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Abstract

Introduction The initial decades of the twenty-first century

have witnessed striking technical advances that have made

it possible to detect, identify and quantitatively measure

large numbers of plasma or tissue metabolites. In parallel,

similar advances have taken place in our ability to

sequence DNA and RNA. Those advances have moved us

beyond studies of single metabolites and single genetic

polymorphisms to the study of hundreds or thousands of

metabolites and millions of genomic variants in a single

cell or subject. It is now possible to merge and integrate

large data sets generated by the use of different ‘‘-omics’’

techniques to increase our understanding of the molecular

basis for variation in disease risk and/or drug response

phenotypes.

Objectives This ‘‘Brief Review’’ will outline some of the

challenges and opportunities associated with studies in

which metabolomic data have been merged with genomics

in an attempt to gain novel insight into mechanisms asso-

ciated with variation in drug response phenotypes, with an

emphasis on the application of a pharmacometabolomics-

informed pharmacogenomic research strategy and with

selected examples of the application of that strategy.

Methods Studies that used pharmacometabolomics to

inform and guide pharmacogenomics were reviewed.

Clinical studies that were used as the basis for pharma-

cometabolomics-informed pharmacogenomic studies,

published in five independent manuscripts, are described

briefly.

Results Within these five manuscripts, both pharmacoki-

netic and pharmacodynamic metabolomics approaches

were used. Candidate gene and genome-wide approaches

that were used in concert with these metabolomic data

identified novel metabolite-gene relationships that were

associated with drug response phenotypes in these phar-

macometabolomics-informed pharmacogenomics studies.

Conclusion This ‘‘Brief Review’’ outlines the emerging

discipline of pharmacometabolomics-informed pharma-

cogenomics in which metabolic profiles are associated with

both clinical phenotypes and genetic variants to identify

novel genetic variants associated with drug response phe-

notypes based on metabolic profiles.

Keywords Pharmacometabolomics � Pharmacogenomics �
Metabolomics

1 Introduction

1.1 Pharmacometabolomics

The concept that metabolomic profiles (metabotypes)

might help make it possible to predict drug response phe-

notypes and to understand their underlying mechanisms has

evolved rapidly over the past decade (Yap et al. 2006;

Kaddurah-Daouk et al. 2008; Gavaghan McKee et al.

2006). Metabotype variation reflects variation resulting

from both environmental and genomic factors. As a result,
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metabolomics may provide a more comprehensive view of

overall molecular variation that contributes to individual

differences in response to drug therapy than would geno-

mics alone (Ellero-Simatos et al. 2014). The technical

evolution that has occurred in our ability to accurately

measure large numbers of metabolites in plasma or tissues

in order to profile individual molecular variation has been

reviewed elsewhere (Kaddurah-Daouk et al. 2008; Kad-

durah-Daouk and Weinshilboum 2014; Wishart 2016). It is

clear that metabolomics is only one of a series of measures

of biological variation that might contribute to inter-indi-

vidual differences in drug response. However, merging

metabolomic data with other ‘‘-omics’’ information has the

potential to provide novel insights into mechanisms

underlying individual differences in disease risk or drug

response phenotypes.

1.2 Pharmaco-omics

A major focus of medical research is on the identification of

molecular mechanisms that contribute to disease patho-

physiology to make it possible to understand the pathways

involved and to identify novel therapeutic targets. However,

many of those studies have often focused on only a specific

piece of the larger puzzle, e.g., a single gene, mRNA tran-

script, protein or metabolite based on our current under-

standing of a particular disease or therapeutic target

pathway. Technical advances that have occurred in recent

decades have made it possible to move to broader studies of

large scale ‘‘-omics’’ data including genomics, transcrip-

tomics, proteomics andmetabolomics (Fig. 1). These -omics

approaches each individuallymoves us toward broader, less-

biased studies that have the potential to reveal novel mech-

anisms underlying disease pathophysiology and response to

drug therapy. However, even though the application of this

type of approach represents a significant advance, most

studies have continued to focus on the use of only a single -

omic techniquewithout evaluating the potential contribution

of different -omics. Combined -omics approaches might

provide novel insights that individual -omics may not iden-

tify. For example, pharmacogenetics, with a focus on single

genes and their impact on drug response, has evolved into

pharmacogenomics with the application of genome-wide

studies of drug clinical phenotypes (Wang et al. 2011).

However, the addition of other -omics data, that is, the

evolution of pharmacogenomics to become ‘‘pharmaco-

omics’’ is now possible and might be required, especially for

studies of the drug therapy of complex diseaseswithmultiple

different underlying pathophysiologic mechanisms.

