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patients with polyp (n = 39), and healthy subjects (n = 83). 
Models built using different groups of biologically related 
metabolites achieved improved differentiation and were 
significant for 26 out of 29 groups. Furthermore, the net-
works of correlated metabolites constructed for all groups 
of metabolites using the ParCorA algorithm, before or after 
application of the SUR model, showed significant alterations 
for CRC and polyp patients relative to healthy controls.
Results The results showed that demographic covariates, 
such as gender, BMI,  BMI2, and smoking status, exhibit sig-
nificant confounding effects on metabolite levels, which can 
be modeled effectively.
Conclusion These results not only provide new insights 
into addressing the major issue of confounding effects in 
metabolomics analysis, but also shed light on issues related 
to establishing reliable biomarkers and the biological con-
nections between them in a complex disease.

Abstract 
Introduction Metabolomics technologies enable the iden-
tification of putative biomarkers for numerous diseases; 
however, the influence of confounding factors on metabolite 
levels poses a major challenge in moving forward with such 
metabolites for pre-clinical or clinical applications.
Objectives To address this challenge, we analyzed metabo-
lomics data from a colorectal cancer (CRC) study, and used 
seemingly unrelated regression (SUR) to account for the 
effects of confounding factors including gender, BMI, age, 
alcohol use, and smoking.
Methods A SUR model based on 113 serum metabolites 
quantified using targeted mass spectrometry, identified 
20 metabolites that differentiated CRC patients (n = 36), 
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1 Introduction

Colorectal cancer (CRC) affects both men and women of 
all ethnic groups around the world. As the second leading 
cause of cancer death, CRC is often found in people over 
50 years old; an estimated 50,260 deaths is anticipated dur-
ing 2017 in the United States alone (Siegel et al. 2017). It 
is widely accepted that the common risk factors of CRC 
include alcohol, colorectal polyps, family history, high-fat 
diets, smoking, and ulcerative colitis. CRC is highly treat-
able if detected at early stages, and therefore many screening 
tests (e.g., colonoscopy, flexible sigmoidoscopy, and stool-
based tests) are performed for people at high risk (Lin et al. 
2016). However, most of these tests are either invasive or 
expensive, which often make them difficult to implement in 
the clinic (Taylor et al. 2011). More recently, the U.S. FDA 
has approved Cologuard, a multi-target stool DNA test, and 
Epi proColon, a blood-based test for screening individuals 
at average-risk of CRC (Pickhardt 2016). The stool- and 
blood-based tests are increasingly becoming attractive pri-
marily due to their non-invasive nature. Each of these tests, 
however, exhibits different levels of performance to detect 
CRC and the precursor lesions. In view of these challenges, 
only 40% of CRC patients are diagnosed and treated at an 
early stage (Stages I–II), where relatively high (80–90%) 
5-year survival rates are common (Cancer Facts & Figures 
2013). Therefore, it is crucial to develop sensitive, specific, 
inexpensive, and noninvasive methods that can be widely 
employed in regular clinical practice for people at high risk 
of CRC.

CRC, like most other cancers, is associated with altered 
cellular metabolism. For example, the well-known Warburg 
effect (Warburg 1956), involving increased glucose uptake 
and lactate production, has been exploited for cancer detec-
tion through PET scanning. Other metabolically related 
mechanisms are providing new strategies to develop novel 
therapies and detection modalities (Wise and Thompson 
2010; Jain et al. 2012; Sreekumar et al. 2009; DeBerardinis 
and Chandel 2016; Gross et al. 2010; Ward and Thompson 
2012; Munoz-Pinedo et al. 2012). The field of metabolomics 
simultaneously aims to identify altered metabolic pathways 
and mechanisms in diseases as well as robust and accu-
rate biomarkers. To date, numerous metabolomics studies 
have focused on detecting biomarkers for CRC as well as 
altered metabolism (Qui et al. 2009; Nishiumi et al. 2012; 
Tan et al. 2013; Denkert et al. 2008; Chan et al. 2008; Ma 
et al. 2009; Li et al. 2013; Ritchie et al. 2010, 2013). A 

few metabolomics studies have also focused on identifying 
metabolite biomarkers for polyp patients, who are consid-
ered at high risk for developing CRC (Eisner et al. 2013; 
Zhu et al. 2014). Depending on the biological samples and 
the analytical technique used in these studies, distinct sets 
of distinguishing biomarkers for CRC have been derived. It 
is, however, increasingly realized that the metabolite profiles 
are impacted by many factors such as gender, age, BMI, 
smoking, alcohol consumption, etc. The derived disease 
biomarkers are often confounded by one or more of these 
factors and hence often fail in validation studies. Thus, in 
general, the effect of confounding factors is a major chal-
lenge for metabolomics-based biomarker discovery research.

