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Abstract

Introduction Amyotrophic lateral sclerosis (ALS) and

Parkinson’s disease (PD) are two severe neurodegenerative

disorders for which the disease mechanisms are poorly

understood and reliable biomarkers are absent.

Objectives To identify metabolite biomarkers for ALS and

PD, and to gain insights into which metabolic pathways are

involved in disease.

Methods Nuclear magnetic resonance (NMR) metabo-

lomics was utilized to characterize the metabolite profiles

of cerebrospinal fluid (CSF) and plasma from individuals in

three age, gender, and sampling-date matched groups,

comprising 22 ALS, 22 PD and 28 control subjects.

Results Multivariate analysis of NMR data generated

robust discriminatory models for separation of ALS from

control subjects. ALS patients showed increased concen-

trations of several metabolites in both CSF and plasma,

these are alanine (CSF fold change = 1.22, p = 0.005),

creatine (CSF-fc = 1.17, p = 0.001), glucose (CSF-

fc = 1.11, p = 0.036), isoleucine (CSF-fc = 1.24,

p = 0.002), and valine (CSF-fc = 1.17, p = 0.014).

Additional metabolites in CSF (creatinine, dimethylamine

and lactic acid) and plasma (acetic acid, glutamic acid,

histidine, leucine, pyruvate and tyrosine) were also

important for this discrimination. Similarly, panels of CSF-

metabolites that discriminate PD from ALS and control

subjects were identified.

Conclusions The results for the ALS patients suggest an

affected creatine/creatinine pathway and an altered bran-

ched chain amino acid (BCAA) metabolism, and suggest

links to glucose and energy metabolism. Putative metabolic

markers specific for ALS (e.g. creatinine and lactic acid)

and PD (e.g. 3-hydroxyisovaleric acid and mannose) were

identified, while several (e.g. creatine and BCAAs) were

shared between ALS and PD, suggesting some overlap in

metabolic alterations in these disorders.

Keywords Amyotrophic lateral sclerosis (ALS) �
Parkinson’s disease (PD) � NMR metabolomics �
Biomarker � Cerebrospinal fluid (CSF) � Plasma

Abbreviations

ALS Amyotrophic lateral sclerosis

PD Parkinson’s disease

NMR Nuclear magnetic resonance

MS Mass spectrometry

EDTA Ethylenediaminetetraacetic acid

CSF Cerebrospinal fluid

CPMG Carr-Purcell-Meiboom-Gill

PCA Principal component analysis

OPLS Orthogonal projection to latent structures

DA Discriminant analysis

EP Effect projection

CV-ANOVA Analysis of variance testing of cross-

validated predictive residuals

CNS Central nervous system

BCAA Branched chain amino acids
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1 Introduction

Amyotrophic lateral sclerosis (ALS) and Parkinson’s dis-

ease (PD) are two relentless progressive adult-onset neu-

rodegenerative disorders characterized by loss of specific

groups of neurons and linked to protein aggregation. ALS

is initially associated with a progressive degeneration of

the upper and lower motor neurons, subsequently also

affecting other parts of the nervous system (Kiernan et al.

2011) and leading to muscle atrophy and death within

2–5 years after onset (Tandan and Bradley 1985). PD is

associated with the loss of dopaminergic neurons within

the substantia nigra and is primarily manifested by loss of

movement control (Lang and Obeso 2004).

ALS and PD are both protein misfolding diseases,

involving either the formation of neuronal cytoplasmic

inclusions containing TDP43 or misfolded SOD1 in dif-

ferent subtypes of ALS (Forsberg et al. 2010), or intra-

neuronal a-synuclein-rich protein aggregates in PD

(Goedert 2001). Although considerable research efforts

have not yet revealed the exact details about the underlying

disease mechanisms, there are likely mechanistic similari-

ties with regard to protein homeostasis and aggregation,

oxidative stress, mitochondrial dysfunction and autophagy

(Knowles et al. 2014; Menzies et al. 2015; Lin and Beal

2006; Shaw 2005). Furthermore, emerging evidence sug-

gests that there is a prion-like disease propagation involv-

ing SOD1 in ALS and a-synuclein in PD (Polymenidou

and Cleveland 2011; Holmqvist et al. 2014; Ekhtiari et al.

2016). There are at present only symptomatic treatment

strategies available for the two disorders, underlining a

need for disease modifying treatments. Moreover, there is

no unique diagnosis-specific biochemical test for the two

diseases; instead a comprehensive clinical assessment of

the patient is carried out according to the revised EFNS

consensus guidelines for managing ALS (Andersen et al.

2012) or the United Kingdom Parkinson’s disease society

brain bank (UK PDSBB) criteria (Gibb and Lees 1988).

Despite the use of these criteria, it is still difficult to make a

diagnosis, especially at an early stage, where incorrect

diagnosis is common (Rajput et al. 1991). Robust

biomarkers for these diseases would serve several critical

functions; obtaining a straightforward and precise early

diagnosis; monitoring the disease progression; and assess-

ing therapeutics in clinical trials. In addition, metabolite

biomarkers give important clues to the metabolic pathways

and pathogenic mechanisms involved in the two diseases,

and consequently may identify novel therapeutic targets.