1.3 Pharmacometabolomics meets

pharmacogenomics

Prior to completion of the Human Genome Project (Lander

et al. 2001), it was hoped that genomic variants might

provide insight into much of the inter-individual variation

in disease risk and response to drug therapy. It quickly

became clear that genomic variants alone could explain

only a portion of that variation. In addition, it has also been

difficult to apply genomics to complex disease in which

similar phenotypes might arise from a variety of different

pathophysiologic processes. Of the -omics disciplines

depicted graphically in Figure 1, metabolomics and geno-

mics might be particularly useful when applied in concert.

The genome is consistent across different cell and tissue

types within an individual—although epigenomics and the

regulation of genomic expression is highly cell- and tissue-

dependent—and since metabolomics is the ‘‘-omic ’’ data

type that appears to be most closely related to clinical

phenotypes, the integration of these two might be partic-

ularly useful to study multi-genic, complex diseases. Fur-

thermore, although the application of genomic techniques

such as genome wide association studies (GWAS) has been

highly successful (Ingle et al. 2010; Ingle et al. 2013),

especially in situations in which the phenotype is clearly

defined, it has been less successful when applied to com-

plex and less well defined phenotypes such as those for

many psychiatric diseases. It is for that reason that the

application of a research strategy that begins with meta-

bolomics and allows the metabolomic data to ‘‘guide’’

genomics, e.g., pharmacometabolomics-informed pharma-

cogenomics, one type of pharmaco-omics study, might be

particularly useful in selected situations.

Fig. 1 Pharmacometabolomics-informed Pharmacogenomics. Geno-

mics contributes to the variation observed at the transcriptomic level,

proteomic level and metabolomics level, resulting in a clinical

phenotype. In addition, the environment can influence all of the -

omics leading to a clinical phenotype. The interaction of metabo-

lomics with clinical outcome measures and genomic variants (as

indicated by the double-ended arrows) could reveal novel pathways

associated with clinical phenotypes, which can then be validated by

functional genomic studies and by investigating the interaction of

those genetic variants with clinical outcomes. This may be particu-

larly helpful for heterogeneous disorders in which traditional

approaches have been disappointing
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2 Pharmacometabolomics-informed
pharmacogenomics

There are two main subgroups of metabolites that can be

used for pharmacometabolomics-informed pharmacoge-

nomic studies: exogenous metabolites (those produced by

biotransformation of the pharmacological agent, i.e., the

drug) and endogenous metabolites. In other words, these

two subgroups result from pharmacokinetic (PK) and

pharmacodynamic (PD) variation, respectively, that might

contribute to individual differences in drug response. The

following brief examples will serve to illustrate both

exogenous and endogenous pharmacometabolomics-in-

formed pharmacogenomic studies.

2.1 Antidepressant pharmacometabolomics-

informed pharmacogenomics

Samples from the Mayo Clinic NIH-Pharmacogenomics

Research Network-Antidepressant Pharmacogenomics

Medication Study (PGRN-AMPS) have been used to per-

form a series of pharmacometabolomics-informed phar-

macogenomic analyses that have included both exogenous

and endogenous metabolomics. This study involved nearly

800 patients with major depressive disorder (MDD) who

were treated with citalopram or escitalopram–highly

selective serotonin reuptake inhibitors (SSRIs). Clinical

depression symptoms were assessed with both the Hamil-

ton rating scale for depression (HAMD) and the quick

inventory of depressive symptomatology-clinician rated

(QIDS-C16) at baseline and after 4 and 8 weeks of SSRI

treatment. Blood samples were collected at baseline and

after 4 and 8 weeks of SSRI treatment for genomic and

metabolomic analyses. The data from this study have been

used to analyze both parent drug and drug metabolite

concentrations and to assay endogenous metabolite varia-

tions associated with genomic single nucleotide polymor-

phisms (SNPs). A GWAS for association with clinical

response phenotypes (e.g. remission and response) for the

initial 529 patients enrolled in the study has also been

published (Ji et al. 2013). All of these GWAS included

adjustment for appropriate covariates such as age, sex, drug

and prescribed dose.

2.1.1 Citalopram/escitalopram drug and drug metabolite

studies

One of the metabolomic analyses conducted for the PGRN-

AMPS study involved a GWAS for blood drug and drug

metabolite concentrations assayed on an LC MS/MS

quantitative platform (Ji et al. 2014). GWA studies of

escitalopram and S-didesmethylcitalopram concentrations

identified associations with SNPs across CYP2C19

(p = 4.1E-09) and CYP2D6 (p = 2.0E-16), respec-

tively—the two enzymes that had previously been reported

to metabolize escitalopram to form S-didesmethylcitalo-

pram. In addition, after correcting for the CYP2C19 signal,

the ratio of these two metabolites identified SNPs near

TRIML1 (p = 7.08E-09), a gene not previously associated

with drug metabolism. Therefore, this study identified

variants across genes already known to be involved in the

metabolism of citalopram/escitalopram as well as a novel

gene not previously known to play a role in drug bio-

transformation. Of perhaps more importance were the data

for endogenous metabolites, which are described

subsequently.