Despite the critical need, currently, efforts to account 
for the contributions from numerous confounding factors 
in biomarker discovery are limited. Recently, in an effort 
to address this challenge, we utilized a powerful statistical 
approach, seemingly unrelated regression (SUR) (Zellner 
1962; Aiken and West 1991; Ahrens 1971) to model the 
effects of such confounding factors, which thereby allowed 
an investigation of serum metabolites that could differentiate 
polyp patients and healthy controls (Chen et al. 2015). In 
the present study, we have extended this concept to unravel 
the confounding effects using a significantly larger pool of 
metabolites from three groups of subjects. We have used 
SUR to analyze metabolites measured using targeted mass 
spectrometry to compare patients with CRC or polyps and 
healthy controls. SUR analysis identified a number of metab-
olites, groups of biologically related metabolites and their 
correlations that are distinct as well as statistically signifi-
cant among three sets of samples (e.g., CRC, patients with 
polyps, and healthy controls). Considering that convention-
ally used multivariate statistical analysis methods such as 
logistic regression and partial least squares-discriminant 
analysis are challenged by the large effects of confounding 
factors that can override subtle changes in metabolite levels 
due to diseases, SUR promises new avenues for addressing 
the dominant confounding effects in the metabolomics field.

2  Materials and methods

2.1  Patient samples

This study utilized metabolite data obtained from a previous 
study and the materials and methods are described in greater 
detail in the published report (Zhu et al. 2014). Briefly, a 
total of 158 serum samples from CRC patients (n = 36), 
polyp patients (n = 39), and healthy controls (n = 83), which 
represented a subset of the original samples that had full 
clinical information available were utilized for this study. 
Recruitment of patients and blood collections were made as 
per the approved Institutional Review Board protocols from 



Altered metabolite levels and correlations in patients with colorectal cancer and polyps…

1 3

Page 3 of 10 125

Purdue University and Indiana University School of Medi-
cine. All consenting participants undergoing colonoscopy 
or CRC surgery were evaluated, and blood samples from 
the patients were obtained after overnight fasting and bowel 
preparation prior to their procedure. Each blood sample was 
allowed to clot for 45 min, centrifuged at 1500 g for 10 min, 
the serum (upper layer) was aliquoted into cryo-vials and 
stored at −80 °C until analysis.

2.2  Solvents and chemicals

Acetonitrile, ammonium acetate, and acetic acid were pur-
chased from Fisher Scientific (Pittsburgh, PA). Standard 
compounds used for confirming the measured metabolites 
were purchased from Sigma-Aldrich (Saint Louis, MO) or 
Fisher Scientific (Pittsburgh, PA) (Zhu et al. 2014). Isotope 
labeled internal standards (L-tyrosine-13C2 and sodium-
L-lactate-13C3) were purchased from Cambridge Isotope 
Laboratories (Tewksbury, MA). The purities of unlabeled 
standards were >95%, whereas the purities of the two 13C 
labeled compounds were >99%.

2.3  Sample preprocessing

Frozen samples were thawed at room temperature and 50 μL 
of each serum sample was placed in a 2 mL Eppendorf 
vial (Fisher Scientific). To precipitate proteins, methanol 
(150 μL) was added and the mixture was vortexed for 2 min 
and kept at −20 °C for 20 min. Next, the mixture was cen-
trifuged at 20,800 g for 10 min, and the supernatant was col-
lected into a new Eppendorf vial. To recover any metabolites 
left in the protein pellet, each pellet was mixed with 300 μL 
methanol, vortexed for 10 min, centrifuged at 20,800 g for 
10 min and the supernatant was pooled with that collected 
after the first centrifugation. The solution was then dried 
using a Vacufuge Plus evaporator (Eppendorf, Hauppauge, 
NY), reconstituted in a 500 μL solution of 5 mM ammo-
nium acetate in 40% water/60% acetonitrile +0.2% acetic 
acid containing two labeled internal standards, 5.13 μM 
L-tyrosine-13C2 and 22.5 μM sodium-L-lactate-13C3 (Cam-
bridge Isotope Laboratory, Tewksbury, MA). The samples 
were filtered through 0.45 μm PVDF filters (Phenomenex, 
Torrance, CA) and used for MS analysis. A quality con-
trol (QC), which was a pooled serum sample from all three 
groups of subjects was also processed and prepared follow-
ing the same procedure as used for individual samples and 
analyzed with the patients samples once every 10 patient 
samples.

