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chromatography—high resolution mass spectrometry (LC-
HRMS) and an untargeted workflow was used to screen 
for metabolites that discriminate population characteristics 
such as sex, ethnicity, and birth weight.
Results Thousands of small molecules were measured 
in extracts of archived DBS. Normalizing for potassium 
levels removed variability related to varying hematocrit 
across DBS punches. Of the roughly 1000 prevalent small 
molecules that were tested, multivariate linear regres-
sion detected significant associations with ethnicity (three 
metabolites) and birth weight (15 metabolites) after adjust-
ing for multiple testing.
Conclusions This untargeted workflow can be used for 
analysis of small molecules in archived DBS to discover 
novel biomarkers, to provide insights into the initiation and 
progression of diseases, and to provide guidance for disease 
prevention.

Keywords Dried blood spots · Small molecules · 
LC-HRMS · Hematocrit · Metabolome

1 Introduction

Newborn dried blood spots (DBS) offer a unique resource 
for assessing exposures and early biological changes, years 
before diagnosis of clinical outcomes. DBS are collected on 
‘Guthrie cards’ within 24–48 h of birth from >98% of the 
newborns in the United States to screen for inborn errors 
in metabolism (Gonzales 2011). Since 1982, the State of 
California has archived residual DBS at −20 °C for use in 
epidemiologic studies of pediatric outcomes (CDPH 2016). 
The potential utility of archived DBS for assessing in utero 
exposures and disease initiation is supported by targeted 
measurements of selected environmental contaminants and 

Abstract 
Introduction For pediatric diseases like childhood leuke-
mia, a short latency period points to in-utero exposures as 
potentially important risk factors. Untargeted metabolomics 
of small molecules in archived newborn dried blood spots 
(DBS) offers an avenue for discovering early-life exposures 
that contribute to disease risks.
Objectives The purpose of this study was to develop a 
quantitative method for untargeted analysis of archived 
newborn DBS for use in an epidemiological study (Califor-
nia Childhood Leukemia Study, CCLS).
Methods Using experimental DBS from the blood of 
an adult volunteer, we optimized extraction of small mol-
ecules and integrated measurement of potassium as a 
proxy for blood hematocrit. We then applied this extraction 
method to 4.7-mm punches from 106 control DBS samples 
from the CCLS. Sample extracts were analyzed with liquid 
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DNA modifications in such specimens (Funk et  al. 2013; 
Ma et al. 2014; Wiemels et al. 1999). Furthermore, unlike 
most other prospective cohorts that utilize serum or plasma, 
DBS contain whole blood that provides access to potential 
biomarkers from both serum and red and white blood cells.

Untargeted metabolomics motivates a hypothesis-free 
approach to biomarker discovery. High-throughput analyti-
cal platforms such as liquid chromatography-high resolu-
tion mass spectrometry (LC-HRMS) can measure thou-
sands of small molecules in a few microliters of blood. By 
comparing small-molecule profiles between diseased and 
non-diseased populations, metabolomics has been applied 
for discovering novel biomarkers that serve as indicators 
of disease processes. For example, Hazen and co-workers 
employed this approach to implicate joint microbial/human 
metabolism of the nutrient, choline, as a cause of heart 
disease (Koeth et  al. 2013; Tang et  al. 2013; Wang et  al. 
2011). Previous untargeted metabolomic analyses of new-
born DBS have been conducted rarely, with a few examples 
being the studies of Denes et al. (2012), who screened for 
inborn errors of metabolism, and of Koulman et al. (2014) 
and Prentice et  al. (2015) who investigated biomarkers of 
breastfeeding.

Methodologic validation is required before untargeted 
metabolomics can be applied to newborn DBS in epide-
miologic studies. Measurements of small molecules in 
archived DBS can be affected by extraction methods, chro-
matography, MS ionization (Bruce et al. 2009; Contrepois 
et al. 2015; Michopoulos et al. 2010; Raju et al. 2016) as 
well as DBS aging and storage (Liu et  al. 2014; Pupillo 
et al. 2016; Vu et al. 2011). In addition, a major concern in 
untargeted analysis of DBS is the effect of blood haemato-
crit, which can have a strong impact on quantitation when 
less than a whole spot is available for analysis. Hematocrit 
affects the spreading of a blood drop on filter paper with 
higher hematocrit values leading to smaller, more concen-
trated spots; and hematocrit can affect recoveries of small 
molecules and introduce matrix effects (Abu-Rabie et  al. 
2015; Vu et al. 2011; Youhnovski et al. 2011).