2.1.2 Citalopram/escitalopram and endogenous

metabolites

2.1.2.1 Glycine pharmacometabolomics-informed phar-

macogenomics In addition to studying drug and drug

metabolite concentrations and their associations with

SNPs, plasma samples from a subgroup of the patients

enrolled in the PGRN-AMPS study were used to perform

metabolomic analyses. The first metabolomic study ana-

lyzed 20 escitalopram remitters and 20 non-remitters using

a semi-quantitative gas chromatography—mass spectrom-

etry (GC-MS) platform that measured 251 metabolites, 97

of which were identified. The pathway most highly asso-

ciated with percent change in QIDS-C16 was the ‘‘nitrogen

metabolism pathway’’, with glycine demonstrating the

most significant association. Candidate glycine metabolism

pathway genes were then selected for tag SNP genotyping

in the entire PGRN-AMPS patient population available at

that time—512 MDD patients who had been treated with

SSRIs. SNPs across the GLDC gene were associated with a

number of measures of clinical outcomes and the SNP with

the lowest p-value (rs10975641) was also associated with

SSRI response in a replication cohort from a separate MDD

treatment study. Furthermore, functional genomic studies

involving electrophoretic mobility shift assays for this SNP

demonstrated altered protein binding in central nervous

system-derived cell lines but not in other cell lines. This

series of findings began with a metabolomic analysis of

samples from just 40 MDD patients at the extremes of

SSRI response, followed by a tag SNP ‘‘candidate path-

way’’ genomic study (Ji et al. 2011).

2.1.2.2 Serotonin pharmacometabolomics-informed phar-

macogenomics As a follow-up to the initial SSRI pharma-

cometabolomics-informed pharmacogenomics study that

implicated glycine in SSRI response, plasma samples from

290 of the PGRN-AMPS patients were assayed using a

quantitative, targeted liquid chromatography electrochemical

Pharmacometabolomics informs pharmacogenomics Page 3 of 6 121

123



coulometric array (LCECA) metabolomics platform. This

analysis identified and quantified metabolites primarily from

the tryptophan, tyrosine and tocopherol pathways,metabolites

that included serotonin—a metabolite that is effectively the

target for SSRIs which block the reuptake of serotonin by the

monoamine transporter encoded by the SLC6A4 gene (Ja-

cobsen et al. 2014; Zhong et al. 2009). Of the 31 metabolites

identified by use of this platform, plasma serotonin was the

metabolite most highly associated with SSRI clinical out-

comes. Therefore, serotonin concentration at baseline and the

change in serotonin concentration after 4 or 8 weeks of SSRI

treatment were used as phenotypes for GWA studies.

Although this study was performed with only a relatively

small group of MDD patients treated with SSRIs, two major

SNP signals were identified in the serotonin GWA studies—

TSPAN5 and ERICH3, both of which were associated with

plasma serotonin and were shown by functional genomic

studies to alter serotonin concentrations in cell culture media

(Fig. 2) (Gupta et al. 2016).

2.2 Aspirin pharmacometabolomics-informed

pharmacogenomics

The Heredity and Phenotype Intervention (HAPI) Heart

Study (Mitchell et al. 2008) was designed to study the

molecular basis for variation in aspirin response at both

genomic and metabolomic levels and also to integrate these

two -omics data sets. Although variation in aspirin

response is highly heritable, few genetic variants had been

associated with individual variation in aspirin response.

This aspirin response study was performed with subjects

from the Old Order Amish population—a highly homo-

geneous population (Cross 1976). Specifically, serum from

165 HAPI Heart Study participants who had been exposed

to aspirin was assayed using a semi-quantitative untargeted

GC-MS platform. The identified metabolites were then

associated with response to aspirin which was measured

using ex vivo assays of collagen-stimulated platelet

aggregation. Not only were purine pathway metabolites

altered after treatment with aspirin, but purine metabolites

were also associated with differences in response between

40 ‘‘good’’ and 36 ‘‘poor’’ responders. Therefore, associa-

tions between aspirin response and purine pathway gene

SNPs were investigated, and SNPs across the adenosine

kinase (ADK) gene were associated with aspirin response

(p = 3.4E-04). The SNP with the lowest p value was

replicated in 341 participants from the Pharmacogenomics

of Antiplatelet Intervention study (p = 0.002). The authors

also tested the association of concentrations of purine

metabolites with the top SNP and found that the SNP was

associated with concentrations of a series of purine

metabolites both before and after aspirin intervention.

