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Abstract

Introduction ‘Multi-omics’ datasets obtained from an

organism of interest reared under different environmental

treatments are increasingly common. Identifying the links

among metabolites and transcripts can help to elucidate our

understanding of the impact of environment at different

levels within the organism. However, many methods for

characterizing physiological connections cannot address

unidentified metabolites.

Objectives Here, we use Eigenvector Metabolite Analysis

(EvMA) to examine links between metabolomic, tran-

scriptomic, and phenotypic variation data and to assess the

impact of environmental factors on these associations.

Unlike other methods, EvMA can be used to analyze

datasets that include unidentified metabolites and unanno-

tated transcripts.

Methods To demonstrate the utility of EvMA, we analyzed

metabolomic, transcriptomic, and phenotypic datasets

produced from 20 Drosophila melanogaster genotypes

reared on four dietary treatments. We used a hierarchical

distance-based method to cluster the metabolites. The links

between metabolite clusters, gene expression, and overt

phenotypes were characterized using the eigenmetabolite

(first principal component) of each cluster.

Results EvMA recovered chemically related groups of

metabolites within the clusters. Using the eigenmetabolite,

we identified genes and phenotypes that significantly cor-

related with each cluster. EvMA identifies new connections

between the phenotypes, metabolites, and gene transcripts.

Conclusion EvMA provides a simple method to identify

correlations between metabolites, gene expression, and

phenotypes, which can allow us to partition multivariate

datasets into meaningful biological modules and identify

under-studied metabolites and unannotated gene transcripts

that may be central to important biological processes. This

can be used to inform our understanding of the effect of

environmental mechanisms underlying physiological states

of interest.

Keywords Eigenvector metabolite analysis � Linkage

analyses � Environment � Enrichment analyses

1 Introduction

With growing use of high throughput techniques, the

availability of ‘omics’ datasets obtained from an organism

of interest under the same experimental conditions is

increasing (see Culibrk et al. (2016); Gehlenborg et al.
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(2010); Rebollar et al. (2016); Zhang et al. (2010) for

reviews of using ‘multi-omics’ datasets in different sys-

tems). In particular, studies utilizing a ‘multi-omics’

approach that combine metabolomic and transcriptomic

datasets can address a variety of questions that include:

species identification and taxonomy (Raupach et al. 2016),

personalized medicine and natural product development

(Katz and Baltz 2016; Gligorijević et al. 2016), and the

impact of different environments on phenotypes and/or

traits of interest (Reed et al. 2014; Williams et al. 2015; Jia

et al. 2016; Fei et al. 2016). Furthermore, identifying

linkages between these datasets using network (Gustafsson

et al. 2014; Valcàrcel et al. 2014) and correlation (Redestig

and Costa 2011) analyses and can help to elucidate a sys-

tems level understanding of the impact of environment on

an organism of interest or the mechanisms underlying

human diseases.

Many current methods for integrating data on metabo-

lites, transcripts, and phenotypes are network or pathway

based (Gehlenborg et al. 2010). Programs are available that

allow the user to analyze and visualize interactions

between metabolomic and transcriptomic data [e.g.,

3Omics (Kuo et al. 2013) and MassTRIX (Wägele et al.

2012)]. Other programs use this type of data to conduct

pathway analyses [e.g., MarVis-Pathway (Kaever et al.

2015)] or examine regulatory networks [e.g., FlexFlux

(Marmiesse et al. 2015)]. In some cases, a method is

focused on identifying a single pathway of interest [e.g.,

methionine salvage; Cho et al. (2014)]. These methods

focus on identifying the effect of the environment (or other

external variables) on the linkages between endopheno-

types (e.g., metabolite and transcript expression patterns)

(Lakshmanan et al. 2015; Osorio et al. 2012; Serra et al.

2015; Trikka et al. 2015), rather than identifying how these

endophenotypes relate to an organism’s visible external

phenotype. Furthermore, these methods require that

metabolites be identified or the transcripts be annotated

with a molecular function. However, untargeted metabo-

lomic analyses identify a large number of metabolites, but

not all of them will be identified (Dunn et al. 2012), and

transcriptomic analyses frequently recover gene products

with no available annotation (Alvarez et al. 2015; Pavey

et al. 2012). Thus, these pathway-based methods exclude

portions of the data that could prove informative to a study.

In the enclosed paper, we use a newer approach to—

omics integration, Eigenvector Metabolite Analysis

(EvMA), for examining the impact of environmental fac-

tors on linkages between metabolomic, transcriptomic, and

phenotypic variation data. EvMA can identify linkages in

datasets that include metabolites and transcripts that are not

fully annotated. Similar approaches have successfully

identified linkages across other—omics data and have

shown promise in a range of metabolomics datasets

(McHardy et al. 2013; Peng et al. 2014). The resulting

linkages can be used to inform functional predictions of

genes with previously unknown functions and categorize

unidentified metabolites into broad chemical and biological

categories. We demonstrate the utility of EvMA by reex-

amining the datasets from Reed et al. (2014). This data was

obtained from a population of wild-derived isofemale lines

of Drosophila melanogaster reared on four different diets.

The impact of environment on the linkages is assessed for

each diet set individually and a dataset combined across

diets. We also show that EvMA identifies patterns not

found by the other analysis methods used on this dataset

(Reed et al. 2014; Williams et al. 2015) and can be used to

improve functional categorization of unknown transcripts

and metabolites.

2 Eigenvector metabolite analysis

Eigenvector metabolite analysis (EvMA; Fig. 1) can be

used to examine metabolomic, transcriptomic, and phe-

notypic data, as well as assess the effect of environment

on both metabolite clustering patterns and linkages

between metabolites, gene expression, and phenotypes of

interest. Unlike gene-set pathway-based methods that

require annotated metabolites and transcripts, it is possi-

ble to quantify linkages between unidentified metabolites

and functionally uncharacterized transcripts using EvMA.

To identify the connections between these datasets, this

method incorporates: (1) distance-based hierarchical

clustering analysis (HCA) of metabolic features, (2)

principal component analysis (PCA) of metabolic clusters

to identify an eigenmetabolite for the cluster, (3) Pearson

correlation analysis between eigenmetabolite, gene tran-

scripts, and phenotypes, and (4) enrichment analyses of

significantly correlated genes. The distance-based hierar-

chical clustering analysis examines the effect of different

environments on variation in metabolite concentration

patterns. The threshold for defining clusters in the anal-

ysis should be chosen to maximize the fraction of the

variance explained by the first few principal components

of each cluster, while keeping the size of the clusters

manageable and interpretable, and thus are somewhat

subjective. However, as the field of clustering analysis of

biological data matures, ways to set the clustering

threshold in a biologically meaningful way entirely

algorithmically could be developed. After identifying the

clustering patterns of the metabolic features, PCA is used

to describe the major axis of variance in each cluster, the

eigenmetabolite. A common concern of using PCA is the

effect of noise in the dataset on the clustering patterns

(Halouska and Powers 2006). Through using PCA to

describe the variance of discrete modules (e.g., clusters)
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instead of the complete dataset, EvMA reduces the impact

of noise blurring the underlying biological signal. By

completing a Pearson correlation analysis using the

eigenvector of the first principal component of each

cluster (e.g., eigenmetabolite), gene transcripts and phe-

notypes that are significantly correlated with each

metabolite cluster can be identified. A gene-set enrich-

ment analysis is then used to identify overrepresented

biological annotations associated with the list of signifi-

cantly correlated genes for each cluster to aid in biolog-

ical interpretation of the quantitative summaries. The

resulting output from these analyses can help to quantify

the impact of the environment on metabolites, gene

transcripts, and phenotypes, and can place unknown

metabolites and transcripts in a biological context.