One important field for biomarker discovery is meta-

bolomics/metabonomics, an approach where the quantita-

tive analysis of metabolites produced by a biological

system can identify precise effects of a pathophysiological

condition (Nicholson and Lindon 2008). Metabolomics

usually relies on nuclear magnetic resonance (NMR)

spectroscopy or mass spectrometry (MS) methods to

identify and quantify metabolites, where NMR has the

advantage of being quantitative, highly reproducible and

straight-forward to use due to minimal sample-handling,

while the higher sensitivity of MS can detect a greater

number of metabolites from a given sample (Quinones and

Kaddurah-Daouk 2009; Dunn et al. 2011). Solution NMR

techniques are typically used for studying various biofluids,

and the quantitative nature of NMR is particularly advan-

tageous for result comparisons across different studies and

laboratories. NMR measurements have shown excellent

consistency between different laboratories and magnetic

field strengths (Keun et al. 2002; Lindon et al. 2003). NMR

metabolomics/metabonomics plays an important role in

biomarker discovery, as previously reviewed (Smolinska

et al. 2012a; Zhang et al. 2012), and may also provide

details about the crosstalk between the metabolomes of the

host and gut microbes (Li et al. 2011).

Extensive characterization of the metabolomes in CSF

and blood (Sinclair et al. 2010; Smolinska et al. 2012b;

Nicholson et al. 1995; Mandal et al. 2012; Psychogios et al.

2011; Wishart et al. 2008), as well as in urine and saliva

(Want et al. 2010; Bouatra et al. 2013; Dame et al. 2015),

has facilitated the creation of the human metabolome

database (Wishart et al. 2013). Previous NMR- and MS-

metabolomic studies of ALS- and PD-patients have

described metabolic changes within these groups compared

to control groups, both in cerebrospinal fluid (CSF) and

blood (serum/plasma) (Jove et al. 2014). Since these two

neurodegenerative protein misfolding diseases share com-

mon characteristics, it is surprising that, to date, no study

has included both ALS and PD patients for direct and

detailed comparisons.

In the present study, solution NMR metabolomics was

used to characterize the metabolome in CSF and plasma

from individuals in three age, gender, and sampling-date

matched groups, comprising ALS patients, PD patients,

and a control group. This stringent study design provides a

unique possibility to identify common and specific meta-

bolic markers for ALS and PD.

2 Materials and methods

2.1 Participants

Participants were selected from the neurobiobank at the

Department of Pharmacology and Clinical Neuroscience,

Umeå University Hospital, Umeå, Sweden. This biobank

provided CSF and plasma samples from 72 age, gender and

101 Page 2 of 13 J. Wu et al.

123



sampling-date matched participants divided into three

groups: the ALS and the PD disease groups and the control

group, see Table 1 for group characteristics. Each indi-

vidual in one disease group has a matched individual in the

other disease group, as well as one or two matched control

subjects, enabling direct pair-wise comparisons, and

reducing known confounds of metabolite analysis, specif-

ically gender, age of patient and age of samples (see

Table S1). The 22 ALS patients (male/female: 15/7) were

diagnosed according to the revised EFNS Consensus

Guidelines for Managing ALS criteria (Andersen et al.

2012), and the 22 PD patients (male/female: 15/7)

according to UK PDSBB criteria (Gibb and Lees 1988).

Patients were included only if the diagnosis was definite

according to the above criteria and if both plasma and CSF

were available and had been collected at the same time.

Included PD patients had a mean disease duration from

symptom onset to collection of samples of

32.5 ± 28.7 months (range 6–97), a mean UPDRSIII score

[unified Parkinson’s disease rating scale (motor score);

(Fahn et al. 1987)] of 23.2 ± 11.7 (range 5–48), and a

median Hoehn-Yahr score of 2 (range 1–3). The 28 sub-

jects (male/female: 19/9) in the control group were, with

one exception, patients with disorders other than neu-

rodegenerative diseases (headache and pain 8, disturbed

balance 3, gait disturbance 3, Guillain–Barre syndrome 3,

Kennedy’s disease 1, another 10 diagnoses were repre-

sented by a single individual).

2.2 Sample collection and preparation

CSF was collected through lumbar puncture according to a

standard operating procedure, and plasma from non-fasted

subjects was obtained from venous blood, using ethylene-

diaminetetraacetic acid (EDTA) as an anti-coagulant (Otto

et al. 2012). Samples were stored at -80 �C until NMR

analysis. Samples were thawed at room temperature and

thereafter gently shaken to avoid gradient effects. Each

CSF NMR-sample was prepared by mixing 100 ll of CSF

with 80 ll of NMR buffer. The NMR buffer consists of a

sodium phosphate buffer (Scharlau, Germany), pH 7.4, that

ensures stable pH, D2O (Cambridge Isotope Laboratories,

USA) for providing an NMR lock signal, and sodium-3-

trimethylsilylpropionate-2,2,3,3-D4 (TMSP; Cambridge

Isotope Laboratories, USA) as an internal reference for

alignment and quantification. The resulting sample con-

sisted (apart from CSF) of 50 mM sodium-phosphate, pH

7.4, 10 % D2O and 0.25 mM TMSP. Preparation of the

plasma samples were carried out according to the standard

operating procedure provided by Bruker Biospin. Briefly,

plasma (90 ll) was mixed with equal amount of buffer

(90 ll), giving a sample with 37.5 mM sodium phosphate

buffer, pH 7.4, 10 % D2O, 0.02 % sodium azide and

2.3 mM TMSP. Finally, each 180 ll sample (CSF and

plasma) was briefly centrifuged at 13000g for 30 s (to

sediment particulates) before being transferred to a 5 mm

heavy-walled NMR-tube (Wilmad-LabGlass, USA).