2.4  Targeted mass spectrometry analysis

All samples were subjected to LC-MS/MS analysis using 
two hydrophilic interaction chromatography SeQuant 

ZIC-cHILIC columns (150 × 2.1 mm, 3.0 μm particle size, 
Merck KGaA, Darmstadt, Germany) connected in parallel 
and an AB Sciex QTrap 5500 mass spectrometer (AB Sciex, 
Toronto, ON, Canada) equipped with an electrospray ioni-
zation (ESI) source. A total of 158 MRM transitions were 
targeted (99 in negative ion mode and 59 in positive ion 
mode), and 113 metabolites could be measured in the serum 
samples with sufficient signal-to-noise and very few or no 
missing data.

2.5  Data preprocessing

The original data set was filtered to obtain samples that had 
values for all of the demographical and clinical variables 
under investigation (i.e., no missing values), leading to 158 
individuals with 36 CRC patients, 39 polyp patients and 83 
healthy controls. The data were standardized by normaliza-
tion to average QC values (n ≥ 5 per batch) on a metabolite 
by metabolite basis to account for minor instrument drift 
during the 12 day acquisition.

2.6  Data analysis using SUR

The SUR analysis that generalizes linear regression mod-
els for multiple response variables was originally proposed 
more than half a century ago (Zellner 1962). As illustrated 
in our recent paper (Chen et al. 2015), SUR consists of mul-
tiple regression equations, with each equation providing one 
response variable (the level of a metabolite). In this study, 
the SUR model was applied to test the effect of diagnosis 
on levels of metabolites by including the three sets of sam-
ples from CRC, polyp patients, and healthy controls. First, 
a SUR model was built to investigate how levels of all 113 
metabolites were influenced by the following demographic 
variables: age,  age2, gender, BMI,  BMI2, smoking status, 
alcohol status, diagnosis, as well as the interactions between 
diagnosis and the other covariates. In all, a total of 15 covari-
ates in each of the 113 regression equations was involved in 
the SUR model. The SUR model for each of the 113 metabo-
lites can be written as: 

 where Yij is the jth metabolite level for the ith individual, Xik 
denotes the value of the kth covariate of the ith individual, and 
�ij is the error term which follows N(0, �j2). The error terms 
are independent across individuals, but may be correlated 
across the equations. Backward variable elimination (BVE) 
was then performed to remove insignificant covariates (i.e., 
those with p-value ≥0.05). Demographic covariates show-
ing significant interactions with diagnosis were included in 
all linear regression models on each of the 113 metabolites 
in subsequent analysis. In addition to individual metabo-
lites subjected to multiple linear regression analysis, we 

Yij = �oj + Xi1�1j + Xi2�2j + ... + Xip�pj + �ij,
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also partitioned all metabolites into 29 biologically related 
groups based on their presence in predefined metabolic 
pathways (glycolysis, TCA cycle, purine metabolism, amino 
acid metabolism, etc.), and further applied SUR analysis 
to evaluate the effect of disease risk on different groups of 
metabolites. The ParCorA algorithm (Schafer and Strim-
mer 2005) was used to construct networks of metabolites 
in CRC, polyp patients and healthy subjects separately for 
all groups of metabolites both before and after using SUR 
to account for the effect of confounding variables. Using 
the ParCorA algorithm, the Pearson correlation coefficient 
between each pair of metabolites within the same group was 
calculated, and an edge was built between two metabolites if 
the p-value of the correlation was less than a pre-specified 
significance level (p < 0.01).

