github.com/secimTools/SECIMTools
https://github.com/secimTools/SECIMTools
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3.3 � Combined statistical analyses: post ANOVA data 
visualization

Heat maps were generated using Euclidean distance simi-
larity measure and Ward’s linkage clustering from the post-
ANOVA compounds (p < 0.0001), shown in Fig. 4, where 
diseased (8T and 24T) cluster together. The controls were 
more diffuse, however more variation exists between the 
disease states than between the age differences. The red 
or blue colors indicate up or down regulation between the 
groups in context with the controls. Met 2831, identified as 
PE (18:0_22:6) is the only identified lipid that decreases 
with disease stage compared to healthy controls. Compounds 

with confident annotations that notably increase with disease 
onset and possibly progression include: features 3194, 4318, 
6994, 4576, 2857, 2389, and 2415, all corresponding to TG 
species with 58 or 56 carbons, ranging from 3 to 6 double 
bonds. Table 2 demonstrates those compounds from the 
post-BFF HCA with LipidMatch annotations. Several val-
ues indicate the presence of isomeric TGs at different RTs.

Removal of unidentified features prior to analysis can 
be controversial, as some seek to minimize false negatives 
and reason that false features are unlikely to be significant 
in analysis. Where a statistical test of difference in abun-
dance is desired, the inclusion of false peaks will increase 
the multiple testing penalty substantially. Here instead of 

Fig. 4   Two-way Hierarchical clustering analysis (HCA) with sam-
ples on the X axis and lipids on the Y axis. The samples are sorted 
based on intensity and clear separation of the disease from the con-

trol, and between the two disease time points is apparent. Cells are 
colored based on the relative intensity of the peak. The 50 top peaks 
from ANOVA (P < 0.0001) are depicted
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correcting for ~ 800 peaks a correction for ~ 8000 peaks 
would be required, setting the bar for identifying compounds 
substantially higher. While limiting the scope to only identi-
fied features may fail to identify novel trends and changes in 
the data, that issue is beyond the scope of this paper. Of the 
963 positive mode unannotated features, some significant 
compounds are not identified. A few correlate cholesteryl 
ester (CE) fragments and RT, but would have to be con-
firmed with targeted studies.

PCA by class explored differences between disease states 
within lipid class. Annotated features after filtering were 
subjected to PCA by class. The figures shown (Supplemental 
Fig. 8) demonstrate that PEs are separated by component 1 
with the most variance accounted for (37%) compared to 
the other classes, but the PCs, neutral lipids (DGs and TGs 
combined) and TGs alone, separate the control diets from 
the trans-fat diets well. Arguably, PC 2 separates the two 
disease states best when using PE data only.

The general trends indicate PEs and PCs are downregu-
lated in NASH mice, and TGs are upregulated, compared to 
SS and controls. TGs that increase with disease progression 
have lower numbers of unsaturation, averaging about 1 per 
fatty acid chain. More information about these fatty acid 
constituents could reveal more pathway knowledge regard-
ing saturated TGs, monounsaturated TGs, and polyunsatu-
rated TGs in disease progression.

3.4 � Biological interpretation

Pathways for lipids are not as well-known as those for 
metabolites, and typically emphasize head group or fatty 
acid moiety. The pathways scrutinized surround mitochon-
drial metabolism, focusing on lipid classification, and the 
fatty acid chain. Our observations support disease pro-
gression theories within the context of the TCA cycle or 
Kennedy pathway, but are not limited to these biochemical 
mechanisms. As a summary of lipid metabolism in relation 

to the TCA cycle, TGs are converted into fatty acids (path-
way also goes in reverse), and proceed through beta-oxida-
tion to feed the TCA cycle (Garrett and Grisham 2010). An 
increase of TGs with induction of the TCA cycle indicates 
dysfunction of beta oxidation, because the TGs would nor-
mally decrease with induction of the TCA cycle (Satapati 
et al. 2012). Higher amounts of TGs may result in decreased 
PC and PE levels, if fatty acid moieties are contained in 
the TGs instead. This idea is supported because glycerol 
phospholipids (GPLs) are built from intermediates of TG 
synthesis.(Cheng et al. 2011) One theory for progression 
of SS to NASH surrounds the relationship of insulin resist-
ance, lipid oxidation, hepatic tri-carboxylic acid (TCA) flux, 
and production of reactive oxygen species via mitochondrial 
respiratory dysfunction (Patterson et al. 2016; Satapati et al. 
2012; Sunny et al. 2011, 2016).