2.3 NMR spectroscopy and processing

NMR experiments were carried out on a Bruker DRX600

spectrometer, equipped with a 5 mm triple-resonance

z-gradient cryo-probe. Additional 2D TOCSY (total cor-

relation spectroscopy, tmix = 60 ms) and NOESY (nuclear

Overhauser-effect spectroscopy, tmix = 100 ms) spectra

for confirming resonance assignments were carried out on a

Bruker 850 MHz Avance III HD spectrometer, equipped

with a 5 mm triple-resonance z-gradient cryo-probe.

TOPSPIN, version 2.1 or 3.0, was used for spectrometer

control and data processing (Bruker Biospin).

For the CSF samples NMR spectra were recorded at 258
C using 1D 1H and 1H Carr-Purcell-Meiboom-Gill

(CPMG) experiments, a spectral width of 14 ppm, 16 k

data points, excitation sculpting for water suppression, a

200 ms mixing time for the CPMG filter, 192 transients,

and 4 s relaxation delay. The CPMG filter was used to

suppress broad resonances originating from large mole-

cules, resulting in a significantly improved baseline and

avoiding the use of filtration or extraction methods. How-

ever, small effects on the signal intensities of the

Table 1 Overview of the number of patients and control subjects included in the present study, the gender distribution, as well as the mean and

standard deviation (SD) of the patient age (in years) and sample age (in months from disease onset) of the different groups

Total Male Female Age of subject Sample age

All Male Female All Male Female

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

All 72 49 23 64.1 ± 6.0 64.0 ± 5.1 64.4 ± 7.8 33 ± 21 32 ± 18 35 ± 27

ALS 22 15 7 64.6 ± 6.4 64.4 ± 5.4 65.0 ± 8.8 32 ± 22 31 ± 18 35 ± 31

PD 22 15 7 64.3 ± 6.1 63.8 ± 5.2 65.3 ± 7.9 32 ± 22 31 ± 18 35 ± 30

Ctrl 28 19 9 63.7 ± 5.9 63.9 ± 5.2 63.2 ± 7.6 33 ± 21 33 ± 18 34 ± 26
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metabolites is unavoidable, as previously described (Jupin

et al. 2013, 2014), but these are consistent across samples.

The robust excitation sculpting technique was used as this

significantly improved the water suppression and baseline,

and thus indirectly improved the quantification procedure.

However, this technique affects the signal height of reso-

nances in a limited region close to the water resonance

(Aranibar et al. 2006; Jupin et al. 2014). For the metabo-

lites that have resonances close to this region (ascorbate,

glucose, mannose and pyroglutamate) quantification was

carried out using resonances from those metabolites in

other spectral regions, thereby no quantification errors due

to the excitation sculpting technique were introduced.

Spectra were processed with 32 k data points, an expo-

nential window function with 0.5 Hz line broadening, a

polynomial base-line correction, and aligned with the

TMSP-signal.

NMR data acquisition for the plasma samples were

carried out at 37 �C, using the NMR experiments recom-

mended by Bruker. The statistical analysis described below

was carried out on data recorded by using a 1D NOESY

experiment (Bruker pulse program noesygppr1d), 128

transients, a recycle delay of 4.0 s and a mixing time of

60 ms. Spectra were processed with 32 k data points, an

exponential window function with 1 Hz line broadening, a

polynomial base-line correction, and aligned using the a-

glucose CH2 resonance at 5.25 ppm.

2.4 Spectral analysis

The processed CSF spectra were subjected to a targeted

analysis; identification and quantification of metabolites

was carried out using the Chenomx NMR Suite software

package, version 7.6 (Chenomx Inc., Edmonton, Canada),

in which an advanced line-fitting procedure, combined with

an extensive database containing NMR reference spectra of

312 metabolites is used, and where the internal TMSP

resonance is used as a reference. Each spectrum was

analysed at two separate occasions to avoid erroneous

identification and quantification. Metabolite identities were

confirmed through the use of AMIX (Bruker Biospin), the

Human Metabolome Database (Wishart et al. 2013) and

literature (Nicholson et al. 1995), as well as through the

acquired and analyzed 2D NMR spectra.