3  Results

This study utilized targeted LC-MS/MS based metabolite 
data previously obtained for human serum samples from 
158 individuals with CRC (n = 36), patients with colo-
rectal polyps (n = 39) or healthy controls (n = 83). Patient 
demographic and clinical information, including smok-
ing and alcohol status are shown in Supporting Informa-
tion Table S1. Using LC-MS/MS analysis, which involved 
utilizing a pre-established list of mass values for parent 
and fragment ions for each metabolite, relative concentra-
tions of 158 different metabolites were measured. Of these, 
113 metabolites were detected and quantified reliably as 
assessed by a lower coefficient of variation (CV) values for 
these metabolites (CV median 8%, ranging from 5 to 31%, 
with ∼80% metabolites having CV < 15%), and no missing 
values. The quantified metabolites represented diverse bio-
chemical classes and over 25 distinct metabolic pathways.

3.1  SUR analysis

In the SUR analysis we performed BVE of the predictors, 
using the 113 metabolites and the demographic variables 
age,  age2, gender, BMI,  BMI2, smoking status, alcohol 
status, diagnosis, as well as the interactions between 
diagnosis and all the other seven covariates. BVE was 
employed to remove insignificant covariates prior to fur-
ther analysis. Table 1 shows the results of BVE for pre-
dictors, which indicates, however, that all covariates were 
significant with p-values < 0.05. Hence, all covariates were 
included in subsequent analysis. Using these predictors, 
each metabolite was analyzed separately using multi-
variate linear regression. The results of the linear regres-
sion analysis for testing the diagnosis and its interaction 
with other demographic variables for all 113 metabolites 
showed that 20 out of the 113 metabolites were significant 

for diagnosis (Table 2, adjusted p < 0.05). Full results for 
the 113 metabolites are shown in Supporting Informa-
tion Table S2. Among the 20 metabolites with adjusted 
p < 0.05, several had quite low p-values, with aspartic acid 
being the most significant, followed by glyceraldehyde, 
xanthine, xanthosine, orotate, hydroxyproline/aminolevuli-
nate and hippuric acid (Table 2).

Table 1  The results of BVE for 
predictors including age,  age2, 
gender, BMI,  BMI2, smoking 
status, alcohol status, diagnosis, 
as well as the interactions 
between diagnosis and other 
covariates

Selected effects p value

Age 0
Age2

Gender 0
BMI 0
BMI2

Smoking 0
Alcohol 9.45e−14
Diagnosis 0
Diagnosis × age 0
Diagnosis × age2

Diagnosis × gender 0
Diagnosis × BMI 0
Diagnosis × BMI2

Diagnosis × smoking 0
Diagnosis × alcohol 0

Table 2  Metabolites found to be significant (p < 0.05) for testing 
the diagnosis based on linear regression analysis using the predictors 
selected from BVE

Metabolite p value Adjusted p value

Alanine 1.53e−04 0.0022
Aspartic acid 5.09e−08 2.88e−06
2′-Deoxyuridine 0.0085 0.048
Glutamine 4.33e−04 0.0049
Histidine 8.30e−04 0.0078
Lysine 0.0042 0.028
Methionine 0.0017 0.014
Phenylalanine 0.0055 0.033
Alpha-ketoglutaric acid 0.0026 0.02
G16BP 0.0013 0.011
Glyceraldehyde 6.22e−10 7.03e−08
Cystathionine 3.88e−04 0.0049
Epinephrine 6.68e−04 0.0069
Hydroxyproline/Aminolevulinate 1.19e−06 2.23e−05
Hippuric acid 4.43e−06 7.15e−05
Linoleic acid 0.0052 0.033
Linolenic acid 0.0037 0.026
Orotate 1.15e−06 2.23e−05
Xanthine 2.13e−07 8.01e−06
Xanthosine 3.31e−07 9.34e−06
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SUR analysis was then performed on subsets of the 
metabolites defined by their presence in 29 different met-
abolically related groups (Table 3). This SUR analysis 
showed that metabolites within the same group were sig-
nificantly different among CRC, polyp patients and healthy 
controls for all 29 groups except three. The three groups 
that did not show significant differences were propionate 
metabolism consisting of four detected metabolites, bile 
acid metabolism consisting of four metabolites, and ketone 
bodies consisting of two metabolites. To further investi-
gate the effects of diagnosis and demographic variables on 
the bile acid metabolism group, we built two SUR models, 
with the predictor being diagnosis only for one model and 
demographic variables only for the other model, to test the 
effects of diagnosis and demographic variables separately. 
The p-value for testing the diagnosis effect was 0.913 and 

