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Objectives  This study illustrates some key pitfalls in LC–
MS based metabolomics and introduces an automated com-
putational procedure to compensate for them.
Method  Non-cancerous mammary gland derived cells 
were exposed to 27 chemicals from four pharmacological 
classes plus a set of six pesticides. Changes in the metabo-
lome of cell lysates were assessed after 24 h using LC–MS. 
A data processing pipeline was established and evaluated 
to handle issues including contaminants, carry over effects, 
intensity decay and inherent methodology variability and 
biases. A key component in this pipeline is a latent vari-
able method called OOS-DA (optimal orthonormal system 
for discriminant analysis), being theoretically more easily 
motivated than PLS-DA in this context, as it is rooted in 
pattern classification rather than regression modeling.
Result  The pipeline is shown to reduce experimental vari-
ability/biases and is used to confirm that LC–MS spectra 
hold drug class specific information.
Conclusion  LC–MS based metabolomics is a promising 
methodology, but comes with pitfalls and challenges. Key 
difficulties can be largely overcome by means of a compu-
tational procedure of the kind introduced and demonstrated 
here. The pipeline is freely available on www.github.com/
stephanieherman/MS-data-processing.

Keywords  Metabolomics · Mass spectrometry · Data 
handling · Batch effects · Drug metabolism

Abbreviations
LC	� Liquid chromatography
MS	� Mass spectrometry
PCA	� Principal component analysis
LVX	� Latent variable number X
PCY	� Principal component number Y

Abstract 
Introduction  Mass spectrometry based metabolomics 
has become a promising complement and alternative to 
transcriptomics and proteomics in many fields including 
in  vitro systems pharmacology. Despite several merits, 
metabolomics based on liquid chromatography mass spec-
trometry (LC–MS) is a developing area that is yet attached 
to several pitfalls and challenges. To reach a level of high 
reliability and robustness, these issues need to be tackled 
by implementation of refined experimental and computa-
tional protocols.
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OOS-DA	� Optimal orthonormal system for discriminant 
analysis

PLS-DA	� Partial least squares for discriminant analysis
NMRS	� Nuclear magnetic resonance spectroscopy

1  Introduction

In vitro systems pharmacology involves studies on the 
impact of drugs or other chemicals, either alone or in com-
bination, on the systemic profile of various in  vitro mod-
els. This discipline is already well established at the level 
of transcriptomics, with the “Connectivity Map” (CMap) 
as an outstanding example (Lamb et  al. 2006). Regarding 
the level of metabolomics, a few pilot studies using nuclear 
magnetic resonance spectroscopy (NMRS) have been 
reported (Aftab et al. 2014; Tiziani et al. 2011). The metab-
olome is particularly attractive in this context, as it can pro-
vide information at a molecular scale, which is more tightly 
connected with cellular function and responds faster to 
external changes than the transcriptome.

Recent significant technological advances in liquid chro-
matography (LC) and mass spectrometry (MS) have made 
current LC–MS systems able to quantify complex mix-
tures of low molecular weight agents (<1500 Da) across a 
wide concentration range, thereby enabling LC–MS based 
metabolomics. However, as the resolution of the sample 
content increase, so does the resolution of the contaminants 
present within the sample. This is why genuinely sensi-
tive measurement technologies like LC–MS typically carry 
increased experimental related variability. Such variability 
may arise from contamination from solvents or tubes used 
in the laboratory setting as well as from the experimental 
setup. An in vitro LC–MS experiment is a time demanding 
procedure that often requires the samples to be assembled 
into batches (either sample preparation batches, as used 
here or analysis batches). Notably, handling and compar-
ing cells at different phases may also increase variability. 
Samples could further have been collected at various time 
points, seasons of the year and could also have been stored 
and transported for different amounts of time (Kohler et al. 
2016; Kirwan et al. 2012; Teahan et al. 2006). Any of these 
sources of diversity will give rise to unwanted variation 
and biases in the recorded data. Variability may also per-
tain to the LC–MS instrumentation itself, such as intensity/
sensitivity decaying throughout the analysis, caused by 
aggregated components in the column, carry over effects 
in between samples, as well as saturation effects when the 
instrument is unable to concurrently process all molecules 
entering the MS instrument (Teahan et  al. 2006; van der 
Kloet et al. 2009). Some of these issues can be reduced by 
routine maintenance of the LC–MS equipment. However, 

this will not necessarily return the instrument to its initial 
performance.