Here, we describe an untargeted metabolomics work-
flow for the analysis of archived DBS from the California 
Childhood Leukemia Study (CCLS), a population-based 
study containing approximately 1000 childhood leuke-
mia cases and 1200 matched controls (Metayer et  al. 
2013). We measured small molecules with LC-HRMS in 
archived DBS from 106 control children in the CCLS. As 
validation of our methodology, we performed an untar-
geted analysis to pinpoint metabolites that were statisti-
cally associated with population characteristics. Our 
untargeted workflow includes: (1) data filtering and nor-
malization for potassium levels as surrogates for hemato-
crit (Capiau et al. 2013; De Kesel et al. 2014), (2) mul-
tivariate statistical analysis to identify discriminating 

features, (3) manual examination of significant features 
for peak and integration quality, and (4) annotation of 
significant features with MSMS.

2  Materials and methods

2.1  Reagents and chemicals

Water (LC-MS Ultra Chromasolv), methanol (LC-MS 
Ultra Chromasolv), formic acid (eluent additive for 
LC-MS), acetic acid (eluent additive for LC-MS), potas-
sium chloride (>99%), and cholic-24-13C acid (>99%) 
were purchased from Sigma Aldrich (St. Louis, MO). 
Acetonitrile (Optima UHPLC-MS) and sodium chloride 
(>99%) were purchased from Fisher Scientific (Pitts-
burgh, PA). Ethanol (Koptec, 200 proof) was purchased 
from DLI (King of Prussia, PA). Cis-4,7,10,13,16,19-
docosahexaenoic acid (>98%) was purchased from MP 
Biomedicals Inc. (Burlingame, CA).

2.2  Samples of DBS

2.2.1  Experimental DBS for method development

For method development, venous blood was collected 
with informed consent from an adult female volunteer in 
Na-heparin tubes. It was diluted or concentrated by add-
ing or removing plasma from the same subject to produce 
blood with low, medium (unadjusted), or high hematocrit, 
as described elsewhere (Capiau et al. 2013). Experimental 
DBS for validation of potassium measurements were pre-
pared by aliquoting 50 μL of whole blood on Whatman 903 
Guthrie cards (Sigma Aldrich, St. Louis, MO), which were 
dried under vacuum for 2 weeks and stored at −20 °C prior 
to use (~4 months).

2.2.2  Archived newborn DBS

Archived newborn DBS for CCLS participants were 
obtained from the California birth registry (Sacramento, 
CA). We received single 4.7-mm punches (equivalent to 
~8 µL whole blood) collected between 1985 and 2006 from 
106 healthy control children. An additional set of 4.7-mm 
punches was obtained from adjacent portions of filter paper 
from the same Guthrie cards to use as blanks. In addition, 
information on child’s socio-demographic characteristics 
was obtained from the interview with the biological parents 
(mainly the mother). Summary statistics can be found in 
the supplemental material (Table S1).
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2.3  Validation of potassium measurements with an ion 
selective electrode

Capiau et  al. (2013) extensively evaluated measurements 
of potassium  (K+) with a clinical chemistry analyzer as a 
surrogate for hematocrit in dried blood spots. In contrast 
to the clinical chemistry analyzer, which requires separate 
punches for  K+ analysis and metabolite analysis,  K+ meas-
urements and LC-MS analysis can be performed with a 
single punch when a micro-ion selective electrode is used. 
This is particularly important for epidemiological stud-
ies, such as ours, where only a single punch is available. 
Thus, we used experimental DBS (“Experimental DBS for 
method development” section) to evaluate the reproduc-
ibility of the potassium measurements with a micro  K+ ion 
selective electrode (MI-442 and MI-401 1-mm tip, Micro-
electrodes Inc., Accumet AB250 meter, Fisher Scientific). 
A set of duplicate 4-mm punches was obtained from exper-
imental DBS that had been prepared with low, medium, 
and high hematocrit (six punches in total). Each punch was 
placed in a microcentrifuge tube and extracted with 100 µL 
of water at room temperature for 15  min with constant 
agitation at 1400  rpm (ThermoMix, Eppendorf) (Capiau 
et  al. 2013). Then, duplicate measurements of potassium 
were obtained for each extract with a  K+ ion selective 
electrode following the manufacturer’s instructions (12 
total  K+ measurements, considered 1 batch). The measure-
ments were repeated an additional three times to yield four 
batches, with two measurements for each of the six punches 
within each batch (total of 48  K+ measurements). The 
batch variable represents the variation in measurements 
associated with time. Voltage readings were converted to 
concentrations with a five point semi-log calibration curve 
for standard solutions ranging from 0.001 to 0.01  N KCl 
that contained 0.1 N NaCl as a potentially interfering spe-
cies. For quality assurance, a single measurement of 0.05 N 
KCl was obtained after each batch of 12 measurements to 
monitor  K+ measurement drift. The measured  K+ concen-
trations (mean ± SD) for the three hematocrit levels were: 
2.15 ± 0.20  mM (low), 3.43 ± 0.14mM (medium), and 
4.95 ± 0.15 mM (high). While newborn hematocrit is typi-
cally higher than adult hematocrit, the range of  K+ meas-
urements used here is sufficient to evaluate the reproduc-
ibility of the electrode. The following mixed-effects model 
was applied to evaluate the precision of  K+ measurements, 
after adjustment for hematocrit levels:

where: Yijk represents the potassium concentration for the 
kth measurement (k = 1,2), from the ith batch (i = 1,2,3,4), 
in the jth punch (j = 1,2). In Eq.  1, the systematic varia-
tion in Yijk is defined by the sum of the intercept (β0) and 
hematocrit level (β1XH), and the random variation by the 

(1)Yijk = �0 + �1XH + aj + bi(j) + ek(ij),

sum of random effects representing punch (aj), batch (bi(j)), 
and measurement (ek(ij)). We used the marginal R2 for lin-
ear mixed models to describe the proportion of variance 
explained by the fixed effects in our model 1 (Nakagawa 
and Schielzeth 2013). The marginal R2 is computed as the 
fraction of the variance of the fixed effects to the total vari-
ance (sum of the variance of fixed effects, random effects 
and residuals). After fitting Eq.  1, the model had a high 
marginal R2 of 0.9686, indicating that the three random 
effects in the model introduced negligible variance to the 
observed potassium measurements and that this method-
ology is appropriate for measuring potassium in archived 
DBS.

2.4  Analysis of newborn DBS

Optimal extraction of small molecules from experimental 
DBS was observed with 4/1 acetonitrile/water (see sup-
plemental material, “Materials and methods” section). 
For analysis of newborn DBS, potassium measurements 
were integrated into the extraction protocol. Archived 
DBS punches of 4.7-mm were first extracted with 100 µL 
of water at room temperature for 15 min with agitation at 
1400 rpm. For each batch of 24 samples, a potassium cali-
bration curve was obtained followed by duplicate meas-
urements of  K+ as described previously (“Validation of 
potassium measurements with an ion selective electrode” 
section). A sample calibration curve bracketing the range 
of observed  K+ measurements (3.33–9.94  mM) can be 
found in the supplemental material (Fig. S1). The robust 
local regression method loess (Edmands et  al. 2015) was 
used to adjust for measurement drift within batches, most 
likely due to sample deposits on the electrode over repeated 
measurements. After measuring potassium, 400 μL of ace-
tonitrile was added to the aqueous solution (resulting in 4/1 
acetonitrile/water) and samples were agitated at 37 °C for 
1  h (Incubator Genie, Scientific Industries) and stored at 
−20 °C for approximately 2 weeks until analysis. Immedi-
ately prior to LC-HRMS analysis, the precipitated proteins 
were removed by filtration (Captiva 0.2 µM, Agilent Tech-
nologies) and an internal standard was added (13C-cholic 
acid, final concentration = 0.06 μg/mL). Extracts were ana-
lyzed with an Agilent 1290 UHPLC system connected to a 
6550 QTOF HRMS (Santa Clara, US) in ESI (−) and (+) 
mode directly from the Captiva well.

Chromatography was carried out at 60 °C with a 0.550 
mL/min flow rate on a Zorbax SB-Aq analytical column 
(1.8 μM, 2.1 × 50 mM) with a Zorbaq-SB-C8 guard column 
(3.5 μM, 2.1 × 30 mM) with the following solvents: Buffer 
A: 0.2% acetic acid in water, and Buffer B: 0.2% acetic 
acid in methanol. A 19-min gradient was used (2–98% B 
in 13 min, hold at 98% B for 6 min), followed by a 3-min 
column re-equilibration phase. Samples were kept at 4 °C 
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in the autosampler during analysis. The total sample injec-
tion volume was 10  μL consisting of alternating volumes 
of water and sample for a total volume of 20 μL injected 
onto the column. Full mass spectra were acquired at 1.67 
spectra/s in the range 50–1000  m/z (Supplemental Mate-
rial, “Results and discussion” section). To monitor system 
stability, a pooled QC sample—prepared by combining ali-
quots from all DBS extracts—was injected after each group 
of 10 samples. Due to a LC sampler thermostat malfunc-
tion during the ESI (+) mode data collection, only the ESI 
(−) data was used for further analysis.