the p-value for testing the effect of demographic variables 
was 3.16e−08. Table 3 lists the 29 groups along with the 
number of metabolites in each group, the pathway each 
group represents and the corresponding p-value obtained 
from the SUR analysis. Names of the metabolites in each 
group are listed in the Supporting Information Table S3. 
Among the seven metabolites that showed highly sig-
nificant differences in the individual metabolite analysis 
(Table 2), aspartic acid was present in 6 groups, glyceral-
dehyde and hippuric acid were present in one group each, 
and xanthine, xanthosine, orotate and hydroxyproline/ami-
nolevulinate were present in two groups each, as shown in 
the Supporting Information Table S3. Interestingly, all the 
groups in which these highly significant metabolites were 
present (groups 3, 4, 5, 10, 15, 16, 17, 18, 19, 20 and 23 in 

Table 3  Results of SUR 
analysis on testing the effect 
of diagnosis in 29 groups of 
biologically related metabolites

See Supplemental Information Table S3 for metabolite groupings
*Benjamini–Hochberg FDR correction

Group number (# 
metabolites)

Biological connection/pathway p value Adjusted 
p value 
(BH)*

1 (9) Glycolysis/gluconeogenesis 4.72e−05 9.74e−05
2 (6) Valine/leucine/isoleucine biosynthesis 0.023 0.027
3 (10) Alanine/aspartate/glutamate metabolism 1.28e−08 3.84e−08
4 (10) Arginine/proline metabolism 2.97e−08 8.17e−08
5 (3) Histidine metabolism 1.76e−09 8.30e−09
6 (4) Propionate metabolism 0.099 0.11
7 (6) Tyrosine metabolism 0.059 0.067
8 (10) Glyoxalate and dicarboxylate metabolism 5.20e−05 1.01e−04
9 (6) Phenylalanine/tyrosine/ tryptophan metabolism 5.47e−06 1.20e−05
10 (12) Glycolysis/TCA cycle 1.44e−06 3.39e−06
11 (9) Glycine/serine/threonine metabolism 9.21e−05 1.69e−04
12 (8) TCA cycle 0.0035 0.0050
13 (8) Glycolysis 1.35e−04 2.34e−04
14 (7) Gluconeogenesis 3.25e−04 5.36e−04
15 (9) Urea cycle 2.78e−09 1.02e−08
16 (19) Amino acids 2.11e−12 2.32e−11
17 (51) Amino acid metabolism 0 0
18 (18) Nucleotide metabolism 1.41e−10 7.76e−10
19 (13) Purine metabolism 1.44e−11 9.50e−11
20 (6) Pyrimidine metabolism 6.58e−09 2.17e−08
21 (4) Bile acid metabolism 0.21 0.22
22 (5) Carbohydrate 0.006 0.0083
23 (10) Lipids pathway 3.15e−07 8.00e−07
24 (4) Vitamins 0.0028 0.0042
25 (3) Microbial metabolism 0.0071 0.0094
26 (6) Tryptophan metabolism 0.022 0.027
27 (7) Methionine metabolism 0.0024 0.0038
28 (4) Organic acids 0.021 0.027
29 (2) Ketone bodies 0.13 0.14
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Table 3) also exhibited very high levels of significance for 
diagnosis as shown by their very low p-values.

3.2  Correlation analysis

Differences in terms of correlated metabolite networks were 
also observed in CRC, polyp patients and healthy subjects 
for all groups of metabolites before and after using SUR to 
account for the effects of confounding variables. The number 
of significant correlations (connections) between metabolites 
varied between healthy individuals, patients with polys and 
CRC patients. It is interesting to observe that the complexity 
of constructed networks of metabolites in some groups was 
reduced from healthy subjects to polyp patients, and further 
reduced for CRC patients. For example, as shown in Fig. 1, 
the total number of connections of constructed networks of 
metabolites in Group 14 is 17, 13, and 7 for healthy subjects, 
polyp patients, and CRC patients, respectively. Overall, for 

the Group 14 metabolites, there was a loss of correlation, in 
this case from an average of 0.36 for healthy subjects to an 
average of 0.24 for CRC patients, which results in a reduced 
number of connections. Of course, many of those correla-
tions still exist, they are just smaller and therefore do not 
reach the cutoff value.