In order to make correct interpretations of MS spectra, 
the issues presented above have to be adequately managed. 
However, although these issues are well known within the 
LC–MS field, there is yet no reported commonly accepted 
best practice procedure available, which helps achieving 
the desired suppression of externally caused variability. 
Several published LC–MS based metabolomic studies, not 
necessarily involving chemically induced changes in  vitro 
as studied here, have addressed these issues (Beckner 
Whitener et al. 2016; Ganna et al. 2014; Popov et al. 2016; 
Ubhi et al. 2012). Details of the problems and the computa-
tional approaches employed are, however, rarely discussed 
explicitly. Typically, standardized procedures of the early 
preprocessing steps of the MS data analysis (peak pick-
ing, peak alignment and feature linking) are described in 
some depth, but the subsequent computational approaches 
employed to suppress unwanted variation is only vaguely 
outlined. In many cases the employed remedies are proce-
dures concealed within the supplementary material, often 
involving either principal component analysis (PCA), par-
tial least square discriminant analysis (PLS-DA) or batch 
removal methods already included in various R packages 
(Brunius et al. 2016; Leek et al. 2016; Ritchie et al. 2015). 
Thus, there is an apparent need for automated and robust 
computational pipelines that can be supported by rational 
arguments and that can be validated to offer reliable sup-
pression of the unwanted experimental and technical 
variability.

In summary, as a first step towards making LC–MS 
based in  vitro metabolomics well established and broadly 
applied, work towards best-practice computational proce-
dures is required, which can help circumventing or com-
pensating for the experimental pitfalls and challenges 
associated with this emerging methodology including con-
taminants, carry over effects, intensity decay, and unwanted 
variability and biases like batch effects. In the work 
reported here, we performed a pilot study to introduce such 
a computational pipeline while illustrating the main pitfalls 
and challenges. The pilot study was designed as a metabo-
lomics setup wherein the non-cancerous mammalian gland 
derived cell line MCF-10A was exposed to 27 substances 
that can be divided into four pharmacological classes and a 
set of pesticides. For each substance a cell lysate extracted 
24 h after exposure was analyzed using a modern high res-
olution LC–MS system. The experimental goal with this 
setup was to assess whether pharmacological classes would 
appear as class characteristic metabolic profiles. Based on 
pitfalls and challenges encountered in the subsequent data 
analysis, a computational pipeline was established to han-
dle commonly encountered complications including those 
mentioned above.
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In the following we present this workflow in detail 
including well-founded motivations for each computa-
tional step performed. Experimental results are presented 
showing that this new pipeline offers important contribu-
tions towards more reliable in vitro metabolomics studies, 
based on a state-of-the-art high resolution LC–MS system. 
In particular, the data after the computational post-process-
ing of the MS spectra show that the cells exposed to the 
group of anti-inflammatory drugs have a distinct change in 
their metabolomic pattern compared to the remaining cells 
including controls.

2 � Materials and methods

2.1 � Chemical compounds

The 27 chemical test agents used in the study are listed in 
Table 1 and can be divided into either of four pharmacolog-
ical classes or a set consisting of six pesticides. All com-
pounds were purchased from a local Sigma–Aldrich sup-
plier (Stockholm, Sweden) and dissolved in DMSO with a 
DMSO final concentration equivalent to 0.01% or less.

2.2 � Cell line model

The immortalized, non-cancerous MCF-10A, derived from 
normal human mammary gland, was used as a cell line 
experimental model. The cell line was obtained from the 
American Type Culture Collection (ATCC, http://www.
atcc.org, Manassas, VA).

2.3 � Experimental design

The cells were grown in MEBM supplemented with 
MEGM Single Quots and cholera toxin (Lonza, Basel, 
Switzerland) on cover glasses placed inside petri dishes 
(Thermo Fisher Scientific, Nunc™, 8.8  cm2). After reach-
ing ∼70% confluence, equivalent to ~2  million cells, the 

cells were exposed to one of the 27 compounds listed in 
Table 1 for 24 h. Three biological replicates were created in 
order to catch biological variation. After 24 h incubation in 
presence of test agents, cells were harvested. Cover glasses 
were carefully lifted from the bottom of the petri plates 
using tweezers and then dipped into the stirring water of 
the washing unit to rinse both sides of the cover glasses. 
They were then quickly placed in the quenching solution 
(−20 °C 80% methanol) followed by detachment of cells 
using a rubber-tipped cell scraper (Sarstedt, Nümbrecht, 
Germany). Detached cells were transferred to 1.5 ml coni-
cal centrifuge tubes and centrifuged for 10 min at 21,000×g 
4 °C. The supernatants collected were freeze dried using 
centrifugal vacuum concentrator (1–2 h).

The whole sample preparation procedure was split 
into four weeks, creating four sample batches. Each batch 
contained three Mebendazole replicates (to catch batch 
effects), three control samples (with three replicates each) 
being cells treated with only 0.01% DMSO and six blank 
samples, containing no cells or drugs, only DMSO.