3 Materials and methods

To demonstrate the utility of EvMA, this method was

applied to the metabolomic, transcriptomic, and phenotypic

data of Reed et al. (2014) that was collected from D.

melanogaster reared on four environmental (dietary)

treatments. We applied EvMA to the data from the dietary

treatments, both individually and in combination, and

compared the linkages identified using EvMA to the find-

ings from each of these previous studies.

3.1 Experimental dataset

To represent a diverse natural population, 20 experimental

D. melanogaster lines were chosen that exhibited a diver-

sity of phenotypic reaction norms (e.g., pupal body weight

and larval triglyceride storage) to different dietary treat-

ments (Reed et al. 2010). The larvae of each line were

reared on four environmental (dietary) treatments that

varied in the sugar and fat composition. The examined

treatments included a normal diet (e.g., used to maintain

the flies in the lab; 4 % sucrose and\0.2 % fat), a low

calorie diet (0.75 % glucose and\0.2 % fat), a high glu-

cose diet (4 % glucose and\0.2 % fat), and a high fat diet

(0.75 % glucose and 3 % coconut oil (saturated fat)). See

Reed et al. (2010) and Reed et al. (2014) for a detailed

description and rationale of the diets used.

Samples consisted of three food vials per experimental

line per diet per time replicate. Each vial was seeded with

50 early first instar larvae. Randomized blocks of four

synchronized lines were run on all dietary treatments, and

three independent time replicates were completed for each

combination of line and diet. Late third instar larvae in the

food vials were pooled, fasted, and samples were then

drawn for metabolomics, gene expression, and the overt

larval phenotypes of larval triglyceride storage (lipid) and

trehalose level of larvae (sugar). Additional vials were

allowed to develop through the pupal stage to allow for the
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Fig. 1 Workflow of eigenvector metabolite analysis. A distance

based hierarchical clustering analysis is used to group the metabolic

features obtained under a specific treatment. The makeup of each

cluster is classified based on the chemical classes of the metabolites.

To describe the variance of a cluster, a PCA is completed, and the

eigenvector of the first principal component of the cluster (e.g., the

eigenmetabolite) is then used for the further analyses. To identify

significantly correlated gene transcripts and overt phenotypes, a

Pearson correlation analysis is completed using the eigenmetabolite.

For significantly correlated gene transcripts, overexpressed biological

annotations are identified using an enrichment analysis
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measurement the overt pupal phenotypes of body weight

(weight), percentage of larvae that survive to pupation

(larval survival), percentage of pupae that successfully

mature (pupal survival), and time from first instar larvae to

mature pupae (development time). Reed et al. (2010); Reed

et al. (2014) provide a complete description of the methods

used to measure the phenotypes.

A Nimblegen 12-plex Drosophila expression array was

used to obtain whole genome expression data following the

manufacturers’ protocols (Nuwaysir et al. 2002). Of 15,595

possible genes, 11,650 genes were expressed at

detectable levels. This data is available in the GEO data-

base (http://www.ncbi.nlm.nih.gov/geo/) under accession

number GSE50745.

Metabolomic profiling was conducted on samples of six

larvae pooled from three replicate vials of a genotype and

diet. Gas chromatography-mass spectrometry (GC–MS)

was used to analyze the pooled samples (see Reed et al.

(2014) for a complete description of the metabolomic

analyses). In the metabolic profiles, 189 reliably

detectable metabolic features were identified (Reed et al.

2014). This data was pre-processed, and the tolerant cut-off

value for metabolites missing proportion was set at 25 %,

leading to the removal of two features from further anal-

yses. The chemical category of the remaining 187 features

was determined by searching profiles against the National

Institute of Standards and Technology (NIST) database

(Linstrom and Mallard 2016; http://webbook.nist.gov;

retrieved July 18, 2012). Standards for candidate com-

pounds were run on the GC–MS, and the identity of 58 of

the metabolites was confirmed (Table 1). Of the remaining

metabolic features, 126 were annotated with confidence to

a chemical class (e.g., saturated fatty acid or amino acid).

The identities of the three remaining features are uncertain.

3.2 Eigenvector metabolite analysis

3.2.1 Hierarchical clustering analysis

A hierarchical clustering analysis based on distance

methods was applied to each dietary treatment and the

combined dataset. This analysis was completed using the

hclust.r package in the R programming language (RCor-

eTeam 2013). The Euclidean distance method
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

xi � yið Þ2

s
 !

was applied to all clustering analyses.

For each dietary treatment and the combined dataset, a

range of cluster numbers (e.g., 5–8 clusters) was examined

for collapsing data into eigenmetabolites. The number of

clusters (Figs. 2, 3a–d) used in the downstream analysis

was chosen to maximize the variance explained by the first

and second principal component of each cluster and to

disrupt large clusters. This selection process combines an

algorithmic analysis (e.g., comparison of the results of

hierarchical clustering analysis over a range of numbers)

with the judgment of the investigators as to what was the

optimal cluster number, which maximized variance but

resulted in few large clusters. This is often referred to as a

‘‘Elbow method’’ of cluster selection. The Elbow method

looks at the percentage of variation explained by the first

eigenvector of the metabolites in each cluster as a function

of the number of clusters. The results were visually

inspected, and the number of clusters was chosen such that

that adding another cluster doesn’t give much better

modeling of the data. More precisely, if one plots the

percentage of variance explained by the clusters against the

number of clusters, the first clusters will add much infor-

mation (explain a lot of variance), but at some point the

marginal gain will drop, giving an angle in the graph. The

number of clusters is chosen at this point, hence the ‘‘elbow

criterion’’ (Thorndike 1953). The elbow approach was

performed independently for each diet, thus resulting

meaningful groups of metabolites with manageable (and

interpretable) cluster sizes.

To aid in interpretation, the makeup of each cluster was

classified based on the chemical classes of the metabolic

features that were found in the cluster. Clusters that did not

contain a majority of a single chemical class (e.g., fatty

acid/fatty acid-like) were defined as ‘‘Mixing Pots’’, and

the chemical classes that primarily composed the clusters

were described. See Supplemental Data 1 for a complete

list of the metabolites, retention times, identifications, and

cluster placement for each dataset.