2.5  Data processing

Raw data were converted to mzXML format for peak pick-
ing using proteoWizard software (Spielberg Family Center 
for Applied Proteomics, Los Angeles, CA). Peak detec-
tion and retention time alignment were performed with the 
XCMS package (Patti et al. 2012; Smith et al. 2006) within 
the R statistical programming environment (version 3.2.2, 
R Core Team 2015). Parameters for peak picking included 
centwave feature detection, orbiwarp retention time cor-
rection, minimum fraction of samples in one group to be a 
valid group = 0.25, isotopic ppm error = 10, width of over-
lapping m/z slices (mzwid) = 0.015, retention time window 
(bw) = 2 s, minimum peak width = 2 s, and maximum peak 
width = 20  s. Peaks were grouped and filled (‘group’ and 
‘fill’ function in XCMS), and the resulting peak tables of 
retention times, m/z values, and peak areas were exported 
for further processing. Subsequent analyses were also per-
formed with the R platform.

2.6  Statistical analyses

Exported features from LC-HRMS analysis of newborn 
DBS were log-transformed and normalized prior to statisti-
cal analysis. First, the following multivariate linear regres-
sion models (Eq.  2) were used to adjust the intensity of 
each tested feature for the order of analysis, which includes 
autosampler plate number and run order, and for the potas-
sium concentration as a surrogate for hematocrit (note 
that the continuous run order variable is nested within the 
dichotomous plate variables):

where Yi is a vector of logged feature intensities for the ith 
feature (length = 106), P1 and P2 are binary variables indi-
cating plate number [Pj = 1 if sample is in plate j and 0 oth-
erwise (j = 1,2)], R is a numeric vector of run order, and K 
is a numeric vector of  K+ concentrations. Then, residuals 
from Eq. 2 were full-quantile normalized, as implemented 
in the limma R package, to make the distributions of the 

(2)
Yi = �0 + �1P1 + �2P2 + �3(P1 × R) + �4(P2 × R) + �5K + �i,

features comparable across all subjects (Bolstad et al. 2003; 
Ritchie et al. 2015).

The following multivariate linear regression model 
was fitted to the normalized residuals to find associations 
between each feature’s intensity and the subjects’ birth 
weight, sex, ethnicity, and DBS-age in years:

where Yi is a vector of logged intensities for the ith fea-
ture, Xsex (0 = male, 1 = female) and Xethnicity (0 = Hispanic, 
1 = non-Hispanic) are binary vectors, and Xbirth weight and 
XDBS-age (2015-child birth year) are numeric vectors.

Three subjects were removed from the statistical analy-
sis due to missing covariate data, resulting in a total of 103 
subjects. Since ethnicity and sex are dichotomous vari-
ables, birth weight and DBS-age variables were standard-
ized by subtracting the mean and dividing by the standard 
deviation. The DBS-age covariate was included to adjust 
for any changes in feature intensity due to storage condi-
tions (Koulman et al. 2014; Pupillo et al. 2016). Estimated 
p values obtained from the regression model were used to 
evaluate whether each coefficient was significantly associ-
ated with the feature abundance. These p values should be 
interpreted with care since they depend on several paramet-
ric assumptions, which were not evaluated. Significance 
levels were adjusted for multiple testing using the Benja-
mini-Hochberg (BH) procedure to control the false discov-
ery rate (FDR) at α = 0.05 (Benjamini and Hochberg 1995).

Permutation tests were then used as further, non-par-
ametric tests of significance for the same associations 
(Anderson and Braak 2003). For each of the features, the 
same multivariate regression as in Eq. 3 was used to obtain 
coefficients of the covariates for the original data set. Then, 
for each feature, values for a given covariate of interest 
(e.g. ethnicity or birth weight) were permuted among the 
103 subjects keeping all else constant, and fit to the model 
(Eq. 3). The coefficient estimate for the tested covariate was 
recorded for 5000 permutation iterations. The permutation 
p value for the covariate’s coefficient was calculated as the 
proportion of the 5000 coefficients that were greater than 
the original coefficient in absolute value. This permutation 
test was performed for both ethnicity and birth weight, and 
across all features. Significance was determined after cor-
rection for FDR using the BH method.