2.4 � Mass spectrometry analyses

The freeze dried samples were dissolved in 5% methanol, 
0.1% formic acid (FA) and 94.9% deionized MilliQ water, 
vortexed for 10 s and 20 μl was transferred to a clean tube to 
produce a pool containing all samples (quality control (QC) 
samples) for performance monitoring. The samples were 
analyzed in a constrained randomized order where samples 
were divided into three blocks, containing one of the three 
replicates per sample (the 12 Mebendazole replicates were 
distributed equally between these blocks). The blocks were 
analyzed sequentially, with a randomized injection order 
within the blocks where each sample was injected twice. 
Blank samples, were distributed throughout the analysis to 
catch contaminants and carry over effects. The analysis was 
performed on a Thermo Ultimate 3000 HPLC and Thermo 
Q-Exactive Orbitrap mass spectrometer. The 20 µl of sam-
ple was injected to a Thermo Accucore aQ RP C18 column 

Table 1   The four 
pharmacological drug/agent 
classes with their corresponding 
compounds used in this study, 
plus a separate set of six 
pesticides

Estrogen pathway 
perturbators

Anti-inflammatory Tyrosine 
kinase 
inhib.

HDAC inhib. Pesticides

17-ß-Estradiol Dexamethasone Erlotinib Vinblastine Octylmethoxycinnamate
Diethylstilbestrol Hydrocortisone Gefitinib Vincristine Diuron
Bisphenol A Prednisolone Lapatinib Albendazole Glyphosate
Genistein Aspirin Mebendazole Atrazine
Quercetin Ibuprofen Trichostatin A Dimephenthioate
Tamoxifen Chloroquine Thiram

NVP-BEZ235

The compounds have been color coded as for which batch they were prepared in, orange being one, green 
two, blue three and red four. In order to retrieve more information regarding batch effects, cells exposed 
to Mebendazole were placed in all batches giving a total of 12 biological replicates

http://www.atcc.org
http://www.atcc.org
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(100 × 2.1 mm, 2.7 µm particle size). The analytical gradi-
ent was initialized with an isocratic flow for 3 min (0% B) 
followed by 5 min (0–20% B), 6 min (20–100% B), 3 min 
(100% B), 2 min (100% C) and lastly re-equilibration of 
column for 6 min (0% B), where A is 0.1% FA, B is 89.9% 
acetonitrile, 10% isopropanol and 0.1% FA and C is 100% 
methanol, at a flow rate of 0.4 ml/min. Mass spectrometry 
data were acquired in profile and positive ion mode, using 
a mass range of 130–900 m/z with a 70 000 FWHM reso-
lution, AGC target 1e6, maximum injection time 200 ms, 
spray voltage of 4 kV, capillary temperature 350 °C, arbi-
trary units of sheat gas 30 and auxiliary gas 10.

2.5 � LC‑MS processing

The acquired raw data was converted to an open source for-
mat (.mzML) by msconvert from ProteoWizard (Chambers 
et al. 2012) and preprocessed using the following pipeline 
within the OpenMS platform (Sturm et al. 2008): The raw 
data was centroided (peak picking) using PeakPickerHiRes 
(Weisser et  al. 2013) and the features (possible metabo-
lites) were quantified by FeatureFinderMetabo (Kenar 
et  al. 2014). The parameters with non-default values can 
be found in Supplementary Table 1. The resulting features 
were linked across the samples using FeatureLinkerUnla‑
belledQT (Weisser et al. 2013), allowing 15 s retention time 
tolerance and 5 ppm mass deviation (the linking was per-
formed irrespective of charge state across the samples). The 
preprocessed data was then further loaded into the statisti-
cal software environment R v 3.2.1 (R Core Team 2015), 
where features without established charge were removed. 
The processing pipeline for suppressing contaminants, 
carry over effects and intensity decaying was further imple-
mented in R and the implementation of OOS-DA (optimal 
orthonormal system for discriminant analysis) was done in 
MATLAB (R2015a, The MathWorks, Inc., Natick, MA) 
and used to process the 3803 features remaining after the 
preprocessing procedure. prcomp in R package stats was 
used with default settings to perform principal component 
analysis (PCA) for visualization of the data in 2D and 3D 
plots (missing values were replaced by zeros before PCA). 
The data was always log2 transformed before PCA.

3 � Results

3.1 � A computational pipeline for suppression 
of experimental variability

For this particular pilot experiment and the resulting MS 
data, a few issues in the data were immediately identified, 

as revealed by PCA. In Fig. 1a, the result of PCA after com-
pression from 3803 spectral features along the directions 
of the largest variability (corresponding to PC1, PC2 and 
PC3) is presented. This plot immediately reveals remark-
able and unexpected substructures present in the data that 
may be described as two major clusters separated along the 
PC3 dimension as well as undesirable batch effects visual 
by mean of color coding in Fig. 1a. A comparison with the 
injection order clarifies that this separation is associated 
with a particular time point in the MS analysis (A 3D plot 
visualizing the samples labeled with their corresponding 
number in the injection order can be seen in Supplemen-
tary Fig. 1). This shift could for example be associated with 
refilling of the mobile phases or changed external condi-
tions which unfortunately were not noted during the experi-
mental execution.