3.2.2 Principal component analysis

After the final cluster number was determined, a principal

component analysis (PCA) was conducted for the

metabolites within each cluster. Screeplots and R2 values

for each principal component were examined to determine

which principal component(s) should be used to charac-

terize the metabolite cluster. Based on these analyses, the

eigenmetabolite (e.g., eigenvector of the first principal

component of a cluster) was found to well represent the

variation of the clusters. See Supplemental Data 2 for the

R2 of the eigenmetabolite of each cluster. The empirical

results lent further confidence in the interpretability of the

eigenmetabolites, as clusters that were composed of

metabolites from similar chemical classes had eigenvec-

tor(s) that explained large amounts of variation, and clus-

ters with metabolites from across different chemical classes

had lower R2 values. A previous study has found similar

results (Halouska and Powers 2006). This is a benefit of the

multistage approach, because removing the noisy metabo-

lites from the more interpretable, similar clusters makes it
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Table 1 Primary metabolites

identified to Level 1 of the

Metabolite Standards Initiative

and number used to represent

the peak in Figs. 2 and 3

Metabolite class Metabolite ID#

Amino acid/amino acid-like Alanine 3

Arginine monohydrochloride 23

Asparagine 31

Aspartic acid 26

Glutamic acid 28

Glycineb 4, 7, 16

Isoleucinec 12, 13

Leucine 10

Methionine 27

Norleucine 17

Phenylalanine 29

Proline 15

Serineg 8, 20

Threonineh 14, 21

Tyrosinej 41, 42

Urea or alanine 2

Valine 6

Fatty acid/fatty acid-like Arachidate 52

Caprate 22

Elaidate or linolenate 50

Laurate 30

Margarate 48

Hexadecanoic acid, palmitate 46

Linoleate or olenic acid or petroselinate 49

Myristic acid, myristate 37

Stearate 51

Palmitoleate 45

Sugar/sugar-like Fructosea 34, 35, 38, 40

Glucose 36

Glucose or fructose 39

Glucose or myo-inositol 44

Glycerol 9

Malic acid 24

Maltosed 53, 55

Mannose or fructosee 32, 33

Meso-erythritol/erythritol 25

Myo-inositol 43

Propanoic acid 1

Succinic acid 18

Trehalosei 57, 58

Other Arachidonoyl dopamine 56

l-Dopa 47

Adenosine 54

Uracil 19

Phosphoric acidf 5, 11

a,b,c,d,e,f,g,h,i,j Multiple peaks identified as same compound
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easier to find the biological signal in a complex dataset

(improving the signal to noise ratio).

3.2.3 Pearson correlation analysis

To identify gene transcripts and overt phenotypes that

significantly correlated with each metabolite cluster, the

eigenmetabolite of each cluster recovered for the combined

dataset and each dietary treatment was used in a Pearson

correlation analysis. The Pearson correlation analyses were

completed using the cor() function in R, and tested using a

two-sided t test for correlations. Correlation analysis was

used to assess the associations between each of the 11,650

individual, detected transcripts and the metabolite clusters

represented by the eigenmetabolite. To control for issues

with multiple comparisons, P-values were adjusted using

both the Bonferroni correction method and the False Dis-

covery Rate as calculated according to Storey (2002)

(Supplemental Data 2). Transcripts found to significantly

correlate with a cluster (q-value\ 0.05) were retained for

further analysis. The correlation analysis was also com-

pleted individually for each of the six measured overt

phenotypes and the eigenmetabolite of a cluster, and con-

sidered significant at p-value\ 0.05.

3.2.4 Enrichment analysis

The significantly correlated gene transcripts from the

Nimblegen 12-plex microarray were identified with Fly-

Base (http://flybase.org/; dos Santos et al. 2015) transcript

IDs from the fourth release (Dmel Release 4.3, 2006

March). We used the FlyBase Upload/Convert IDs tools to

update the identification of all significantly correlated

transcripts to the sixth release (FB2015_2). In some cases,

it was not possible to update a transcript ID (e.g., transcript

was associated with a pseudogene). Genes that could not be

updated were excluded from further analysis (see Supple-

mental Data 2 for exact numbers). The FlyBase Batch

Downloader Tool was used to obtain the associated name

or gene ID for each updated transcript (see Supplemental

Data 3 for a complete list of the updated significantly

correlated genes). The lists of genes were then assessed for

overrepresented biological annotations using the functional

annotation tool in the DAVID Bioinformatics Resource

v6.7 [http://david.abcc.ncifcrf.gov/; (Huang et al.

2009a, 2009b)]. The functional annotation chart was

obtained for each list (Supplemental Data 4), and the five

most significantly enriched Gene Ontology (GO) Terms

and KEGG pathways (p-value\ 0.05) are presented in

Tables 2 and 3.

4 Results and discussion

Below we discuss the results from our EvMA of the

metabolite, transcript, and phenotype dataset of Reed et al.

(2014) and compare them with the results from previous

analyses of the dataset (Reed et al. 2014; Williams et al.

2015) to identify findings unique to EvMA.

4.1 Environmental effect on metabolite clustering

To assess the effect of environment on metabolite clus-

tering with EvMA, we used a distance based HCA of the

combined dataset and each of the four dietary treatments

(Figs. 2, 3a–d). The metabolomic dataset consisted of 187

features, which were present in more than 75 % of the

samples. These features were predominantly composed of

three general chemical classes: sugars/sugar-like com-

pounds (53 features), fatty acids/fatty acid-like compounds

(46 features), and amino acids/amino acid-like compounds

(42 features). The specific identity of 58 of the metabolic

features was empirically confirmed using known chemical

standards (Table 1), while the chemical class of the

remaining metabolites was determined through comparison

to the NIST database (Linstrom and Mallard 2016).

One of the most compelling overall findings of our

EvMA is that the hierarchical clustering recovered groups

of metabolites of similar chemical character based on

correlation alone. Often a cluster contained only a few

empirically confirmed compounds, but the other metabo-

lites in the cluster showed generally similar characteristics

that allowed us to categorize them to a general chemical

class such as amino acid-like compounds. Since the cor-

relation and clustering data recovered groups of metabo-

lites that fall within the same general chemical category,

we have confidence that the chemical category assignment

is appropriate. This assignment allows us to learn some-

thing of the biological significance of these unknown

metabolites even though we do not have definitive chem-

ical identities for them. The categorical information we can

assign to unknowns will improve our ability to identify

them definitively in the future. Given that a lack of

chemical identification is a major challenge in metabo-

lomics, EvMA provides one method to begin to sort and

prioritize the unknowns.