A targeted analysis of the plasma spectra was not

applicable due to the interference from strong and broad

resonances from lipids and proteins. Although the use of a

CPMG experiment in part could resolve this problem

(Jupin et al. 2013), there were still strong lipid/protein

resonances present, interfering with the Chenomx quan-

tification procedure. Instead, an untargeted analysis

approach was applied, in which the plasma spectra were

reduced to spectral bins, using AMIX (Bruker Biospin),

followed by a comparison using multivariate statistics. The

spectral region 0.5–9 ppm was included without normal-

ization and divided into bins of 0.004 ppm, excluding the

regions where EDTA gives disturbing signals (3.70–3.58,

3.25–3.08, 2.74–2.69 and 2.62–2.55 ppm) and water

(5.08–4.37 ppm) (Barton et al. 2010). Furthermore,

metabolites are known to bind to albumin, which may

potentially interfere with the analyses (Jupin et al. 2013,

2014). Since the plasma is diluted with equal amount of

buffer (2 times dilution), and the albumin level within this

cohort is homogenous (43 ± 4 mg/ml), it is unlikely that

albumin affects the analysis.

2.5 Statistical analysis

Multivariate data analysis (ideally suited for analysis of

multiple variables in a complex interaction network) was

carried out both on the quantitative metabolite data in CSF,

as well as on the binned data from plasma, using SIMCA

13.0 (Umetrics, Umeå, Sweden). Datasets were mean-

centered, and scaled (pareto or unit variance), and subse-

quently subjected to principal component analysis (PCA)

to obtain an overview of the data, and orthogonal projec-

tion to latent structures discriminant analysis (OPLS-DA)

(Trygg and Wold 2002; Bylesjö et al. 2006) to find

metabolites that separate the groups. This cohort was

additionally designed to allow pair-wise comparisons, and

with a new statistical method denoted orthogonal projec-

tion to latent structures effect projection (OPLS-EP) anal-

ysis, such a pair-wise comparison can now be performed on

a multivariate basis (Jonsson et al. 2015). OPLS-DA is

excellent for identifying differences among groups and to

identify biomarkers, while the matched-pair comparison in

the OPLS-EP analysis provides further details on the

metabolic effects and mechanisms potentially caused by

the disorder (i.e. hidden amongst factors biased by age,

gender or sample storage). The final OPLS-DA models

were calculated with mean-centering and UV scaling. The

OPLS-EP analysis was performed without mean-centering

but with UV-scaled datasets; in the cases where dual

controls are available, these are averaged before analysis.

Derived OPLS-DA models were cross-validated by leaving

matched groups out, and for OPLS-EP models the seven-

fold cross-validation method was used. The OPLS-EP and

OPLS-DA models obtained in CSF were calculated with

1 ? 0 ? 0 and 1 ? 1 ? 0 components, respectively, while

in plasma 1 ? 1 ? 0 components were used in both cases.

R2X and R2Y are the fractions of the explained variation

for the X and Y component, respectively. Q2 indicates the

goodness of a prediction and describes the fraction of the

total variation predicted by a component, as estimated by

cross-validation. Group separations were evaluated through

CV-ANOVA (Eriksson et al. 2008) and important
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metabolites were identified through the first weight vector

(w*[1]). Cut-off values of w*[1] were determined empiri-

cally by iterative model building to obtain the most sig-

nificant model. In the binning analysis of the plasma

spectra, bins above the w*[1] threshold were translated, via

their chemical shifts, into the corresponding metabolite.

Quantified metabolites in CSF (from the two disease

groups and controls) are further visualized by boxplots, and

analyzed by univariate statistics using Wilcoxon rank-sum

tests. Pathway analysis was carried out by using the

Metaboanalyst (Xia et al. 2012) and HumanCyc web ser-

vers (Romero et al. 2005).

3 Results

3.1 Analysis of the CSF metabolome

In the targeted analysis of the CSF data a total of 60

metabolites were unambiguously identified, 38 of which

were quantified in every sample and used for subsequent

modeling and disease profiling. These results are compiled

in the Supplemental Table S2, where average metabolite

concentrations for each group, fold-changes and the results

from Wilcoxon rank-sum tests have been listed. The spread

of concentrations within the ALS, PD, and control groups,

are visualized with box-plots in Supplemental Fig. S1. The

detected range of metabolite concentrations are in excellent

agreement with previous studies of the CSF metabolome

(Mandal et al. 2012; Wishart et al. 2008; Stoop et al. 2010).

For lactate, a metabolite routinely monitored in all groups

by standard clinical chemistry analysis (using the Cobas

LACT2 reagent on Cobas C502 analyzers), the agreement

is also excellent; NMR gives 1.50 ± 0.22, 1.37 ± 0.22 and

1.29 ± 0.30 mM lactate for the ALS, PD and control

groups, respectively, while the corresponding results from

the accredited laboratory at Norrlands University Hospital,

Umeå, Sweden, were 1.60 ± 0.30, 1.44 ± 0.24 and

1.36 ± 0.23 mM.

A multivariate overview using PCA revealed no sig-

nificant outliers, hence all observations were kept for fur-

ther analysis. The ALS- and the control-groups were

discriminated by the OPLS-EP analysis (R2X = 0.29,

R2Y = 0.83, Q2 = 0.44, p = 0.027), while the separation

with OPLS-DA was not significant. From the significant

OPLS-EP model, variables with weight values |w*|[ 0.2

were selected for a second round of modelling. Included

metabolites were alanine, creatine, creatinine, dimethy-

lamine, glucose, isoleucine, lactate and valine, see Fig. 1a.