Prior to any further analysis or downstream interpreta-
tion of the data, the undesired biases shown in Fig. 1a must 
be removed. In Fig.  1b, the pipeline for handling this as 
well as other key issues such as contaminations, carry over 
effects, and intensity decaying is summarized.

3.1.1 � Blank filtering and removal of batch specific features

In the first step in Fig.  1b, referred to as Blank filtering, 
blank samples (containing only DMSO, no cells) are being 
used to detect contaminants. Features that have a median 
intensity across the blank MS spectra higher than 1% of the 
maximum intensity of the other samples are labeled con-
taminants and removed. In the second step of the pipeline 
illustrated in Fig. 1b, features considered to be batch spe-
cific were removed.

3.1.2 � Log2‑transformation, outlier detection 
and normalization through LOESS

In order to reduce the dynamic range, each MS feature 
value x (intensity) was replaced by its log 2 value log2(x). 
Potential sample outliers were subsequently detected by 
calculating the total ion count (TIC) of each sample and 
visualizing the TIC distribution in a boxplot. Samples with 
an abnormally low TIC (less than 70% of the average TIC) 
were removed from the study.

In order to suppress deviation across replicates, an indi-
vidual MS spectrum was only kept if at least one of the 
corresponding replicates was sufficiently similar to this 
particular spectrum. The similarities between pairs of MS 
spectra were quantified in terms of Pearson’s correlation. 
Thus a spectrum was kept if the largest Pearson’s correla-
tion coefficient obtained when compared with each of the 
two other replicates separately was larger than 0.8.
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Finally, to account for intensity decaying and suppres-
sion, normalization was performed using the R-func-
tion normalizeCyclicLoess from the limma R-package 
(Ritchie et al. 2015). This approach allows for normaliz-
ing each column (spectrum), iteratively applying LOESS 
(locally weighted scatterplot smoothing) normalization to 
normalize each pair of columns to each other.

3.1.3 � Accounting for batch effects and various technical 
effects using OOS‑DA

In order to achieve more tailor made removal of undesired 
variation and batch effects in a multivariate dataset, super-
vised learning methods are required. PLS-DA is a super-
vised method commonly applied to spectral analysis, while 

Removal of batch 

Log2 
transformation

Outlier detection

LOESS
normalization

OOS-DA
technical variation

OOS-DA

Merge replicates

Data Analysis

samples 1-55
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Fig. 1   A data processing pipeline to remove technical variability and 
biases. a Initial visualization of the log2 transformed raw MS spec-
tra using PCA for compression of each 3803-dimensional MS spec-
trum (sample) into 3D. The samples are split into two well separated 
clusters along the PC3 dimension, a substructure that is not expected 
to exist. The samples color coded according to batch identities also 
reveals existing batch effects within the data. b An overview of the 
introduced pipeline including the novel use of the method OOS-DA. c 

Effect of removing the technically related variability associated with 
the MS analysis using OOS-DA, visible in subfigure a. The left panel 
shows the data before removal (where the previous steps in the pipe-
line (step 1–5) have been applied), whereas the right panel depicts 
data after removal (step 6). d Effect of removing the batch effects 
by application of OOS-DA on batch identities, where the left panel 
shows the data before removal (step 1–6) and the right panel shows 
the data after removal (step 7)
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PCA is an unsupervised alternative, likewise previously 
used in this context (Brereton and Lloyd 2014; Ganna et al. 
2014). PCA and PLS-DA both support designing latent 
variable models that can help removing batch effects asso-
ciated with a subset of the latent variables extracted (See 
Supplementary Fig.  2 for demonstration of result). An 
obvious disadvantage of unsupervised approaches, such 
as PCA, is that no batch (class) information can be used 
to select the latent variable models. Thus, supervised 
approaches like PLS-DA are inherently more efficient. 
Since PLS-DA originates from linear regression rather than 
linear discriminant analysis (Brereton and Lloyd 2014), 
we preferred a theoretically more natural (well founded) 
method developed by Okada and Tomita (1985), in the fol-
lowing called OOS-DA (optimal orthonormal system for 
discriminant analysis). This method may be viewed as a 
generalization of Fisher´s linear discriminant. OOS-DA has 
been used previously to design a new type of classification 
method where a nearest neighbor classifier is applied in the 
3-dimensional latent variable space produced by OOS-DA 
(Darmanis et  al. 2011). Employing OOS-DA in our case 
results in a latent variable model which for an MS spectrum 
x can be expressed as x ≈ Pt where the vector t contains the 
values of the latent variables and the columns of the matrix 
P are known as loading vectors. By designing the model 
(loading) matrix P based on the batch identities of each 
sample, a compressed latent variable model that captures 
the main variability in the MS spectra associated with batch 
is obtained. After determining a suitable dimensionality of 
this model, the batch effects are suppressed by removing 
these dimensions from each sample, yielding new spectral 
vectors x new as x new = x − Pt.

In this work, OOS-DA modeling was implemented in 
MATLAB and used to remove the evident subdivision of the 
data into two parts occurring between sample number 55 and 
56 in the injection order shown in Supplementary Fig. 1.