Table 4 summarizes the number of connections in the 
constructed networks of metabolites, as well as the aver-
age value of the correlation coefficient between metabolites 
in CRC, polyp patients and healthy subjects for all groups 
of metabolites both before and after using SUR to account 
for the effects of confounding variables. The results show 
that while the constructed networks of metabolites for a 
few groups remain the same before and after using SUR to 
account for the effects of confounding variables, the net-
works for most groups exhibited differences before and after 
using SUR to account for the effects of confounding vari-
ables. For example, while the constructed network of metab-
olites for Group 15 has 18, 9 and 5 connections in healthy 
controls, polyp patients and CRC before using SUR (see 
Fig. 2), respectively, the number of connections changed 
to 14, 10 and 9 after using SUR to account for the effects 
of confounding variables (Fig. 2). In addition, using SUR 
to account for the effects of confounding variables had an 
effect on the average value of correlation between metabo-
lites in CRC, polyp patients and healthy subjects for most 
groups of metabolites. For Group 15, the average value of 
correlation between metabolites in CRC, polyp patients and 
healthy subjects was 0.18, 0.11 and 0.18, respectively, before 
using SUR, while the values change to 0.15, 0.16, and 0.18 
after using SUR (Table 4). While the effect of SUR on some 
metabolite groups was observed to be sizeable, the overall 
effect of SUR on the median number of connections and 
median correlation values across all groups was relatively 
small.

4  Discussion

Advances in metabolomics technologies have enabled the 
analysis of a wider pool of metabolites with high fidelity 
and led to the identification of numerous metabolites that 
are putative biomarkers for the prediction or the diagno-
sis of numerous diseases. However, confounding effects 
pose a major challenge for reproducibility, validation and 
ultimately the utility of such potential biomarkers for pre-
clinical or clinical applications. This challenge, in gen-
eral, represents a major bottleneck in biomarker discovery 
for the metabolomics field. Therefore, it is increasingly 
becoming a critical priority that such confounding factors 
be taken into account in the effort to identify and validate 
reliable biomarkers. In the current study, we have used a 
SUR regression model to analyze metabolite data from 

Fig. 1  Comparison of the number of significant correlations as indi-
cated by the connections between metabolites for the constructed net-
works of Group 14 metabolites in cancer, polyp patients and healthy 
subjects. An overall reduction of the number of significant correla-
tions is observed from healthy control to CRC
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CRC patients, polyp patients and healthy controls while 
accounting for the effects of some major confounding vari-
ables including gender, BMI, age, and alcohol/smoking 
use. Previously, SUR analysis was applied for genome-
wide association (Saint-Pierre et al. 2011) and nutritional 
epidemiology studies (Carroll et al. 2006). We recently 
proposed that the SUR model could be useful for metabo-
lomics applications, and demonstrated how SUR analysis 
of NMR detected metabolites could differentiate polyp 
patients from healthy controls (Chen et al. 2015). In the 
present study, we have used a larger pool of metabolites 
(>100) obtained using highly sensitive targeted LC-MS. 
The SUR model was applied to test diagnosis by includ-
ing three levels of the diagnosis variable: CRC, polyps or 
healthy control. Even after correction for the potentially 
confounding clinical factors, many metabolites (20) were 

found to be significant for the diagnosis (see Table 3). 
These results signify the magnitude of the confounding 
effects as well as the ability of the SUR models to account 
for the contributions of such effects.

Detected metabolites in this study span more than 25 met-
abolic pathways, including major pathways such as the TCA 
cycle, glycolysis, gluconeogenesis, amino acid metabolism, 
urea cycle, purine, pyrimidine and nucleotide metabolism, 
carbohydrate and lipids pathways. To test the differentiating 
ability of such metabolic pathways, we have also investi-
gated how major metabolic pathways are affected by the con-
founding variables. We therefore grouped metabolites based 
on their known association with specific metabolic pathways 
and subjected each group to SUR analysis. In line with the 
performance of the individual metabolites (Table 2), the low 
p-values observed for most of the biological groups indicate 

Table 4  Number of 
connections in the constructed 
networks of metabolites and 
average value of correlation 
between metabolites in CRC 
(C), polyp patients (P) and 
healthy subjects (H) for 
29 groups of biologically 
connected metabolites before 
and after using SUR to account 
for the effects of confounding 
variables