The resulting OPLS-EP (R2X = 0.65, R2Y = 0.73,

Q2 = 0.60, p = 0.002) and OPLS-DA (R2X = 0.55,

R2Y = 0.43, Q2 = 0.26, p = 0.008) models provided

better group separation and statistically significant models.

The cross-validated score plot from the OPLS-EP model,

Fig. 1b, showed that most of the matched pairs were

driving the model in the same direction. The group sepa-

ration obtained by using OPLS-DA on the same eight

metabolites is shown in Fig. 1c. The score values for both

the OPLS-EP and OPLS-DA models as a function of match

number are shown in Supplemental Fig. S2A and B. For

seven of these eight metabolites (all except creatinine)

univariate analysis also identifies considerable concentra-

tion changes (p\ 0.05).

The PD and the control groups were compared by

OPLS-EP and OPLS-DA modelling using all metabolites.

No statistically significant models were obtained that could

discriminate between the groups. Metabolites with

|w*|[ 0.15 in the initial OPLS-EP models were selected

Fig. 1 Multivariate statistical comparison of CSF from ALS patients

and control subjects. a Metabolites, with weight values |w*|[ 0.2,

important for separation between the ALS and control groups.

b Cross-validated OPLS-EP score plot of the first component, tcv[1].

c Cross-validated OPLS-DA score plot of the first component, tcv[1]

(ALS patients: filled circles; control subjects: open circles)

NMR analysis of the CSF and plasma metabolome of rigorously matched amyotrophic lateral… Page 5 of 13 101

123



for a second round of modeling; 15 metabolites fulfilled

this criterion, see Fig. 2a. Using this subset of metabolites,

a statistically significant OPLS-EP model (R2X = 0.36,

R2Y = 0.39, Q2 = 0.27, p = 0.042) was obtained. The

cross-validated score plot for this OPLS-EP model is

shown in Fig. 2b, and the scores for each matched pair in

Supplemental Fig. S3. Smaller subsets of metabolites were

tested, but did not improve the discrimination between the

PD and control groups (data not shown).

When comparing the ALS group to the PD group using

OPLS-EP and OPLS-DA (with all variables), both methods

were able to separate between the ALS and the PD group;

however, none of the models were significant according to

CV-ANOVA. A second round of modeling was carried out

using metabolites with weight values |w*|[ 0.2. In total,

10 metabolites fulfilled this criterion, see Fig. 3a. The

resulting OPLS-EP (R2X = 0.28, R2Y = 0.57, Q2 = 0.42,

p = 0.004) and OPLS-DA (R2X = 0.34, R2Y = 0.51,

Q2 = 0.34, p = 0.002) models provided discriminatory

ability between the ALS and PD groups and both models

were statistically significant. Figure 3b shows the cross-

validated score plot from the OPLS-EP model, while

Fig. 3c shows the scores from the OPLS-DA model. The

scores for matched pairs are shown in Supplemental Fig

S4.

3.2 Analysis of the plasma metabolome

For plasma, the derived spectral bins were analyzed sta-

tistically using OPLS-EP and OPLS-DA to identify

metabolites capable of discriminating between the ALS,

Fig. 2 Multivariate statistical comparison of CSF from PD patients

and control subjects. a Metabolites, with weight values |w*|[ 0.15,

important for the separation between the PD and the control groups.

b Cross-validated OPLS-EP score plot of the first component, tcv[1]

Fig. 3 Multivariate statistical comparison of CSF from ALS and PD

patients. a Metabolites, with weight values |w*|[ 0.2, important for

separation between the ALS and the PD groups. b Cross-validated

OPLS-EP score plot of the first component, tcv[1]. c Cross-validated

OPLS-DA score plot of the first component, tcv[1] (ALS patients:

filled circles; PD patients: open diamonds)
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PD and control groups. One sample was excluded from the

analysis, since the initial PCA analysis identified it as an

outlier caused primarily by highly elevated levels of glu-

cose. Statistically significant models were obtained

between the ALS group and the control group using either

the OPLS-EP (R2X = 0.37, R2Y = 0.85, Q2 = 0.52,

p = 0.010) or the OPLS-DA approach (R2X = 0.32,

R2Y = 0.64, Q2 = 0.30, p = 0.004). OPLS-EP variables

with weight values |w*|[ 0.03 were translated into the

corresponding metabolites, shown in Fig. 4a; the OPLS-EP

and OPLS-DA scores of these models are shown in Fig. 4b

and C. The score values as a function of the matched pair

number are shown in the Supplement, Fig. S2C and D. No

statistically significant models were obtained for discrimi-

nating the PD group from either the control or the ALS

groups.

4 Discussion

For both ALS and PD we lack a detailed understanding of

the underlying disease mechanisms, diagnostic tests and

effective disease modifying treatments. It is consequently

of great interest to find biomarkers that can support the

diagnosis procedure, monitor the disease progression and

provide insight about the molecular mechanisms involved.