In a previous analysis of this dataset, Reed et al. (2014)

determined that environmental factors (e.g., diet) were

responsible for a significant portion of the variation (9 %)

in the metabolome. Williams et al. (2015) also found that

within these metabolite profiles the effects of different diets

were well detected. Similarly, EvMA demonstrated that

diet did affect the clustering patterns of some specific

metabolites. However, EvMA also highlighted that the
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correlation patterns of other metabolites were conserved

across the combined dataset and in individual dietary

treatments. For example, the three branched chain amino

acids (BCAA) were found in a single cluster composed

primarily of amino acids in each of the treatments, but the

other metabolites that occurred in the BCAA cluster varied

between diets and include aromatic amino acids and other

amino acids. Other metabolites whose correlation patterns

were conserved include the neurotransmitter L-DOPA and

two additional unidentified features that are putatively

characterized in the catecholamine chemical class (TAR-

GET_526 AND TARGET_559; Supplemental Data 1) as

determined from their best matches to the NIST database.

These three metabolic features were always found in the

same cluster (Figs. 2, 3a, b, d) or adjacent clusters [e.g.,

high glucose diet (Fig. 3c)]. In addition, the clusters that

contained these three metabolic features were primarily

composed of fatty acids or were classified as ‘‘Mixing

Pots’’ that contained a substantial number of fatty acids.

Thus, EvMA analysis demonstrates that environment

influences the clustering pattern of some but not all meta-

bolic features.

In addition to identifying metabolites whose clustering

patterns were not affected by diet, EvMA identified envi-

ronmental factors that were especially perturbing to the

metabolite correlation patterns. For example, in all of the

examined datasets, except that of the high glucose diet, we

consistently found a cluster composed predominantly of

sugars and sugar-like compounds that included maltose and

an additional 11 disaccharides. In the HCA analysis of the

high glucose diet (Fig. 3c) these disaccharides were divi-

ded between two non-adjacent clusters (Cluster 7 and

Cluster 4); thus, the high glucose diet was highly per-

turbing to the metabolic processes that usually regulate

disaccharide levels. These results demonstrate that EvMA

can detect distinct impacts on correlation patterns that

result from different environments.

4.2 Function of correlated genes

Using EvMA, we identified transcripts whose expression

significantly correlated (q-value\ 0.05) with the variation

observed in a metabolite cluster, the eigenmetabolite. Some

clusters were associated with a large number of genes,

while others were correlated with fewer than 10 genes. This

suggests that the linkage between gene expression and

metabolome varies dramatically across clusters. This is

consistent with the findings of Reed et al. (2014) that

showed genetic variation contributed more greatly to gene

expression variation, while diet played a more significant

role in metabolome variation. An important conclusion

then is that gene expression based regulation does not

influence all metabolites equally. For example, we found

that the conserved BCAA cluster was only significantly

correlated with genes in the combined dataset (688 genes;

Cluster 8; Table 2) and the high glucose diet (4 genes;

Cluster 8; Table 3), but did not show a significant associ-

ation with any transcripts on the other treatments. See

Supplemental Data 3 for lists of all significantly correlated

genes for each cluster and treatment.

4.2.1 Individual named genes

EvMA identifies genes involved in the metabolism of

metabolites in the metabolite clusters, which can be used as

a tool to hypothesize function for genes that otherwise have

no known function. We demonstrate this principle through

examining the function of the named genes associated with

clusters. We found several instances where individual

correlated genes are active in physiological processes that

utilize the metabolites (or their byproducts) found in the

correlated metabolite cluster. For example, the BCAA

cluster in the combined dataset and the high glucose diet

contained serine and was significantly correlated with

Astray, a phosphoserine phosphatase gene that is active in

the metabolism and biosynthesis of serine by modifying

phosphoserine, a precursor metabolite (Tables 2, 3). The

combined dataset BCAA cluster also contained proline and

was correlated with prolyl-4-hydroxylase-alpha EFB,

which acts to hydroxylate peptidyl-proline. In addition,

several clusters from individual diets or the combined

dataset that were primarily composed of fatty acids

(Cluster 6; Fig. 3b; Table 3) or contained a substantial

number of fatty acids (Cluster 1 and 5; Fig. 2; Table 2)

were correlated with genes that act in fatty acid biosyn-

thesis (e.g., Fatty acid synthase 2 and acetyl-CoA car-

boxylase) and lipid catabolism (e.g., adipokinetic hormone

receptor). A similar pattern of correlation with genes that

function in pathways that utilize associated metabolites

was found in the cluster of the combined dataset that

contains the aromatic amino acid tyrosine (Cluster 3). This

cluster was correlated with two genes that function in the

aromatic amino acid metabolic process (e.g., fumarylace-

toacetase and Cyp49a1). Thus, we provide proof of con-

cept that using EvMA, it is possible to predict the function

of individual genes associated with a given cluster based on

its composition, which can in turn be leveraged to improve

gene annotations.

4.2.2 Biological annotations of gene lists

A major finding in our EvMA is that by using an enrich-

ment analysis of all genes associated with a given cluster,

we often found cases where the overrepresented biological

annotations (e.g., GO terms, KEGG pathways) included

physiological processes that make use of correlated
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Table 2 Summary of Pearson correlation and enrichment analysis for combined dataset§

Cluster ID and

classification(s)

Number of

correlated

genes

Named genes Enriched GO terms Enriched KEGG

pathways

Overt

phenotypes

2 Fatty acids

(Catecholamines)

0 – – – Weight

Larval

survival

7 Sugars (Maltose) 845 Stress induced DNase

Vacuolar Peduncle

Start1

Congested-like trachea

Heterochromatin Protein

1D3 chromoshadow

domain

GO:0055114 * oxidation

reduction

GO:0045333 * cellular

respiration

GO:0015980 * energy derivation

by oxidation of organic

compounds

GO:0022904 * respiratory

electron transport chain

GO:0022900 * electron transport

chain

dme00260:Glycine,

serine and threonine

metabolism

dme00903:Limonene

and pinene degradation

dme00350:Tyrosine

metabolism

Sugar

Weight

Pupal

survival

8 Amino acids

(BCAA)

688 Adenosine deaminase-

related growth factor

A*

Astray*

Prolyl-4-hydroxylase-

alpha EFB*

Utx histone demethylase

Amyrel

GO:0055114 * oxidation

reduction

GO:0009408 * response to heat

GO:0009266 * response to

temperature stimulus

GO:0001666 * response to

hypoxia�

GO:0070482 * response to

oxygen levels�

dme04144:Endocytosis

dme02010:ABC

transporters

Weight

3 Mixing pot 3134 Cuticular protein 31A

Fumarylacetoacetase

Cyp49a1

LambdaTry

Enhancer of split ma,

Bearded family

member

GO:0055114 * oxidation

reduction

GO:0044429 * mitochondrial part

GO:0005739 * mitochondrion

GO:0006091 * generation of

precursor metabolites and energy

GO:0045333 * cellular

respiration

dme00190:Oxidative

phosphorylation

dme03050:Proteasome

dme00650:Butanoate

metabolism

dme00280:Valine,

leucine and isoleucine

degradation

dme00020:Citrate cycle

(TCA cycle)