Certain synthetic pathways are known, such as the pro-
duction of PEs and PCs via the Kennedy pathway (Gibellini 
and Smith 2010). In this pathway, fatty acid chains for phos-
pholipids are retrieved from DGs. It is generally unknown 
what effect different fatty acid chains (e.g., 18:2 vs. 16:1) 
have on biological processes. One exception is arachidonic 
acid (20:4), which has been implicated in anti-inflammation 
pathways, (Castro-Perez et al. 2010) and in cirrhosis (Gor-
den et al. 2011). PC 18:0_20:4 has increased concentrations 
in the TFD model compared to the age matched controls, but 
as the disease progresses, the level decreases. PE 16:0_20:4 
decreases with disease progression, and when compared to 
age-matched controls.

4 � Conclusion

The workflow presented provides a platform for quality data 
acquisition, analysis, and interpretation allowing checks at 
every decision point. Adjusting extraction solvent based 
on tissue weight and randomization of samples throughout 
sample preparation and acquisition reduce batch-to-batch 
variability and the need for extensive normalization post-
acquisition. QC analysis during acquisition and thorough 
feature filtering ensure noise is reduced without affecting 
the opportunity to understand true variance. BFF ensures 
reduction of variables from sample preparation or instru-
mental causes, while reducing features to a reliable, robust, 
and reproducible list.

Evidence supports both a decrease in PEs and PCs and 
an increase of certain TG species with disease progres-
sion. Unfortunately many TGs co-elute, adding uncer-
tainty about fatty acid contributions. Nevertheless, cer-
tain trends are evident: TGs of interest contain at least 
three degrees of unsaturation, while most of the PCs and 
PEs consist of one saturated chain. This observed trend is 
supported in literature (Arendt et al. 2013; Jacobs et al. 

Table 2   Annotations of compounds indicated in Fig. 4 significantly 
different between disease states post BFF with LipidMatch annota-
tions

Metabolite ID Annotation Increased with 
disease state?

m/z RT (min)

2831 PE 
(18:0_22:6)

N 792.5500 8.22

3194 TG (58:5) Y 954.8445 15.16
4318 TG (58:5) Y 954.8467 15.17
6994 TG (58:6) Y 952.8341 14.85
4576 TG (56:5) Y 952.8200 14.89
2857 TG (56:3) Y 930.8458 15.38
2389 TG (56:3) Y 930.8449 15.46
2415 TG (56:4) Y 928.8301 15.14
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2013; Li et al. 2006): one suggests the fatty acid chains 
are used in TGs instead of PCs and PEs, therefore reduc-
ing GPLs and increasing TGs. No one fatty acid consist-
ently dominates PC and PE results, which include 16:0, 
18:0, 18:1, 18:2, 20:4, and 22:6. The most promising PE 
and PC features according to multiple tests and valida-
tion include: PE 16:0_22:6, PE 18:0_22:6, TG 58:5, TG 
58:6, PE 16:0_20:4, PC 16:0_20:4, PC 40:6, TG 56:5, TG 
54:2, TG 56:4, and TG 56:5. These results, combined with 
the presence of increased DGs and ceramides in targeted 
analyses (Patterson et al. 2016), supports a reorganization 
of fatty acids from GPLs into TGs, DGs, and CERs as the 
disease progresses.

The limited number of DGs and sphingolipids present 
in the results may be attributed to relatively low concen-
trations when compared to PCs, PEs, and TGs. Therefore, 
targeted extraction methods might reveal more about lower 
abundant lipid classes such as CEs and sphingolipids. 
Additionally, further research of the TCA cycle interme-
diates and other metabolites (choline, ethanolamine, ADP, 
ATP, etc.) may enable a better understanding of the transi-
tions between lipid classes.

Gorden et al. targeted a wide range of lipid classes in 
NAFLD plasma and liver by using the best extraction 
and analysis techniques for each lipid class (Gorden et al. 
2015). Their work showed a large contribution of PC and 
PE classes in distinguishing between NASH and SS. Lin-
ear Discriminant Analysis by class demonstrated a greater 
influence of sphingolipids and glycerophospholipids in 
distinguishing disease state than eicosanoids and neutral 
lipids. Our work corroborates the effect of PC and PEs on 
disease state differences; however, we found more of an 
influence of TGs on disease progression and onset.
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