In the present work, CSF and plasma from rigorously

matched patients with ALS and PD were analyzed by

solution NMR metabolomics, and the obtained metabolite

profiles were compared with those of matched control

subjects. Multivariate statistical analysis was primarily

carried out by using the OPLS-EP and the OPLS-DA

approaches. Noteworthy is that the OPLS-EP analysis of

this pair-wise matched cohort in general provided stronger

models than the OPLS-DA analysis of the aggregate

groups. The reason may be that the unpaired group dis-

crimination analysis (i.e. OPLS-DA) may have difficulties

in detecting subtle disease-associated variation due to

variations from other sources such as gender, age or sam-

ple-age within the groups (Jonsson et al. 2015).

Distinct metabolite differences between ALS patients

and controls were observed both in CSF and plasma, while

robust group discrimination between PD patients and

controls, as well as between ALS and PD patients, were

only detected in CSF. The metabolites capable of sepa-

rating these groups are summarized in Table 2, together

with affected metabolic pathways and/or physiological

functions, and the results are discussed below.

4.1 ALS patients compared to control subjects

In the quantitative and targeted multivariate analysis of

CSF metabolites, a clear separation between the ALS group

and the control group was observed. Judged by the weight

values of the multivariate statistical analysis, eight

metabolites were of particular significance, see Fig. 1 and

Table 2. The univariate statistical analysis showed that

seven of those (all except creatinine) had p values below

0.05. In plasma the multivariate analysis showed that

thirteen metabolites are of particular importance (with

weight values |w*|[ 0.03) for the separation between ALS

patients and control subjects, see Fig. 4 and Table 2. Five

of the metabolites were found at elevated levels in both

Fig. 4 Multivariate statistical comparison of plasma from ALS

patients and control subjects. a Metabolites, with weight values

|w*|[ 0.03, important for the separation between the ALS and the

control groups. b Cross-validated OPLS-EP score plot of the first

component, tcv[1]. c Cross-validated OPLS-DA score plot of the first

component, tcv[1] (ALS patients: filled circles; control subjects: open

circles)
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CSF and plasma, these were alanine (CSF fold

change = 1.22, p = 0.005), creatine (CSF-fc = 1.17,

p = 0.001), glucose (CSF-fc = 1.11, p = 0.036), iso-

leucine (CSF-fc = 1.24, p = 0.002), and valine (CSF-

fc = 1.17, p = 0.014), see Table S2.

Among the ALS patients, the CSF and plasma concen-

trations of creatine were found elevated when compared to

the control group, and together with the decreased con-

centration of creatinine in CSF, this suggest that the crea-

tinine metabolism pathway is disturbed in ALS. These

results are in line with several metabolomics studies, in

which equivalent changes of the creatine/creatinine levels

have been observed in ALS patients (Lawton et al. 2014,

2012; Wuolikainen et al. 2011, 2016). It is however note-

worthy that the present NMR study, together with the very

recent MS study on the same cohort (Wuolikainen et al.

2016), for the first time have detected increased levels of

creatine in CSF. Reduced creatinine level has previously

been correlated with ALS both in CSF and blood (Paillisse

et al. 2005; Wuolikainen et al. 2011). Since creatinine is

primarily formed in the skeletal muscles and the level of

CSF creatinine is known to depend on the plasma level

(Tachikawa et al. 2008), the reduced CSF level may be

linked to the wasting of skeletal muscle mass and not to the

neurodegenerative process per se in the central nervous

system (CNS). However, since much more creatinine is

Table 2 Overview of the metabolites in CSF and plasma important for separation of the ALS and the PD patient groups from the control group,

and from each other, in the multivariate statistical models

Metabolite (ChEBI ID) ALS vs controls PD vs controls ALS vs PD Pathway or physiological function

CSF Plasma CSF CSF

Creatine (16919) : : : Creatine phosphate shuttle

Creatinine (16737) ; Creatine phosphate metabolism

L-Isoleucine (17191) : : Branched chain amino acid, essential in diet

L-Leucine (15603) : : Branched chain amino acid, essential in diet

L-Valine (16414) : : Branched chain amino acid, essential in diet

Dimethylamine (17170) : : Linked to oxidative stress regulation

L-Alanine (16977) : Glucose, pyruvate, amino acid metabolism

D-Glucose (4167) : : Glucose metabolism

L-Lactic acid (422) : Anaerobic glycolysis

Acetic acid (15366) : Multiple pathways

L-Glutamic acid (16015) : Neurotransmitter, multiple pathways

L-Histidine (15971) : : Linked to neurotransmission and oxidative stress

L-Tyrosine (17895) : : Linked to neurotransmission and oxidative stress

Pyruvic acid (32816) : Glycolysis, gluconeogenesis, key intermediate

Lipids : Lipid metabolism

Triglycerides : Fatty acid metabolism

3-Hydroxyisovaleric acid (37084) ; Leucine degradation

Acetoacetic acid (15344) ; : Ketone body, propanoate and Leu metabolism

Citric acid (30769) : TCA/Krebs/Citrate cycle

Dimethyl sulfone (9349) ; Methanethiol metabolism

D-Fructose (28645) : Mannose and fructose metabolism

D-Mannose (4208) ; Mannose, fructose and glucose metabolism

2-Hydroxybutyric acid (1148) : Propanoate/propionate metabolism

Acetone (15347) : Ketone body, propanoate metabolism

Isopropyl alcohol (17824) : Propanoate/propionate metabolism

Ascorbic acid (17208) ; Ascorbate and aldarate metabolism

Myoinositol (17268) Ascorbate and aldarate metabolism

Formic acid (30751) ; Pyruvate metabolism

Increased and decreased concentrations of the metabolites are indicated with an upward or downward pointing arrow, respectively. Bold arrows