3  Results and discussion

3.1  Detection of metabolites

LC-HRMS analysis of the extracts from newborn DBS 
detected 66,096 features in ESI (−) mode. Filtering for 

(3)
Yi = �0 + �1Xsex + �2Xbirth weight

+ �3Xethnicity + �4XDBS−age + �i,
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features that were present in at least 75% of all DBS, with 
a mean fold change >3 compared to filter-paper extracts, 
and with a CV <25% in the pooled-QC injections, reduced 
the number of features to 3157. Additional pre-processing 
was performed with MetMSLine software (Edmands et al. 
2015) to impute any remaining zero values with half the 
minimum non-zero feature abundance, to remove outliers 
by PCA, based on a tolerance of 95% beyond the Hotell-
ings T2 ellipse, and to eliminate redundant signals due to 
in-source fragmentation and product formation (Broeckling 
et al. 2014). This reduced the total number of testable fea-
tures to 1107.

3.2  Normalization for run order and potassium

Metabolomic data require normalization to remove 
unwanted systematic biases so that only biologically rele-
vant differences are present. It is expected that higher hem-
atocrit levels would lead to a positive bias in archived DBS 
measurements. Thus, there should be a positive relationship 
between total usable signal (TUS), i.e. the sum of all fea-
ture peak integrals per subject, and hematocrit. Here, we 
measured  K+ concentrations of DBS extracts as proxies for 
hematocrit (Capiau et al. 2013; De Kesel et al. 2014). As 
can be seen in Fig. 1a, there is positive correlation (Pearson 
correlation coefficient 0.45) between the potassium level 
in a DBS extract, represented by the  K+ concentration, and 
TUS. Adjusting each feature by only the analysis order had 
a modest effect on reducing this correlation (Fig. 1b, Pear-
son correlation coefficient 0.38). However, adjusting for 
both analytical order and  K+ concentration (Eq.  2) elimi-
nated the correlation between TUS and  K+ (Fig. 1c, Pear-
son correlation coefficient 0.02).

As TUS was moderately correlated with  K+ and requires 
no additional measurements, it is an attractive alternative 
to using potassium. However, TUS normalization is less 
precise than  K+ normalization and sensitive to outliers. 
Furthermore, when  K+ is replaced by logTUS (Eq. 2), not 
all unwanted  K+ variation is removed (Fig. S2, Pearson’s 
correlation coefficient 0.112). Therefore, we caution its use 
without a full evaluation of its applicability.

Potassium measurements from stored DBS and in stored 
extracts were found to remain stable for several months 
even at room temperature (Capiau et al. 2013; den Burger 
et  al. 2015). In addition, no correlation was observed 
between  K+ measurements and ‘age of spot’ (Pearson cor-
relation coefficient −0.085), indicating that potassium 
measurements were not associated with storage conditions.

3.3  Fetal metabolome coverage

We first performed qualitative analyses to characterize the 
fetal blood metabolome. Small molecules were annotated 

using the compMS2Miner package (Edmands 2016) by 
comparing accurate mass and MSMS fragmentation pat-
terns with the Human Metabolome Database (HMDB) 
(Wishart et al. 2013) and METLIN (Smith et al. 2005). The 
correlation network in Fig. 2a summarizes the annotations, 
where nodes are the metabolites and edges are the corre-
lations between their peak integrals (Shannon et al. 2003). 
Metabolites that cluster together indicate possible shared 
metabolic pathways. Using a Pearson correlation cut-off 
of >0.7, 3960 edges were drawn. Of the 1107 metabolites, 
65% of the features with MSMS spectral data (n = 176) 
were annotated by at least compound class, which included 
phospholipids, hormones and steroids, and saturated and 
unsaturated fatty acids. Steroid concentrations in newborns 
can be as low as 10 ng/mL (Kim et al. 2015), while poly-
unsaturated fatty acid concentrations (PUFA) in cord blood 
can be as high as 1 mg/mL (Niinivirta et al. 2011), high-
lighting the dynamic range of the method.
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Fig. 1  Plots of potassium concentration versus total usable signal for 
each subject. a no adjustment; b adjustment for analytical run order; 
and c adjustment for run order and potassium concentration
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3.4  Associations with ethnicity and birth weight

To assess our ability to discriminate biologically relevant 
small molecules, we screened for differences associated 
with the population characteristics: sex, ethnicity, and birth 
weight using multivariate regression models (Eq.  3) for 
each tested metabolite (n = 1107).