Sugar

Lipid

Weight

5 Mixing pot 9 Dawdle

Adipokinetic hormone

receptor

Acetyl-CoA carboxylase

– – Larval

survival

Pupal

survival

Development

time

6 Fatty acids 3013 Heat shock gene 67Ba

Maltase A2

Prolyl-4-hydroxylase-

alpha EFB

Heat shock gene 67Bc*

Esterase P*

GO:0044429 * mitochondrial part

GO:0005739 * mitochondrion

GO:0003735 * structural

constituent of ribosome

GO:0033279 * ribosomal subunit

GO:0005840 * ribosome

dme00190:Oxidative

phosphorylation

dme03010:Ribosome

dme00020:Citrate cycle

dme04330:Notch

signaling pathway

dme00650:Butanoate

metabolism

Weight

Development

time
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metabolites or their byproducts. Since we demonstrated

these logical connections based on correlations alone, we

can leverage the correlations between eigenmetabolites and

transcripts to assign biological function to genes and

metabolites that have not been functionally characterized

previously. A limitation to this analysis is that short gene

lists are unlikely to demonstrate enrichment. With the

exception of the four genes correlated with Cluster 8 in the

high glucose diet (Table 3), no list that included 30 or

fewer genes was enriched for either GO terms or KEGG

pathways. Furthermore, only lists with[400 genes had

significantly enriched biological annotations that included

KEGG pathways.

Combined Dataset Transcript-Eigenmetabolite Associ-

ations: An example of a logical association between the

members of a metabolite cluster and the correlated gene

transcripts occurred in the maltose cluster of the combined

dataset (Cluster 7; Fig. 2; Table 2), which was primarily

composed of sugars and correlates with 845 genes. These

genes were enriched for cellular respiration (GO:0045333)

and energy derivation by oxidation of organic compounds

(GO:0015980). Similarly, Cluster 6 of the combined

dataset was primarily composed of fatty acids and the

3,013 genes associated with Cluster 6 were enriched for the

citrate cycle (00020:KEGG pathway), which requires the

metabolite acetyl coenzyme A. While acetyl coenzyme A

was not detected in our analysis, this metabolite is a pro-

duct of fatty acid metabolism and is also active in the

synthesis of fatty acids (Berg et al. 2002), making the link

between the metabolites and transcripts for this cluster a

logical one. A logical association was also present between

the 3,134 genes correlated with the eigenmetabolite of

Cluster 3 of the combined dataset and the metabolites

found in the cluster (Table 2). The correlated genes were

enriched for butanoate metabolism (00650:KEGG path-

way) and oxidative phosphorylation (00190:KEGG path-

way). Cluster 3 contained succinic acid, which participates

directly in both of these metabolic pathways, and the amino

acids tyrosine and arginine that can be degraded to provide

metabolites necessary for butanoate metabolism. The

cluster also contained the neuropeptide arachidonoyl

dopamine. Previously, Williams et al. (2015) found that the

genes correlated with this metabolite were enriched for

enzymes in tyrosine metabolism, a pathway that gives rise

to precursors of arachidonoyl dopamine. Our enrichment

analysis also identified tyrosine metabolism as an enriched

biological annotation of the gene list in the combined

dataset. However, in the individual dietary treatments, the

gene lists correlated with the metabolite cluster containing

arachidonoyl dopamine were not significantly enriched for

tyrosine metabolism. Thus, analysis of the data across

environments in combination can assist in the detection of

patterns not detectable in environment specific analyses.

Individual Diet Transcript-Eigenmetabolite Associa-

tions: Our analysis of the gene enrichment in the individual

dietary treatments also recovered overrepresented biologi-

cal annotations that are part of physiological pathways that

utilize the metabolites in a cluster. For example, Cluster 6

of the high glucose diet contained the neuropeptide and

catecholamine arachidonoyl dopamine described above

and correlated with 276 genes, which are enriched for

neuropeptide hormone activity (GO:0005184) and func-

tions involved in the synthesis of cuticle (Fig. 3c; Table 3).

Catecholamines play a role in behavior and learning in

Drosophila (Martı́nez-Ramı́rez et al. 1992; Burke et al.

2012; Van Swinderen and Andretic 2011) and also act as

Table 2 continued

Cluster ID and

classification(s)

Number of

correlated

genes

Named genes Enriched GO terms Enriched KEGG

pathways

Overt

phenotypes

1 Mixing pot 227 Keren

Kinesin-like protein at

68-D

Dead box protein 73D

Acetyl-CoA carboxylase

Astray*

Lethal (2) 34Fd*

GO:0042254 * ribosome

biogenesis

GO:0022613 * ribonucleoprotein

complex biogenesis

GO:0006364 * rRNA processing

GO:0016072 * rRNA metabolic

process

GO:0034660 * ncRNA metabolic

process

– Larval

survival

Pupal

survival

Development

time

Includes the classification(s) of a cluster, the total number of genes correlated with a cluster, and the five most significantly correlated named

genes, enriched GO Terms, KEGG Pathways, and Overt Phenotypes

* Equal q-values

� Equal p-values

§ Only metabolite clusters correlated with genes or overt phenotypes are included
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crosslinking agents in insect cuticle (Evans 1980).

Intriguingly, of the 15 transcripts that bear no functional

classification in the 100 genes most significantly correlated

with the eigenmetabolite for Cluster 6, six (CG14374,

CG13059, CG12239, CG10311, CG15021, CG13230) are

expressed at high levels in the adult head, carcass, or both,

consistent with the enriched functions of neuropeptide

hormone activity and cuticle synthesis found in the func-

tionally characterized genes. Thus, these genes with

unknown function may be good candidates for involvement

in neuropeptide metabolism contributing to diet-specific

overt phenotype variation. A logical association between a

metabolite cluster and the biological functions of the cor-

related genes was also observed in Cluster 3 of the low

calorie diet dataset (Fig. 3b; Table 3), which contained

tyrosine (aromatic amino acid). The 90 genes correlated

with the cluster were enriched for aromatic amino acid

family metabolic process (GO:0009072).

Using EvMA, we demonstrate that collectively there

are many examples of logical associations between the

metabolites in the clusters and the genes correlated with

the eigenmetabolite of that cluster. Since the function of

significantly correlated genes (and overrepresented bio-

logical functions associated with correlated genes) can be

predicted in part by their associated metabolites, we

provide the proof of concept that correlations between

known and unknown genes or metabolites found by

EvMA can facilitate the generation of hypotheses about

the function of the unknowns. For example, of the 100

most highly correlated gene transcripts with the eigen-

metabolite for Cluster 7 of the combined dataset, 10 have

no functional classification at all (Supplemental Data 3).