Group number Total # of connections Average value of correlation

Before SUR After SUR Before SUR After SUR

C P H C P H C P H C P H

1 16 22 28 18 21 27 0.31 0.35 0.39 0.29 0.36 0.38
2 3 4 7 2 4 7 0.18 0.18 0.11 0.15 0.14 0.11
3 10 10 10 10 9 12 0.16 0.07 0.10 0.14 0.079 0.080
4 8 10 22 7 10 20 0.14 0.14 0.15 0.14 0.16 0.16
5 1 1 1 1 1 1 0.16 0.13 0.13 0.10 0.23 0.14
6 1 2 5 1 3 5 0.03 0.20 0.26 0.03 0.14 0.28
7 2 4 6 2 5 6 0.16 0.29 0.20 0.16 0.23 0.19
8 8 10 13 9 9 13 0.14 0.082 0.094 0.12 0.10 0.076
9 4 6 10 4 6 10 0.14 0.25 0.27 0.13 0.26 0.27
10 21 41 42 23 40 41 0.23 0.34 0.30 0.21 0.35 0.29
11 8 4 7 10 2 10 0.15 −0.0057 0.008 0.12 0.012 0.0033
12 3 21 17 3 18 16 0.11 0.34 0.25 0.11 0.35 0.24
13 13 17 21 13 16 21 0.30 0.35 0.41 0.28 0.36 0.39
14 7 13 17 9 12 16 0.27 0.34 0.38 0.24 0.36 0.36
15 5 9 18 9 10 14 0.18 0.11 0.18 0.15 0.16 0.18
16 57 68 92 53 72 81 0.26 0.25 0.23 0.25 0.27 0.23
17 264 288 464 269 280 433 0.16 0.14 0.13 0.13 0.14 0.13
18 28 36 28 26 32 28 0.087 0.14 0.067 0.10 0.10 0.071
19 16 14 16 12 13 14 0.086 0.11 0.088 0.094 0.080 0.099
20 1 2 1 1 2 0 0.073 0.14 −0.0060 0.068 0.11 −0.004
21 2 1 3 2 2 3 0.071 0.11 0.030 0.067 0.11 0.024
22 2 3 5 2 3 5 0.025 0.030 0.032 −0.017 0.055 0.047
23 8 15 9 6 14 12 0.13 0.19 0.12 0.17 0.17 0.11
24 0 0 1 1 0 1 0.22 0.030 −0.0072 0.17 0.041 0.015
25 0 2 1 1 2 0 −0.20 0.27 0.071 −0.11 0.22 0.082
26 6 3 7 8 4 6 0.31 0.19 0.18 0.27 0.13 0.17
27 4 7 5 6 5 5 0.21 0.071 0.11 0.15 0.070 0.085
28 1 0 2 1 0 2 0.051 0.12 0.10 0.067 0.081 0.11
29 1 1 1 1 0 1 0.86 0.28 0.66 0.88 0.34 0.66
Median 5 7 9 6 6 10 0.16 0.14 0.13 0.14 0.14 0.13
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the strong differentiating ability of the groups of metabolites 
(Table 3).

Colorectal polyps represent a major risk factor for the 
later development of CRC. The ability to distinguish patients 
with polyps from healthy controls as well as CRC is criti-
cal for the prediction and diagnosis of CRC. With the goal 
of visualizing metabolic distinctions among CRC, polyp 
patients and healthy controls, we constructed networks of 
correlated metabolites using different groups of metabolites 
and the ParCorA algorithm. Calculation of the correlations 
was performed before and after applying the SUR model. 
The results show that both the number of connections and 
the average value of correlations were different among CRC, 
polyp patients and healthy controls, which indicate differ-
ences in the altered metabolism in the patients and control 
groups (Table 4). In some cases, the results were dramati-
cally different (see Fig. 1). In addition, after SUR analysis, 
both the number of connections and the average correlations 
were altered for all but a few groups of metabolites, which 
indicates the extensive influence of confounding variables 
on metabolite levels.

The metabolites that were found to be significant 
(p < 0.05) for testing the diagnosis (Table 2) represent many 
metabolic pathways including glycolysis, TCA cycle, amino 
acids, nucleotide and lipids pathways. Alteration of these 
pathways is well known in cancer. For example the Warburg 
effect that affects glycolysis and TCA cycle pathways for 
energy generation in cancer cells is a well-known character-
istic of cancer metabolism (Warburg 1956). Individually, 17 
metabolites that were found to be significant for testing the 
diagnosis, based on SUR analysis, were previously shown 
to have links with CRC and colorectal polyp (Zhu et al. 
2014). It was shown that aspartic acid, glutamine, lysine, 
methionine, histidine, hippuric acid, alpha-ketoglutarate, 
glyceraldehyde, hydroxyproline/aminolevulinate, linoleic 
acid, linolenic acid and 2′-deoxyuridine distinguish CRC 
and healthy controls as well as CRC and polyps. Similarly, 
cystathionine was shown to be associated with CRC and 
healthy controls; alanine, xanthine and orotate were shown 
to distinguish CRC and polyps; and glucose-1,6-bisphos-
phate (G16BP) was shown to distinguish between polyp 
patients and healthy controls.