Therefore, by utilizing both genomic and metabolomic

analyses in concert, this study was able to identify a novel

genetic locus that may play a role in individual variation in

response to aspirin (Yerges-Armstrong et al. 2013; Lewis

et al. 2013).

3 Discussion

Healthcare professionals have always attempted to ‘‘tailor’’

their treatments to individual patients. However, they often

lacked adequate objective data to truly ‘‘individualize’’

drug therapy. The current era of Precision Medicine pro-

mises to make it possible to utilize a combination of

Fig. 2 Identification of novel genetic variants associated with

serotonin concentrations in major depressive disorder (MDD) patients

treated with selective serotonin reuptake inhibitors (SSRIs). Plasma

serotonin concentrations were associated with the most clinical

outcomes for MDD patients treated with SSRIs and, therefore,

serotonin concentration was used as a phenotype for GWA studies.

a GWAS of baseline plasma serotonin identified two SNP signals

associated with serotonin concentration: TSPAN5 (rs11947402,

p = 7.84E-09) and ERICH3 (rs11580409, p = 9.28E-08). These

two signals were also identified after SSRI treatment for 4 and

8 weeks. Variant TSPAN5 genotype was associated with higher

baseline and larger decreases in plasma serotonin concentrations,

whereas variant ERICH3 genotype was associated with lower baseline

and smaller decreases in plasma serotonin concentrations after SSRI

treatment. b Variant (V) TSPAN5 genotype and wildtype (WT)

ERICH3 genotypes were associated with higher serotonin concentra-

tions and could explain 18.8 % of the variation observed in this

population
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different -omics data to identify underlying molecular

pathways and variation in the genes encoding proteins in

those pathways that can help explain individual pheno-

types. Therefore, pharmacometabolomics-informed phar-

macogenomics—a term coined in 2012 (Ji et al. 2011)—

represents one strategy at the interface of metabolomics

and genomics that will clearly be an important aspect of the

movement to Precision Medicine. While this ‘‘Brief

Review’’ has focused on pharmacometabolomics-informed

pharmacogenomics, it should be emphasized that there

have also been metabolomics-informed genomic studies

designed to identify SNPs associated with inter-individual

metabotype variation that is independent of pharmacolog-

ical response. In other words, metabolomics-informed

genomic studies do not have to focus on metabolite vari-

ations after pharmacological treatment but may also be

used to investigate genetic variation(s) that may impact

metabolomic variation in the population or that are related

to disease pathophysiology (Illig et al. 2010; Gieger et al.

2008; Suhre et al. 2011). It will be important to compare

the results of those studies with the results of pharma-

cometabolomic-informed pharmacogenomic studies to

identify genetic variants that contribute to metabolomic

variation independent of drug response.

While approaches that use multiple -omics provide

methods to investigate heterogeneous and complex dis-

eases, there are challenges that must be addressed when

utilizing large -omic datasets. Metabolomics can be

assayed using a variety of different platforms that will

identify anywhere from a handful of metabolites to hun-

dreds of known metabolites. Increasing numbers of

metabolites can result in a dimensionality issue in which

there are many more metabolites than subjects or samples

so it may be necessary to implement further filters to select

individual metabolites or sets of metabolites from the full

list of identified metabolites. As proposed here, multiple -

omics approaches can effectively used as hypothesis-gen-

erating steps to be tested with functional validation and

replication within independent samples of the population.

As in any study, a larger sample size will provide more

power for statistical analyses or models to be used but cost

may be a limiting factor. It is important to keep these

challenges (cost, dimensionality and sample size) in mind

when selecting a platform for metabolomics analyses.

We have briefly outlined several studies that have

applied a pharmacometabolomics-informed pharmacoge-

nomic research strategy to help identify metabolomic

profiles associated with variation in pharmacological

response-followed by the identification of SNPs/genes that

are associated with metabolomic profiles. It should be

emphasized that each of the studies elected to integrate

three types of data for their subjects (clinical outcomes,

SNP genotypes, and metabolomics) using slightly different

approaches, but each serves to illustrate the potential value

of the addition of metabolomic data to the ‘‘traditional’’

genotype-phenotype association approach. It is already

clear that one -omic measure, i.e., genomics, transcrip-

tomics, proteomics or metabolomics alone may not be

sufficient to explain a clinical phenotype nor can it provide

adequate information to individualize drug therapy. We are

moving progressively toward the use of multiple -omics in

concert to sub-classify phenotypes and variation in

response to medications. Future studies should attempt to

use pharmacometabolomics together with pharmacoge-

nomics to enhance our understanding of biochemical

pathways that play a role in individual variation in drug

response phenotypes. This approach may have the potential

to take us beyond current disease phenotypes by using

drugs as probes to help identify genetic and metabolomic

variants that may contribute to individual differences in

response to pharmacological agents.
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