indicate metabolites with a p value below 0.05 in the univariate analysis. A selection of affected pathways and/or associated physiological

functions for each metabolite is listed
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produced by the non-enzymatic degradation of phospho-

creatine than from creatine (Wyss and Kaddurah-Daouk

2000), this altered level in CSF of ALS patients may also

be indicative of a compromised creatine to phosphocreatine

conversion by creatine kinase within the CNS.

Another group of metabolites, displaying increased

concentrations in CSF and plasma from ALS-patients, were

the branched-chain amino acids (BCAA) isoleucine and

valine (Figs. 1a and 4a; Table 2). The BCAA leucine also

has elevated concentration in plasma (Fig. 4a; Table 2). In

CSF, leucine is found just below the cutoff value

(|w*| = 0.2), with a |w*| = 0.18 (Table S2). These three

metabolites are all found in the valine, leucine and iso-

leucine biosynthesis/biodegradation pathways, and present

findings suggest that the ALS disorder may affect these

pathways. The BCAAs are also known to affect brain

function via an altered neurotransmitter biosynthesis

(Fernstrom 2013). Several studies have previously corre-

lated an increased concentration of BCAA, obtained pri-

marily through a diet designed to increase muscle growth,

with an accelerated progression of ALS (Beghi 2013;

Manuel and Heckman 2011). Interestingly, the BCAA

leucine is a key regulator of the mechanistic target of

rapamycin complex 1, a key enzyme involved in protein

synthesis and degradation (Averous et al. 2014; Jewell

et al. 2015). The MS-based metabolomic study on the same

cohort observed similar changes in the BCAA levels,

thereby supporting these findings (Wuolikainen et al.

2016).

The CSF-levels of dimethylamine are elevated in the

ALS patient group when compared to the control group,

are therefore important for separation of the two groups

statistically (Fig. 1; Table 2). Dimethylamine is pro-

duced from asymmetric dimethylarginine (ADMA) via

the enzyme dimethylarginine dimethylaminohydrolase 1

(MacAllister et al. 1996). ADMA is an endogenous

inhibitor of nitric oxide synthase (Vallance and Leiper

2004), and consequently dimethylamine can be linked to

the synthesis of nitric oxide and the regulation of

oxidative stress. A previous report in fact observed

reduced plasma concentration of ADMA in patients with

the ALS disorder (Isobe et al. 2010). A reduced level of

ADMA in plasma from ALS patients was also found in

the same patient cohort as analyzed here, by MS-based

metabolomics (Wuolikainen et al. 2016). Hence, the

elevated levels of dimethylamine in CSF combined with

reports of reduced levels of ADMA in plasma together

indicate perturbations in this pathway in ALS. Since the

regulation of oxidative stress is complex and involves

other pathways than the one described above, the roles

of dimethylamine and ADMA as potential markers for

ALS need to be further evaluated in larger patient

cohorts.

The increased concentrations of alanine and glucose

detected in CSF and plasma from ALS patients, as well as

an elevated concentration of lactic acid in CSF, suggest an

affected glucose metabolism (Fig. 1 and 4; Table 2)

(Tsacopoulos and Magistretti 1996). Elevated levels of

glucose and lactic acid in CSF were also detected in a

recent longitudinal study (Gray et al. 2015). The observed

changes for alanine and glucose are in agreement with the

recent MS-based study on the same patient cohort (Wuo-

likainen et al. 2016), while two other studies did not

observe similar changes (Blasco et al. 2010, 2013).

In plasma, the metabolites acetic acid, glutamate,

pyruvate, histidine and tyrosine showed increased con-

centrations (Fig. 4a; Table 2). Elevated CSF- and plasma-

levels of glutamate and pyruvate have previously been

observed in ALS patients (Blasco et al. 2010, 2013; Law-

ton et al. 2012; Kumar et al. 2010; Wuolikainen et al.

2016). The increased level of glutamate in plasma/serum

has previously been attributed to either the glutamate

excitotoxicity in ALS or to an imbalance in the glutamate/

glutamine conversion (Kumar et al. 2010). This study

(Kumar et al. 2010) did however not observe any signifi-

cant concentration changes of the aromatic amino acid and

neurotransmitter precursor tyrosine, while the antioxidant

metabolite histidine in contrast showed a decreased level.

Although tyrosine and histidine can be linked to neuro-

transmission and the reduction of oxidative stress (Wade

and Tucker 1998; Milewski et al. 2014), there is to our

knowledge no previous direct association with ALS.