Initially, 19 discriminating small molecules for ethnic-
ity and birth weight were determined by their p-values after 
BH correction. Peak morphology and integration quality 
were assessed manually for each discriminating metabolite, 
and resulted in exclusion of 1 feature. The curated list of 18 
discriminating metabolites is summarized in Table  1. All 
small molecules with statistically significant birth weight 
and ethnicity coefficients from the multivariate regression 
models also had significant coefficients for these variables 
under the permutation tests, providing further evidence that 
there is a significant association between birth weight or 
ethnicity and feature intensity for these features.

The “DBS age” covariate was not significantly asso-
ciated with any of the discriminating molecules (data 
not shown), suggesting that these metabolites were not 
affected by the duration of DBS storage at −20 °C. This is 
particularly important because there was an overall affect 
of spot age on DBS extraction efficiency (e.g. older spots 
extracted less efficiently). Prior to data normalization 
there was a weakly negative correlation between TUS and 
DBS age (Pearson’s correlation coefficient −0.17), which 
was enhanced after adjusting for run order and potassium 
(Pearson’s correlation coefficient = −0.28). This indicates 

that the age of spot affected extraction efficiency, and fur-
ther validates the use of DBS age as a covariate in the 
statistical model (Eq. 3).

Fig. 2  a Correlation network of 1107 fetal blood metabolites made 
in Cytoscape with uncorrelated metabolites removed for clarity. Leg-
end phosphatidylserine (PS), phosphatidylcholine (PC), sphingomy-
elin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI), 
mono-unsaturated fatty acid (MUFA), poly-unsaturated fatty acid 

(PUFA), saturated fatty acid (SFA). b Expanded view of PUFA clus-
ter. Metabolite #13338 clustered with PUFAs (#13338 highlighted in 
yellow). c Expanded view of hormone cluster. Features significantly 
associated with birth weight clustered with hormone/steroid sulfates 
(significant features highlighted in yellow)

Table 1  Selected coefficients from linear model (Eq. 3) for discrimi-
nating features using logged levels of the metabolites

Metabolite no. Coefficient Adj. p value Permutation 
adj. p value

Ethnicity
 13,338 0.305 0.0277 <0.0001
 38,341 −0.339 0.0432 <0.0001
 14,374 0.235 0.0475 <0.0001

Birth weight
 22,415 −0.176 0.0383 0.0260
 18,138 −0.159 0.0337 0.0158
 32,014 −0.205 0.0116 <0.0001
 19,412 −0.226 0.0116 <0.0001
 19,411 −0.230 0.0178 <0.0001
 22,424 −0.156 0.0383 0.0158
 17,929 −0.182 0.0178 0.0158
 16,538 −0.214 0.0116 <0.0001
 27,970 −0.130 0.0425 0.0260
 17,919 −0.317 0.0132 <0.0001
 19,409 −0.280 0.0116 <0.0001
 29,345 −0.171 0.0337 0.0158
 17,918 −0.322 0.0178 <0.0001
 19,413 −0.255 0.0116 <0.0001
 16,685 −0.226 0.0116 <0.0001
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3.5  Annotation of discriminating features

For further validation of the methodology, several of 
the significant features from “Associations with ethnic-
ity and birth weight” section were putatively annotated to 
ensure biological plausibility. As shown in Table  2, the 
CompMS2Miner package facilitated the annotation of 16 
discriminating features based on accurate mass and tan-
dem mass spectra. For example, metabolite #13338 clus-
tered with PUFA in the correlation network (Fig. 2b) and 
had an accurate mass of m/z 327.2329 within −0.138 ppm 
of docosahexaenoic acid (DHA, [M-H]−). When com-
pared to a commercial DHA standard, the observed peak 
eluted within 2  s of the standard peak and showed excel-
lent MSMS spectral match between major fragments of 
m/z 283.2421, 229.1958, 185.0054 and 59.0156 (Fig.  3). 
As major nutritional sources of DHA are fish and fish oil 
supplements, it is possible that the higher levels of DHA 
observed in the non-Hispanic population is due to dietary 
differences associated with income status. In fact, 62% of 