In order to avoid trivial problems with close to singular 
scatter matrices in the OOS-DA algorithm in the computa-
tional pipeline, a pre-processing step based on PCA is used 
to compress the original spectra into feature vectors of lower 
dimensionality, which are instead used as inputs to OOS-DA. 
The feature vectors are selected to have N−k dimensions 
where N is the number of samples and k is chosen to make 
the scatter matrices numerically non-singular. Thus the latent 
variable models created by means of OOS-DA correspond 
to score vectors of dimension N−k and the batch removal 
(subtraction) is performed in this reduced space. After the 
removal of the undesired variation, the pipeline transforms 
each cleaned score vector back to the original spectral space 
by means of the loading vectors already obtained from the 
PCA. In order to employ OOS-DA for the removal of the 
experimental shift (step 6 in the pipeline), the spectra were 
compressed to N−2 dimensions (k = 2) and two classes were 

defined. The samples 1–55 belonged to the first class and the 
remaining samples, 56–127, to the second class. The OOS-
DA model was then employed to obtain a sequence of latent 
variable models designed to discriminate between the two 
classes (batches) as well as possible, according to the built-in 
criterion of the OOS-DA algorithm. The most suitable num-
ber of latent variables to use in order to suppress the techni-
cal variability was determined by automatic tuning, described 
in the following section. The same procedure was then 
employed once more (step 7 in the pipeline) to remove the 
batch effects by assigning each sample to one of four classes 
(their batch identities), this time performing the PCA based 
pre-compression using k = 8. The effects of these actions are 
illustrated in Fig. 1c, d.

To avoid the introduction of spurious features, the posi-
tions of missing values in the spectra were saved before appli-
cation of OOS-DA, and then missing values were reintro-
duced again at these positions before merging the replicates 
by replacing them by their median value.

3.2 � Tuning the dimensionality of the latent space 
in OOS‑DA modeling

An inherent hurdle of OOS-DA modeling (and similar 
approaches like PLS-DA) for removal of undesirable exper-
imental effects lies in the selection of the number of latent 
dimensions. To avoid error prone manual tuning, param-
eters were selected automatically, based on replicates of the 
same sample being continuously injected in the injection 
order, as well as equally distributed in the sample prepara-
tion batches. More specifically, the number of latent vari-
ables to be removed was determined by the following idea: 
Select the best latent space dimensionality dbest by looking at 
the Mebendazole replicates which were present in all batches. 
After subtraction of the latent dimensions, the Mebendazole 
replicates should cluster more tightly. In other words, the 
geometrical spread of the Mebendazole replicates should 
decrease. This was quantified and optimized by first defining 
the Mebendazole centroid for class (batch) k as

where xn denotes one of the Mebendazole spectra belong-
ing to class k and Nk denotes the total number of Meben-
dazole spectra in this class. Then as a global measure of 
spread we used the average Euclidean distance b between 
the within-class Mebendazole centroids and the global cen-
troid defined as

(1)mk =
1

Nk

∑

xn�class k

xn

(2)b =

1

K

K
∑

k=1

m k − m
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where K denotes the total number of classes and the global 
mean is calculated as

The distance measure used to calculate ||z|| for any 
z is the Euclidean distance. Using these definitions, 
the optimal dimension dbest was selected as the small-
est dimension where the distance b(d) stabilizes after 
an initial drop when viewed as a function of the dimen-
sion d, see Supplementary Fig.  3. More specifically, 
dbest was selected as the smallest dimension where the 
relative change in b(d) is less than 1%. Thus dbest was 

(3)m =

1

K

K
∑

k=1

m k

the smallest value that was satisfying the inequality 
|b(dbest + 1) − b(dbest)|/b(dbest) < 0.01.

For each conceivable dimensionally d, b(d) was calcu-
lated for the defined Mebendazole classes. Supplementary 
Fig.  3 shows a plot of b(d) for the case of the injection 
order effect mentioned earlier.

3.3 � Experimental validations

To confirm that the technical variability and the batch 
effects were suppressed by means of the OOS-DA based 
modeling described above, the positions of the Mebenda-
zole replicates, before and after processing, were visualized 
in PCA score plots, Fig. 2.