Given that Cluster 7 is composed primarily of disaccha-

rides we could hypothesize that the function of these

uncharacterized genes may contribute to metabolism of

disaccharides and may share functional similarity to genes

in the overrepresented GO category of energy derivation

by oxidation of organic compounds. Thus, they would be

good candidates for further scrutiny by researchers inter-

ested in generating complete pathways for disaccharide

metabolism.

Another example of an important novel finding of

EvMA is the gene CG14005, which was the nineteenth

most significantly correlated gene transcript (q = 0.0001)

for the eigenmetabolite of Cluster 8 in the combined

dataset that contains the BCAAs. This same transcript was

also highly significantly correlated with Clusters 3 and 6

(q = 0.0005 and q = 0.003 respectively), and the eigen-

metabolites of all three of these clusters were correlated

with the overt phenotype of weight. CG14005 has no

annotated function, but is characterized as having a Myb/

SANT-like DNA-binding domain, which also has no

Cluster 
ID Cluster Composition ID’d

Metabolites 

2 
26 Peaks 

Fatty Acids (61.5%) un- & saturated 
fatty acids

9;26;47 

7 13 Peaks 
Sugars (76.9%) disaccharides 53d,55d

8 9 Peaks 
Amino Acids (88.9%) amino acids

6;10;12c,13c;15;20g;
27;29 

3 

41 Peaks 
Mixing Pot: Sugars (36.6%) 
monosaccharides & carboxylic acids, 
Amino Acids (34.1%) amino acids

1;2;3;4b,7b,16b;11f;18; 
19;21h;23;28;31;34a, 
38a;36;39;41j; 51;56 

5 

8 Peaks 
Mixing Pot: Fatty Acids (37.5%) 
unsaturated fatty acids, Amino Acids
(25%) aromatic triazines

37;46 

6 
22 Peaks 

Fatty Acids (45.5%) unsaturated fatty 
acids

48;49;50;52;54 

4 3 Peaks 
Amino Acids (66.7%) 40a 

1 

65 Peaks 
Mixing Pot: Sugars (33.8%) mono- & 
disaccharides, Fatty Acids (20%) un- 
& saturated fatty acids, Amino Acids
(18.5%) amino acids

5f;8g;14h;17;22;24;25; 
30;32e,33e;35a;42j;43; 
44;45;57i,58i Catecholamines

BCAA
Maltose

Conserved Clusters

Fig. 2 Hierarchical clustering

of combined dataset. The

topology recovered among the

eight metabolite clusters in the

combined dataset of all diets.

For each cluster, the assigned

identification number (cluster

ID), the number of features

(peaks) found in the cluster, the

chemical classification of the

cluster (cluster composition),

and the identification number

based on Table 1 of metabolites

identified using standards are

provided (ID’ed metabolites).

Metabolite clusters that are

conserved across and within the

four dietary treatments

(Catecholamines, Maltose, and

BCAA) are identified using

different colored boxes: dotted

red (Catecholamines), solid

purple (Maltose), and broken

blue (BCAA)
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known function. Given that this gene transcript is important

for three metabolite clusters associated with weight, it is a

prime candidate for functional testing to determine why it

appears to have a central role in metabolism and thereby,

perhaps also elucidating the biological function of a Myb/

SANT-like DNA-binding domain.

Cluster 
ID Cluster Composition ID’d

Metabolites 

1 

46 Peaks 
Mixing Pot: Sugars (32.6%)
monosaccharides, Amino Acids
(26.1%) amino acids, Fatty Acids
(21.7%) un- & saturated fatty acids

4b;21h;22;25; 
26;28;30;34a,
35a,40a;36;45

6 17 Peaks 
Sugars (70.6%) mono- & disaccharides 11f;33e;53d,55d 

2 
21 Peaks 

Fatty Acids (66.7%) un- & saturated 
fatty acids

9;47;49;50

7 
16 Peaks 

Amino Acids (68.8%) amino acids & 
aromatic triazines

1;3;6;10;12c,
13c;15;20g;27; 
29 

4 

34 Peaks 
Mixing Pot: Fatty Acids (23.5%),
Amino Acids (20.6%) amino acids,
Sugars (17.6%) 

5f;8g;23;24;41j;
52;54;58i 

3 

41 Peaks 
Mixing Pot: Sugars (39.0%) mono-, 
disaccharides, & sugar alcohols, Fatty 
Acids (22.0%) un- & saturated fatty 
acids, Amino Acids (22.0%) amino 
acids

2;14h;16b;17; 
18;19;31;32e;
38a;39;42j;43; 
48;57i 

5 
12 Peaks 

Mixing Pot: Fatty Acids (33.3%)
saturated fatty acids, Amides (25.0%) 

7b;37;44;46; 
51;56 

Cluster 
ID Cluster Composition ID’d

Metabolites 

8 
13 Peaks 

Fatty Acids (92.3%) un- & saturated 
fatty acids

5f;9 

2 

22 Peaks 
Mixing Pot: Fatty Acids (36.4%)
un-, saturated, & branched saturated 
fatty acids, Sugars (26.8%)  sugar 
alcohols & disaccharides

21h;43;47;51; 
52;58i 

7 15 Peaks 
Sugars (68.8%) disaccharides 26;53d,55d 

4 17 Peaks 
Amino Acids (76.5%) amino acids

4b;6;10;12c,
13c;20g;28;29; 
40a;42j 

6 
14 Peaks 

Fatty Acids (42.9%) saturated fatty 
acids

27;30;32e;37; 
46 

5 

34 Peaks 
Mixing Pot: Sugars (38.2%) mono-, 
disaccharides, & carboxylic acids, 
Fatty Acids (20.6%) saturated fatty 
acids, Amino Acids (20.6%) amino 
acids & aromatic triazines

1;7b;14h;18; 
22;24;25;38a;
39;41j;44;48; 
56 

1 

41 Peaks 
Mixing Pot: Sugars (34.1%) 
monosaccharides & carboxylic acids, 
Amino Acids (24.4%) amino acids, 
Fatty Acids unsaturated fatty acids

8g;11f;15;17; 
23;33e;34a,
35a;36;45;49; 
50;54;57i 

3 

31 Peaks 
Mixing Pot: Fatty Acids (25.8%), 
Amino Acids (22.6%) amino acids & 
amines, Sugars (19.4%) 
monosaccharides

2;3;16b;19;31

Cluster 
ID Cluster Composition ID’d

Metabolites 

7 9 Peaks 
Sugars (66.7%) disaccharides 53d,55d 

8 8 Peaks 
Amino Acids (87.5%) amino acids

6;10;12c,13c;
15;20g;27 

4 

41 Peaks 
Mixing Pot: Fatty Acids (31.7%) 
unsaturated fatty acids, Sugars
(26.8%)  disaccharides

5f;30;45;47; 
49;50; 52;54 

5 
17 Peaks 

Mixing Pot: Fatty Acids (35.3%), 
Sugars (17.6%) 