Furthermore, we observed increased plasma levels of

lipids and triglycerides in ALS patients in comparison to

control subjects; changes of the same group of metabolites

have been observed in MS-based metabolomic studies of

plasma (Lawton et al. 2014, 2012; Wuolikainen et al.

2016). This highlights the need for further studies of the

lipidomic metabolic profile of ALS patients.

4.2 PD patients compared to control subjects

In order to distinguish PD patients from control subjects, a

set of 15 CSF-metabolites were used together with the

OPLS-EP analysis, see Fig. 2 and Table 2. The modelling

statistics were poorer than in the comparison between the

ALS and control groups; this is most likely due to a great

variation among the patients in severity of motor impair-

ment (UPDRSIII motor score 23.2 ± 11.7, range 5–48).

Attempts to use subsets of these 15 metabolites did not

improve the discrimination. The difficulty in obtaining

statistically significant models emphasizes the need for

some caution when interpreting the results.

Decreased concentration of 3-hydroxyisovalerate in the

CSF of PD patients has previously been observed (Öhman

and Forsgren 2015; Trupp et al. 2014), and can potentially
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be linked to tyrosine degradation (Trupp et al. 2014). In

agreement with a previous report (Öhman and Forsgren

2015), the metabolite mannose, involved in glucose meta-

bolism (Sharma et al. 2014), also has a decreased con-

centration in the CSF of PD patients. Alanine,

dimethylamine and glucose all showed an increased con-

centration, contrary to several studies (Lewitt et al. 2013;

Mally et al. 1997; Molina et al. 1997; Öhman and Forsgren

2015). The BCAA isoleucine, leucine and valine were all

found at higher concentrations in the PD patients, similar to

the ALS patient group above. Elevated levels of BCAAs in

PD patients have previously been observed (Van Sande

et al. 1971; Lakke and Teelken 1976; Lakke et al. 1987),

although the opposite has also been reported (Molina et al.

1997). As described above, BCAAs are linked in biosyn-

thesis and degradation pathways as well as to neurotrans-

mitter biosynthesis of relevance for the PD pathology. We

have also detected altered levels of degradation products

from leucine including 3-hydroxyisovaleric acid and ace-

toacetic acid (Table 2), supporting the model of disrupted

leucine regulation in PD. The reduced concentration of

acetoacetic acid may also implicate an effect on ketone

body synthesis or degradation. Two metabolites with

increased concentration in CSF were tyrosine and histidine;

they can be linked to neurotransmission and the reduction

of oxidative stress (Wade and Tucker 1998; Milewski et al.

2014). The four remaining metabolites, citric acid, creatine,

dimethylsulfone and fructose, all display elevated levels in

PD patients when compared to controls. Dimethylsulfone is

involved in the methanethiol pathway, in which it is pro-

duced as a breakdown product of the nitric oxide synthase

cofactor methanethiol (Engelke et al. 2005). Fructose is

linked to the mannose and fructose pathway, and citric acid

to numerous metabolic pathways; future studies of larger

patient cohorts will clarify their importance.

4.3 ALS patients compared to PD patients

Multivariate analysis showed that 10 CSF-metabolites

could clearly distinguish ALS patients from PD patients,

see Fig. 3 and Table 2. As described above creatine,

dimethylamine and lactic acid were important to discrim-

inate ALS patients from controls; here it is further shown

that these metabolites were also discriminatory between

ALS and PD patients. This is likely due to the similarity of

the metabolic profiles for the PD and control groups, as

indicated by their poor separation in the multivariate

models. The two metabolites acetone and acetoacetic acid

were shown to be important for the separation between

ALS and PD; both metabolites are ketone bodies, and

involved in pathways known to play roles in both ALS and

PD (Zhao et al. 2006; Paoli et al. 2014). Acetone, ace-

toacetic acid, 2-hydroxybutyric acid, lactic acid and

isopropyl alcohol are all involved in the propanoate/pro-

pionic acid metabolism, and therefore implicate a differ-

ence in this pathway. 2-hydroxybutyric acid has previously

been identified as an early marker for diabetes (Gall et al.

2010), suggesting that this is another indication of altered

glucose metabolism in ALS. Lactic acid is together with

formic acid also involved in pyruvate metabolism. An

elevated level of ascorbic acid has previously been

observed in CSF from ALS patients (Blasco et al. 2010,

2013); both ascorbic acid and myo-inositol are part of the

ascorbate and aldarate metabolism, which may reflect a

difference in this pathway between ALS and PD patients.

5 Concluding remarks

The present NMR metabolomics study revealed significant

differences in the metabolic profiles of ALS patients

compared to the profiles of age, gender, and sampling-date

matched control subjects and PD patients. The discrimi-

nation between PD patients and controls is however less

significant. Several metabolites have been identified as

potential biomarkers for ALS, many of which have been

linked to specific metabolic pathways involved in the ALS

pathophysiology (Table 2). Interestingly there are both

shared and unique metabolic markers for the ALS and PD

disorders. Although these findings in part are validated by

previous studies and by the very recent MS-based study on

the same patient cohort (Wuolikainen et al. 2016), further

validation of the identified metabolic markers is necessary

using larger patient cohorts.
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