A  Normalized data 
    (after step 5)

B  Technical variation removed using OOS-DA 
     (after step 6)

C  Batch effects removed using OOS-DA 
     (after step 7)

D  Technical variation and batch effects removed 
     using PCA (removal of the three first PCs)

Fig. 2   Reduced geometrical spread for the drug Mebendazole after 
application of OOS-DA modeling. The same score plots are presented 
as in Fig. 1c, d but coded to visualize the many Mebendazole exposed 
replicates (labeled as “Meb”). These samples are distributed across 
the injection order and in all four batches. a The Mebendazole sam-
ples, without removing the unwanted variation from the data (only 
step 1–5 from the pipeline illustrated in Fig. 1b were applied). b The 
Mebendazole samples after removing the technically related vari-
ability using OOS-DA (step 6 in the pipeline). c The Mebendazole 

samples after removing the batch effects using OOS-DA (step 7 in 
the pipeline). As expected and desired, after the removal of unwanted 
variation, the Mebendazole exposed replicates are clustering more 
tightly to each other (same scale on the axes in all subfigures). d The 
Mebendazole samples after removing the first three principal com-
ponents and thereby removal of the most dominant variation. The 
Mebendazole samples are closer together, but still separated by the 
shift



	 S. Herman et al.

1 3

79  Page 8 of 12

3.3.1 � OOS‑DA for finding biological variation of interest 
and permutation tests for determination of level 
of significance

As demonstrated above, OOS-DA is able to target specific 
variation based on labeled training examples reflecting this 
variability. In the same way that this feature of OOS-DA 
can be used to target unwanted variation for removal of 
technical variability (like batch effects), it can also be used 
to directly target the variation/separation of real interest, 
meaning the separation between the actual classes one is 
interested to discriminate between (drug subclasses in our 
case). This idea to use OOS-DA to directly focus on the 
variability of real interest, rather than first removing techni-
cal variability, was demonstrated in a previous article (Dar-
manis et  al. 2011). There OOS-DA was used to directly 
compress high dimensional molecular (protein) data into a 
3-dimensional space by sifting out those dimensions in the 
original data space where the pre-defined subclasses in the 
dataset separate as well as possible. If the main goal is to 
achieve acceptable discrimination between the subclasses, 
such a direct approach might be sufficient. However, OOS-
DA may be used twice, first to remove technical variability 
and then in order to focus on the subspace offering the best 
subclass discrimination. This might give improved separa-
tion of the biological subclasses of interest and improved 
spectra being less contaminated by the technical variability.

One fundamental pitfall associated with dimensionality 
reduction of data having many dimensions/features is the 
risk of finding random patterns rather than something that 
corresponds to true differences and similarities. In particu-
lar, as there are many features, there will regularly be a per-
fect (non-overlapping) separation possible between any class 

definitions employed (Kjeldahl and Bro 2010; Kohler et  al. 
2016). This can be illustrated using our own data by rand-
omizing the class assignments and performing the OOS-DA 
modeling on these random classes, as illustrated in Fig.  3. 
In the left panel, data are presented for the three main latent 
variables extracted using OOS-DA employing the true labels 
(control samples versus drug exposed samples) whereas the 
right panel shows the corresponding result for a random 
assignment of class labels. Apparently OOS-DA is able to 
find low-dimensional subspaces that show clear separations 
between the assigned classes in both cases.

In order to quantify how easy it is to get this kind of sepa-
ration shown in the left part of Fig. 3 for our dataset by ran-
dom chance, we defined and employed the separation score 
ssep = b/w, as defined in (5) using the definition of b intro-
duced in (1–3) and the definition of w in (4). Thus b denotes 
again the average distance between class centroids and the 
global centroid, wk is the average distance between the cen-
troid mk of class k and the samples belonging to this class, 
and w is the average within-class distance from a sample and 
its class centroid. In brief ssep is a ratio quantifying between-
class versus within-class variability.

In order to demonstrate the ability of OOS-DA 
to directly find class differences of interest in our 

(4)w =

1

K

K
∑

k=1

wk where wk =
1

Nk

∑

xn�class k

xn − mk

(5)ssep =
b

1

K

∑K

k=1
wk

=

b

w

Fig. 3   Separations achieved by OOS-DA modeling with correct and 
randomized class assignments. Each point in these 3D plots is repre-
sented by its coordinates in the latent variable space created by the 
OOS-DA modeling (LV1 denotes latent variable 1 etc). As shown, 
methods like OOS-DA will always be able to find a separation 

between any classes defined in high dimensional data. The large and 
clearly visible separation achieved with the correct classes (left) is 
not very outstanding compared to the also large and clear separation 
achieved with the randomized classes (right)



Mass spectrometry based metabolomics for in vitro systems pharmacology: pitfalls, challenges,…

1 3

Page 9 of 12  79

metabolomics dataset (without any attempt to remove 
technical variability as a pre-processing step), samples of 
control versus treated cells were studied. As depicted in 
Fig.  4a, this direct use of OOS-DA was able to suppress 
(ignore) the unwanted shift and batch effects, while keeping 
a substantial part of the desired biological variation (drug 
class information), reflected by the separability score value 
ssep,correct = 3.57. To assess the level of significance of this 
score value, it was compared to the score values achieved 
when performing random permutations of the biological 
class labels. The random permutations of class assignments 
were performed 10,000 times, followed by OOS-DA mod-
eling and subsequent calculation of the separation score ssep 
for each model in the resulting latent 3-dimensional space 
obtained by compressing all spectra. Finally the resulting 
distribution of permutation generated separation score val-
ues were compared to the separation score obtained when 
using the correct class assignments.