Fig. 2  Comparison of the number of significant correlations as indi-
cated by the connections between metabolites for the constructed net-
works of Group 15 metabolites in cancer, polyp patients and healthy 

subjects. SUR analysis affects a number of the significant correlations 
between metabolites, but the overall pattern of higher correlation 
between metabolites in healthy controls continues to hold
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Interestingly, among the metabolites detected by SUR 
analysis (Table 2), three metabolites including phenylala-
nine, xanthosine and epinephrine were unique in that their 
association with polyps is shown here for the first time. The 
fact that these metabolites were not found to be significant 
in the absence of SUR analysis (Zhu et al. 2014) indicates 
that the three metabolites are strongly influenced by the 
demographical variables. The association of phenylalanine 
indicates altered amino acid metabolism in cancer and is in 
accordance with many other amino acids that are associ-
ated with the disease. Xanthosine is associated with purine 
metabolism and indicates altered purine metabolism that 
is further supported by the observed significant changes in 
xanthine, which is also associated with purine metabolism. 
It may be noted that about half of the metabolites that were 
previously shown to be associated with CRC (Zhu et al. 
2014) lost their significance after SUR analysis, which 
further signifies the magnitude of contributions from the 
demographic covariates. Nevertheless, some of this reduc-
tion may be due to the smaller number of samples analyzed 
in this study.

Differentiating metabolites in serum identified based 
on the present SUR analysis were also compared with bio-
marker candidates obtained in a number of other, earlier 
studies that used the same type of biospecimen, serum. 
Supplemental Information Table S4 provides a list of dif-
ferentiating metabolites that are the same and different from 
those identified in the present study. Studies by Li et al. (Li 
et al. 2013) and (Ritchie et al. 2010, 2013) were focused on 
serum lipids and hence none of the biomarkers identified 
had any commonality with those in the present study. In 
addition to our own prior work (Zhu et al. 2014), three stud-
ies identified several aqueous metabolites that differentiated 
colorectal cancer from controls. In the GC-MS based study 
by Nishiumi et al., one out of a total four differentiating 
metabolites was same as that identified by SUR analysis 
(Nishiumi et al. 2012); in the study by Qiu et al., four out 
of thirty-three differentiating metabolites were the same 
(Qiu et al. 2009); and in the study by Tan et al., seven out 
of seventy-two metabolites were same as that identified by 
SUR analysis (Tan et al. 2013). Interestingly, phenylalanine, 
one of the three significant metabolites revealed after SUR 
analysis was also identified by two other studies, and xan-
thosine was identified by one other study (see Supplemen-
tary Table S4). However, a large number of differentiating 
metabolites from the earlier studies were different. The use 
of multiple analytical platforms that detect different pools 
of metabolites can explain such differences to some extent. 
Nevertheless, SUR analysis eliminated many metabolites 
including 3-hydroxybuturate, fumarate, creatinine, and pro-
line that were shown to be differential metabolites by many 
studies (including our own prior study); in some cases SUR 
revealed other metabolites to have differentiating potential 

as discussed above. These findings further highlight the con-
tribution of potential confounding effects in metabolomics 
studies.

5  Conclusion

Our results indicate that demographic covariates such as 
gender, BMI,  BMI2, and smoking status exhibit significant 
confounding effects on metabolite levels as well as corre-
lations between metabolites in the same biological group, 
which need to be taken into account in order to obtain a 
better representation of the effects of disease on metabolite 
levels. Importantly, biomarker discovery can be confounded 
by one or more of these factors. In this work, we used SUR 
to model how metabolites levels as well as their correlations 
are affected by several clinical variables, and investigated 
the ability of serum metabolites to differentiate CRC, polyp 
patients and healthy controls after accounting for the effects 
of confounding variables. These results may promise new 
avenues for addressing the often dominant confounding 
effects in the metabolomics field.
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