29 

2 
12 Peaks 

Fatty Acids (100%) un-, saturated, & 
branched saturated fatty acids

9 

3 

47 peaks 
Mixing Pot: Amino Acids (38.3%)
amino acids, Sugars (23.4%) mono- 
& disaccharides, Fatty Acids (14.9%)
saturated fatty acids 

1;2;3;11f;21h;
22;23;24;26; 
28;32e;34a;36; 
41j,42j;43;48; 
57i 

1 
19 peaks 

Sugars (42.1%) monosaccharides, 
Amino Acids (42.1%) amino acids

4b,16b;8g;14h;
17;33e;35a,40a 

6 

33 peaks 
Mixing Pot: Sugars (42.4%) 
monosaccharides & carboxylic acids, 
Fatty Acids (18.2%) saturated fatty 
acids, Amino Acids (12.1%) 

7b;18;19;25; 
31;37;38a;39; 
44;46;51;56; 
58i 

Cluster 
ID Cluster Composition ID’d

Metabolites 

3 

48 Peaks 
Mixing Pot: Sugars (43.8%) mono- & 
disaccharides, Fatty Acids (12.5%)
saturated fatty acids, Amino Acids (14.6%) 

1;5f;15;20g;22;23; 
30;32e,33e;40a;41j,
42j;53d,55d;54

1 
18 Peaks 

Fatty Acids (61.1%) un- & saturated fatty 
acids

9;25;35a;47

5 
31 Peaks 

Amino Acids (51.6%) amino acids, Fatty 
Acids (38.7%) unsaturated fatty acids

6;10;12c,13c;17; 
21h;27;29;43;45; 
49;50;52

6 

16 Peaks 
Mixing Pot: Fatty Acids (31.1%) saturated 
fatty acids, Amino Acids (18.8%) aromatic 
triazines, Sugars (18.8%) 

24;37;46;48 

2 

52 Peaks 
Mixing Pot: Sugars (40.4%) mono- & 
disaccharides, Fatty Acids (19.2%) un-, 
saturated, & branched saturated fatty acids, 
Amino Acids (17.3%) amino acids

4b,7b;19;26;28;34a,
38a;36;39;44;51; 
56;57i,58i 

4 

22 Peaks 
Mixing Pot: Amino Acids (31.8%) amino 
acids, Sugars (13.6%) carboxylic acids, 
Fatty Acids (9.1%) 

2;3;8g;11f;14h;16b;
18;31

Catecholamines

BCAA
Maltose

Conserved Clusters

A

D

C

B

Fig. 3 Hierarchical clustering of individual diets. The topology recovered among metabolite clusters in individual dietary treatments: Normal

(a), Low Calorie (b), High Glucose (c), and High Fat (d). Labeled as in Fig. 2
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4.3 Mechanistic links between phenotypes

and environment

Using the EvMA, we identified which of six specific phe-

notypes significantly correlated with metabolic clusters.

Previously, Reed et al. (2014) examined the impact of diet,

genotype, and genotype-by-diet interactions on each of the

phenotypes and found that certain metabolites could be

used to predict phenotypes. Expanding upon this finding,

Williams et al. (2015) assessed the modularity of the tre-

halose level of the hemolymph (sugar), triglyceride storage

(lipid), and weight phenotypes and noted that the

metabolites correlated with different phenotypes varied

significantly between diets. The added findings in the

results of our EvMA of the linkages between metabolic

clusters and each of the six phenotypes highlight pheno-

types that either correlate with unique metabolite clusters

only in the combined dataset, correlate with metabolite

clusters only in a diet specific manner, or correlate with

specific metabolite clusters under all experimental

conditions.

4.3.1 Combined dataset phenotype-eigenmetabolite

associations

Using the EvMA to identify correlated phenotypes, we

found some metabolites were only correlated with a phe-

notype of interest in the combined dataset. For example,

the pupal survival phenotype was correlated with three

metabolite clusters in the combined dataset (Clusters 1, 5,

and 7; 65, 8, and 13 features; Table 2). Clusters 1 and 5 of

the combined dataset were Mixing Pots. Cluster 7 con-

tained mostly sugars (including maltose), whose correla-

tion pattern was conserved across all treatments. However,

the maltose cluster in the individual dietary treatments was

not correlated significantly with pupal survival. Pupal

survival was also correlated with a single metabolic cluster

in the low calorie (Cluster 6; 14 features Table 3) and high

glucose diets (Cluster 2; 12 features; Table 3). Both of

these individual diet clusters were composed primarily of

fatty acids, but there was little overlap between the

metabolites found in these clusters and Clusters 1 and 5 of

the combined dataset. These findings indicate that the

manner in which metabolites mediate pupal survival differs

across diets. The larval survival phenotype also demon-

strated unique correlation patterns in the combined dataset.

Larval survival was correlated with three clusters in the

combined dataset (Clusters 1, 2, and 5) and Cluster 2 of the

high glucose diet. There was no overlap between the

metabolites found in Clusters 1 and 5 of the combined

dataset, which were classified as Mixing Pots, and the high

glucose cluster. Thus, this analysis provides proof of con-

cept that examination of the combined dataset allows for

the identification of distinct associations between meta-

bolic features and a phenotype of interest that may not be

detected when only analyzing correlations between meta-

bolic clusters and phenotypes on a specific diet.

4.3.2 Individual diet phenotype-eigenmetabolite

associations

In addition to identifying phenotypes with distinct meta-

bolic correlations in the combined dataset, the results of the

EvMA demonstrated that some phenotypes correlate with

metabolic clusters in a diet specific manner. For example,

the lipid phenotype was significantly correlated with a

single cluster in the high glucose diet (Cluster 6; 33 fea-

tures; Table 3) and the high fat diet (Cluster 4; 22 features;

Table 3). These individual clusters shared only seven

metabolic features, including succinic acid and asparagine.

Another phenotype that demonstrated a diet specific cor-

relation pattern was the sugar phenotype that was associ-

ated with a single cluster in the high glucose diet (Cluster

5; 17 features; Table 3) and two metabolite clusters in the

normal diet (Cluster 5; 12 features; Cluster 6; 17 features;

Table 3). The larval survival phenotype also showed a diet

specific correlation where it was only correlated with a

metabolite cluster in the high glucose diet, which was

composed of only fatty acids. Collectively, these findings

suggest that EvMA can be used to identify context (envi-

ronment) dependent mechanistic links between some phe-

notypes and metabolites, which can inform our

understanding of how the metabolites correlated with

phenotypes associated with complex diseases can vary

depending on the environment.

4.3.3 Diet independent phenotype-eigenmetabolite

associations

Although some of the phenotypes only correlated with

metabolites under specific dietary conditions or when the

combined dataset was examined, the EvMA analysis

identified correlations between phenotypes and metabolic

clusters that are conserved under all of the treatment con-

ditions. For example, the body weight phenotype was

always correlated with the conserved metabolite clus-

ter(s) that contains L-DOPA and the two unidentified cat-

echolamines. These clusters were composed primarily of

fatty acids or contained a substantial number of fatty acids.