To study if removal of unwanted shift and batch vari-
ation using OOS-DA would further increase the desired 
biological separation as suggested above, the same pro-
cedure was applied to the data processed by the pipeline 
illustrated in Fig. 1b. The results are presented in Fig. 4b 
showing that OOS-DA is able to significantly separate 
(p-value < 0.0001) the two classes also in this case, but 
the score value ssep,correct was decreased from 3.57 to 
3.35. Thus the attempt to remove shift and batch varia-
tion using OOS-DA did not improve the separability in 
this case. However, still this score value is larger than the 
score 3.29 obtained when PCA is used instead of OOS-
DA for the batch removal step, as illustrated in Fig.  4c. 
Notably the PCA based removal (which is unsupervised 

and does not rely on any batch information, thus only tak-
ing away the dimensions having the largest variability) 
yields almost as good separation score as when using the 
supervised OOS-DA. This suggests that the current data-
set contains a lot of batch independent technical variabil-
ity. This is one possible explanation why batch removal 
using OOS-DA did not yield the highest separation score 
here. Perhaps the attempt to remove shift and batch 
effects using OOS-DA made some part of the batch inde-
pendent experimental noise enhanced sufficiently much 
to yield the observed decrease of the separation score 
from 3.57 to 3.35.

In addition to studying separation between control 
and treated cells, the same procedure as used to produce 
Fig.  4 was also used to study how well each of the five 
pharmacological groups separate from the remaining 
samples. Figure  5a, b present the two most outstanding 
classes together with a table in Fig. 5c presenting scores 
obtained with different data processing approaches for all 
the five pharmacological groups. According to the table, 
the anti-inflammatory drugs and the estrogen pathway 
perturbators yield separation scores which are statisti-
cally significant already after step 5 in the pipeline. After 
removal of unwanted variation by means of OOS-DA, 
the anti-inflammatory drugs separation score is increased 
from 2.17 (ssep after step 5) to 2.44 with a p-value of 
0.006, while the estrogen pathway perturbators maintain 
a similar separation score at a similar significance level. 
Using PCA for removal of the unwanted variation low-
ers the separation score for the estrogen pathway pertur-
bators, while the score for the anti-inflammatory class is 
mostly unaffected.
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Fig. 4   Permutation results for controls versus the rest. The three 
histograms showing the distributions of 10,000 separability score 
values achieved by extracting the drug subclass variation of interest 
using OOS-DA. This was done when a the data still contained the 
unwanted batch/shift related variation (after step 5 in the pipeline in 
Fig. 1b), b the unwanted variation had been suppressed by means of 
OOS-DA based batch/shift removal and c the unwanted batch/shift 
induced variation had been suppressed by removal of the first three 
principal components of the dataset. From a one may conclude that 

direct application of OOS-DA without any attempt to perform batch 
removal is quite successful at ignoring the unwanted variation, yield-
ing a significantly higher separability score than achieved when using 
random permutations. The results in b show again a statistically sig-
nificant score value although it is lower than in a. Finally the results 
in c show that batch removal using unsupervised PCA, instead of 
using OOS-DA, yields a lower separation score which is still statisti-
cally significant
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4 � Discussion

Metabolomics has over the recent past shown its poten-
tial in various fields including in  vitro systems pharma-
cology (Aftab et  al. 2014). Utilizing an information rich 
measurement technique like MS, following a separation 
process like liquid chromatography, one can acquire low 
molecular weight agents from highly complex mixtures. 
LC–MS based metabolomics is a powerful and competi-
tive approach which unfortunately is coupled to multiple 
pitfalls, which can make it challenging to use. A carefully 
planned experimental design procedure is therefore essen-
tial in order to retrieve reliable biological information 
(Kohler et al. 2016). However, in many cases it will be nec-
essary to divide samples into smaller batches. Especially in 
larger studies, which are becoming much more common as 
large computational resources get more accessible through 
cloud providers.

Therefore, as a key step towards qualifying LC–MS 
based metabolomics as a robust and reliable methodol-
ogy, we have devised a computational pipeline to manage 
pitfalls and challenges typically attached to this emerging 
technology. The experimental results obtained suggest that 

our computational pipeline is able to successfully and dras-
tically suppress spurious data read-out inherent in the cur-
rent methodology and instrumentation. Especially with a 
more robust and faster experimental setting, relative to that 
described here, the pipeline holds strong promise to enable 
a sensitive and yet robust method for large-scale metabo-
lomics. However, worth having in mind is the inescapable 
trade-off between removing experimental variability in 
data and retaining the biological information of interest. In 
Fig. 2c, there are two Mebendazole replicates that are not 
merged with their fellow replicates. If merged by removing 
a larger dimensionality of the latent space than proposed by 
the parameter tuning, the replicates were united with a con-
sequential loss in ssep,correct (data not shown).