Fig. 3  Mirror plot of observed MSMS for feature #13338 (top) and 
MSMS of a commercially purchased DHA standard analyzed under 
the same experimental parameters (bottom)

Fig. 4  Correlation matrices and dendrogram of discriminating features for ethnicity (a) and birth weight (b) based on Pearson correlation and 
ordered using agglomerative hierarchical clustering calculated from complete linkage using Euclidean distance (‘hclust’ function in R)
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the Hispanic subjects were lower income (defined as annual 
household income <$45,000/yr), as opposed to only 10% 
of the non-Hispanic group. DHA consumption has been 
found to be lower in low-income women during pregnancy 
and lactation (Nochera et al. 2011).

Although the identity of metabolite #14374 is unknown, 
it was moderately correlated with DHA (r = 0.43, Fig.  4), 
eluted at a similar retention time (within 45 s), and was also 
present at higher abundance in the non-Hispanic popula-
tion. Feature #38341 was not correlated with the other dis-
tinguishing metabolites for ethnicity, was higher in the His-
panic population, and had multiple fragments characteristic 
of the inositol head group of a phosphatidylinositol at m/z 
152.9957 and 241.0113 (Hsu and Turk 2000).

Most of the features that discriminated for birth weight 
contained an MSMS base fragment ion at m/z 96.9606, 
characteristic of a sulfate group. Even in the absence of 
distinguishable MSMS fragments to allow an exact anno-
tation, these features had correlation coefficients ranging 
from 0.32 to 0.98, and clustered in the correlation net-
work with endogenous steroids and hormones (Figs.  2c, 
4b). Two sets of isomeric metabolites were observed with 
accurate masses of m/z 399.148 (#19409, #19411, #19412, 
#19413) and 429.194 (#22415, #22424), which were all 
highly correlated with each other and with metabolites 
#16685, #16535, and #18138 (correlation coefficient rang-
ing from 0.70 to 0.98). Based on comparison with exact 
mass, metabolites #18138, #22424, and #22415 were puta-
tively identified as conjugated androgen steroids. A third 
set of isomeric features observed at m/z 383.116 (#17918, 
#17919) were highly correlated with each other (r = 0.94), 
but only moderately correlated with the other distinguish-
ing features for birth weight. Metabolite #17929 was puta-
tively identified as a conjugated androgen.

Several of the discriminating metabolites had accurate 
masses similar to conjugated forms of steroids previously 
measured in human blood or amniotic fluid. For exam-
ple, 16a-hydroxyDHEAS  (C19H28O6S, #17929) has been 
measured in arterial cord plasma (Mitchell and Shackle-
ton 1969), 5-androstrenetriol (sulfated form,  C19H30O6S, 
#18138) has been measured in amniotic fluid immedi-
ately prior to delivery (Schindler and Siiteri 1968), and 
androsterone sulfate  (C19H30O5S, #22415, #22424) and 
16a-hydroxyDHEAS  (C19H28O6S, #17929) have been 
measured in infant plasma (Sánchez-Guijo et al. 2015).

All of the discriminating features were negatively associ-
ated with birth weight. Although several steroids including 
progesterone, 17-hydroxyprogesterone (17-OHP), cortisol, 
and growth hormones have been found to be inversely asso-
ciated with infant birth weight, newborn hormone levels 
are influenced by many factors such as delivery type, ges-
tational age, maternal height, maternal hormone levels, and 

the day of sample collection (Carlsen et  al. 2006; Lagiou 
et al. 2014; Rajesh et al. 2000; Schwarz et al. 2009).

4  Conclusions

We developed an LC-HRMS method for interrogating 
the fetal metabolome from archived newborn DBS (4.7-
mm punches). Control punches of DBS from the CCLS, 
equivalent to ~8 μL of whole blood, were used for valida-
tion. Over 1000 prevalent and robust features were meas-
ured in the blood extracts, representing all of the major 
subclasses of metabolites. By measuring potassium in 
each punch as a proxy for hematocrit, we were able to 
adjust for nuisance technical variation. Even with a small 
sample size of 103 newborn DBS, we were able to iden-
tify 18 biologically plausible features that could discrimi-
nate for newborn birth weight and ethnicity. We are cur-
rently applying this methodology to newborn DBS from 
the CCLS, to seek features that discriminate between 
childhood leukemia cases and controls.
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