Similarly, Williams et al. (2015) found that the cate-

cholamine L-DOPA was correlated with weight and sugar

phenotypes across multiple diets, but did not find a corre-

lation between fatty acids and the weight phenotype. They

also found that arachidonoyl dopamine correlated with

weight and lipid phenotypes on multiple diets. Using the

EvMA analysis, arachidonoyl dopamine was only
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significantly correlated with both the weight and lipid

phenotypes in the combined dataset (Cluster 3; 41 features;

Table 2) and the high sugar dataset (Cluster 6; 33 features;

Table 3). Each of these clusters was classified as a Mixing

Pot, and they shared 19 metabolites (including arachi-

donoyl dopamine) that were primarily sugars (52.6 %). The

clusters containing arachidonoyl dopamine in the normal

diet (Cluster 5; 12 features; Table 3) and the high fat diet

(Cluster 2; 52 features; Table 3) were significantly corre-

lated with weight, but not the lipid phenotype. Thus, the

EvMA recovers some similar findings to previous studies

of the test dataset for the weight and lipid phenotypes, but

also expands upon these findings by highlighting novel

linkages between the overt phenotypes and metabolites and

metabolite classes that had not been recovered previously.

Some of these novel linkages include: (1) the correlation of

the weight phenotype to clusters containing a substantial

number of fatty acids as well as L-DOPA, (2) the corre-

lation of both the weight and lipid phenotypes to the cluster

containing arachidonoyl dopamine only in the combined

and high sugar datasets, and (3) the additional 18 metabolic

features that are primarily sugars shared between these two

clusters containing arachidonoyl dopamine (Cluster 3 and 6

respectively).

4.3.4 Clusters correlated with multiple phenotypes

In addition to examining overt phenotypes individually, the

EvMA identified metabolite clusters that correlated with

multiple phenotypes under a given environmental condi-

tion. For example, metabolite clusters in the combined

dataset (Cluster 6; Table 2), low calorie diet (Cluster 3;

Table 3), and high fat diet (Cluster 1; Table 3) were cor-

related with both weight and development time pheno-

types. The combined dataset and high fat diet clusters were

composed primarily of fatty acids, and the low calorie diet

cluster was classified as a ‘‘Mixing Pot’’ that contained

mostly fatty acids. Although the clusters all contained fatty

acids, there was limited overlap in the metabolic features

that were found in each cluster. Thus, under certain con-

ditions weight and development time phenotypes are linked

by fatty acid metabolites, but the fatty acids vary based on

the environment. Other phenotypes that correlated with the

same cluster in a treatment were the larval and pupal sur-

vival phenotype. Both of these phenotypes correlated with

Cluster 2 of the high glucose diet (Table 3), and along with

the development time correlated with Clusters 1 and 5 of

the combined dataset (Table 2). The high glucose diet

cluster contained fatty acids and has no overlap with either

of the combined dataset clusters that were ‘‘Mixing Pots’’.

Collectively, these findings provide proof of concept that

EvMA can be used to identify metabolites that link mul-

tiple overt phenotypes under different conditions, which

can help to inform our understanding of the manner in

which certain phenotypes are correlated with the same

metabolites under a given condition.

4.4 Associations between genes and phenotypes

The EvMA examined the correlation patterns between

eigenmetabolites, gene transcripts, and phenotypes. While

examining these correlations, we identified instances where

eigenmetabolite of the clusters was correlated with genes

enriched for a biological annotation that is known to con-

tribute to a phenotype of interest. For example, in the

combined dataset and the high glucose diet, we identified

an eigenmetabolite (Cluster 3) correlated with the sugar

phenotype, and the correlated gene list was enriched for

oxidative phosphorylation (00190:KEGG pathway).

Defects in oxidative phosphorylation have been found to

play a role in insulin resistance (Boirie 2003; Buchner et al.

2011; Cree-Green et al. 2015). Thus, using EvMA, it is

possible to identify metabolites that are useful in predicting

gene expression or phenotype under different environ-

mental conditions.

5 Concluding remarks

Different ‘omics’ datasets obtained from an organism of

interest under the same experimental conditions are

becoming more common. In this work, we use EvMA, a

novel method for identifying linkages between metabo-

lomic, transcriptome, and phenotypic data and assessing

the impact of environment on these correlations. Environ-

ment can be responsible for a significant amount of vari-

ance in the metabolome (e.g., Reed et al. (2014)). As such,

a PCA analysis would be expected to recover clusters.

However, a common concern associated with PCA is the

effect of noise on the resulting clusters (Halouska and

Powers 2006). One goal of EvMA is to lessen the impact of

noise in the dataset by completing the PCA on discrete

modules (e.g., clusters) instead of the whole dataset. Based

on correlation alone, EvMA recovers clusters of metabo-

lites with similar chemical characters, which can be used to

inform identifications of unknown metabolites. Further-

more, the EvMA identifies the effects of different envi-

ronmental factors on metabolite correlation patterns, and

highlights correlations that are maintained across different

environments. When clusters are not primarily composed

of metabolites of similar chemical classes, the resulting

eigenmetabolite (eigenvector of metabolite clusters) is

lower. However, the impact of this noise is limited to the

individual module as opposed to impacting the entire

analysis. Thus, when examining linkages between the
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eigenmetabolites and gene transcripts, EvMA demonstrates

that some metabolite clusters are significantly correlated

with individual genes and groups of genes enriched for

physiological processes that utilize these metabolites.

Thus, providing proof of concept that when using EvMA, it

is possible to predict the type of genes whose expression

patterns are associated with metabolites of interest. In

turn, these findings can be used to generate hypotheses of

the biological function of unannotated genes. In addition,

the EvMA found specific phenotypes associate with

specific metabolite clusters in an environment specific

manner, indicating a context dependent mechanistic link.

Furthermore, EvMA identified clusters that correlated

with multiple phenotypes. Thus, highlighting metabolites

that link phenotypes under specific environmental con-

ditions. When identifying linkages between metabolite

clusters, transcripts, and phenotypes, some correlations

were only identified in the EvMA of the combined

dataset. Thus, we suggest including a combined analysis

to identify distinct, underlying associations that may not

be detectable in datasets from individual environments.

Finally, EvMA identified clusters correlated with specific

phenotypes and genes enriched for functions that influ-

ence the associated phenotype. Thus, this method may be

useful in identifying metabolites that can predict gene

expression or phenotypes in a context dependent manner.

These results demonstrate that EvMA provides a simple

method to identify correlations between metabolites,

gene expression, and phenotypes, which can allow us to

partition multivariate datasets into biologically mean-

ingful modules and identify under-studied metabolites

and gene transcripts that may presently have unknown

function but are central to important biological pro-

cesses. This can, in turn, be used to inform our under-

standing of the effect of environment mechanisms

underlying physiological states of interest, including

human disease.
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