Multiple tools for data management of metabolomics 
data have already been developed and are freely available 
through sharing on source code browsers like Github and 
Bitbucket or through data analysis platforms like KNIME 
Analytics (Berthold et  al. 2007), OpenMS (Sturm et  al. 
2008) or workflow4metabolomics (Giacomoni et al. 2015). 
However, finding the most appropriate tool for the task can 
be rather challenging and many tools often lack detailed 
documentation. In this work we introduce a new method 

Normalized data OOS-DA for unwanted PCA for unwanted 

Ssep,correct p-value Ssep,correct p-value Ssep,correct p-value
C1 (Estrogens) 2.29 0.0305 2.26 0.039 2.16 0.0408

2.17 0.029 2.44 0.006 2.15 0.020
C3 (Tyrosine k.) 2.07 0.4977 2.06 0.52 2.14 0.3781
C4 (HDAC) 1.28 0.9410 1.60 0.54 1.34 0.8468

1.94 0.2810 2.11 0.17 1.75 0.4473
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Fig. 5   Permutation results for one drug class (estrogen pathway per-
turbator, anti-inflammatory, tyrosin kinase inhibitors, HDAC inhibi-
tors, and pesticides) versus the rest. OOS-DA was used as in Fig. 4, to 
discriminate a single class from all other samples. a After removal of 
unwanted variation using OOS-DA the estrogen pathway perturbators 

resulted in ssep,correct = 2.26 (p-value = 0.039) and b the anti-inflamma-
tory drugs in ssep,correct = 2.44 (p-value = 0.006). c Table summarizing 
a comparison of separation scores for all classes before and after try-
ing to remove unwanted variation using OOS-DA and PCA, respec-
tively
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suitable for the metabolomics field, here called OOS-DA, 
which can be used to target and remove specific multi-
dimensional structural variability of interest like batch 
effects, as well as directly compressing data into a small set 
of class information rich features (Darmanis et al. 2011). It 
comes with a tailor made permutation test, presented here 
for the first time, which makes it possible to determine if 
the actual separations obtained in the low-dimensional 
space produced by OOS-DA is statistically significant (or 
easily obtained also for randomly assigned class labels). 
To help potential future users, we present OOS-DA and 
its associated permutation test together in the context of a 
typical user case.

More specifically, we believe that this work provides the 
following main contributions:

•	 Provides a proof-of-principle example demonstrating 
that an LC–MS based metabolomics approach is able 
to yield metabolite profiles that contain discriminatory 
information with respect to chemically induced and 
drug class specific effects at the metabolite level.

•	 Identifies, describes and provides successful compu-
tational methods to compensate for several key pitfalls 
and challenges in LC–MS based metabolomics.

•	 Introduces and successfully employs a theoretically 
motivated computational pipeline for suppression of 
experimental variability and biases, within the afore-
mentioned area.

•	 Introduces for the first time in the context of metabo-
lomics a latent variable modeling method, denoted 
OOS-DA, that can be used in two different ways: (1) To 
subtract away undesired technical variability that can be 
specified by the user. (2) Make a latent variable model 
that will keep as much as possible of the real class 
information of interest in the resulting low dimensional 
latent variable space.

•	 Provides additions to the original OOS-DA method 
suitable for the current and similar applications in the 
form of: (1) An algorithm for automated selection of the 
dimensionality of the latent variable space removed. (2) 
A permutation test used to evaluate if the class separa-
tions obtained in the latent variable space are statisti-
cally significant or not.

Regarding the experimental findings, the anti-inflam-
matory and the estrogen pathway perturbators agents 
were found to generate the most prominent changes 
in the collected metabolomic profiles (ssep = 2.44 and 
ssep = 2.26) while the set of pesticides did not show any 
significant changes. Moreover, the HDAC inhibitors and 
the receptor tyrosine kinase inhibitors resulted in even 

lower and less significant separation scores. This low sep-
aration score for the receptor tyrosine kinase inhibitors 
may perhaps be explained by the low number of members 
of this class. Out of 49 samples (27 agents and 22 con-
trols) only three belong to the class of receptor tyrosine 
kinase inhibitors. Therefore the probability of randomly 
picking three members from any of the larger classes will 
be very high. Regarding the HDAC inhibitors, this class 
of drugs has antiproliferative effects and induces cell 
cycle arrest in general. The fact that our results only show 
small differences to other classes and controls, is part in 
line with previous findings demonstrating that the HDAC 
inhibitor Trichostatin A stabilizes part of the metabolome 
in  vitro and that treatment effects are more pronounced 
with longer exposure times (96 h), compared to the 24 h 
exposure time used here (Ellis et al. 2010).

In conclusion, LC–MS based in vitro studies of chemi-
cally induced changes of the metabolome has a strong 
potential provided one is employing robust experimental 
protocol settings in combination with the kind of compu-
tational pipeline introduced here, which can specifically 
suppress experimental variability and biases.
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