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Abstract

Introduction Climate change is a major concern for the

scientific community, demanding novel information about

the effects of environmental stressors on living organisms.

Metabolic profiling is required for achieving the most

extensive possible range of compounds and their concen-

tration changes on stressed conditions.

Objectives Individuals of the crustacean species Daphnia

magna were exposed to three different abiotic factors

linked to global climate change: high salinity, high tem-

perature levels and hypoxia. Advanced chemometric tools

were used to characterize the metabolites affected by the

exposure.

Method An exploratory analysis of gas chromatography-

mass spectrometry (GC–MS) data was performed to dis-

criminate between control and exposed daphnid samples.

Due to the complexity of these GC–MS data sets, a com-

prehensive untargeted analysis of the full scan data was

performed using multivariate curve resolution-alternating

least squares (MCR-ALS) method. This approach enabled

to resolve most of the metabolite signals from interference

peaks caused by derivatization reactions. Metabolites with

significant changes in their peak areas were tentatively

identified and the involved metabolic pathways explored.

Results D. magna metabolic biomarkers are proposed for

the considered physical factors. Metabolites related with

energy metabolic pathways including some amino acids,

carbohydrates, organic acids and nucleosides were identi-

fied as potential biomarkers of the investigated treatments.

Conclusions The proposed untargeted GC–MS metabo-

lomics strategy and multivariate data analysis tools were

useful to investigate D. magna metabolome under envi-

ronmental stressed conditions.

Keywords Metabolic profiling � Gas chromatography-

mass spectrometry � Daphnia magna � Environmental

stressors � Chemometric tools

1 Introduction

Metabolomics is concerned with the study of naturally

occurring, low molecular weight organic metabolites within

a cell or tissue (Griffiths 2008; Harrigan and Goodacre 2003;

Lindon et al. 2007). An important application of metabo-

lomics is the study of the interactions of living organisms

with their environment, which is defined as environmental

metabolomics (Bundy et al. 2009; Miller 2007). A definition

proposed for this field is ‘‘the application of metabolomics

to the investigation of both free-living organisms obtained

directly from the natural environment and of organisms

reared under laboratory conditions’’ (Morrison et al. 2007).

Metabolomics presents several advantages for the study of

organism–environment interactions and for assessing the

health status of organisms in the field (Bundy et al. 2009;

Krastanov 2010). Metabolomic measurements report on the

actual functional status of biological organism levels, (i.e.

cell, tissue) which, in principle, can be mechanistically

anchored to effects occurring at lower (i.e. genomic) or

higher (phenotypic) levels of biological organization (Fiehn

2001). As such, at present, the number of metabolomic
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studies applied to environmental problems are growing

considerably trying to improve the understanding of

organism responses to abiotic stressors (Arbona et al. 2013;

Sardans et al. 2011). Metabolomic studies are based on

simultaneous measurement of multiple metabolites, using

inherently parallel analytical techniques such as nuclear

magnetic resonance spectroscopy or mass spectrometry,

followed by appropriate statistical analysis (Lindon and

Nicholson 2008a, b; Dunn et al. 2011). The application of

metabolomic techniques, however, is still limited, due to the

inherent problems of separation and identification of unique

metabolites and hence metabolic changes (Viant 2008;

Bundy et al. 2009; Samuelsson and Larsson 2008; Miller

2007).

To evaluate the effects of stressors on the metabolome,

gas chromatography coupled to mass spectrometry (GC–

MS) in electron ionization (EI) is a widely used analytical

technique as it provides high sensitivity and reproducibil-

ity, and permits compound identification using spectral

libraries (Steinhauser and Kopka 2007; Vandenbrouck

et al. 2010b). The major limitation of GC–MS is the

restriction to semi-volatile analytes, and hence the

requirement to convert many polar metabolites to volatile

derivatives through chemical derivatization processes.

Oximation and trimethylsylilation (TMS) reactions of

organic compounds are the classical and most widely used

derivatization procedures for metabolome analysis by GC–

MS (Villas-Boas et al. 2011; Kanani et al. 2008; Yi et al.

2014; Gullberg et al. 2004; De Souza 2013; Little 1999).

Derivatization, however, increases the amount of adduct-

derivatives and hence the complexity of metabolomics

data. Understanding this complex big-data generated from

GC–MS is still currently a bottleneck (Vandenbrouck et al.

2010b; Dunn et al. 2013; Wehrens et al. 2014).

In order to maximize the extraction of information, a

pipeline for GC–MS metabolomic data analysis was

designed and principal component analysis (PCA), partial

least squares-discriminant analysis (PLS-DA) and multi-

variate curve resolution-alternating least squares (MCR-

ALS) (De Juan et al. 2014; van Stokkum et al. 2009; Tauler

1995) were proposed for the resolution of complex chem-

ical mixtures. This last chemometric tool is a powerful data

analysis tool that solves the mixture analysis and interfer-

ences co-elution problems in complex natural samples as

well as problems derived from GC–MS systems, such as

baseline drift, spectral background, noise contributions or

low S/N ratio values (Parastar et al. 2012). MCR-ALS has

been also used in previous works related with ecological

and environmental problems (Navarro-Reig et al. 2015;

Malik and Tauler 2015; Alier et al. 2010; Terrado et al.

2009).

Daphnia magna, a freshwater crustacean, is used

extensively as an aquatic test species (Ikenaka et al. 2006;

Martins et al. 2007; Barata and Baird 2000a) being the

object of standardized testing guidelines from the Organi-

zation for Economic Co-operation and Development

(OECD 2012). Acute and chronic tests of D. magna are

among the most frequently performed studies in aquatic

toxicology because these animals are relatively easy to

culture, have a short lifecycle, and can be maintained at

high population densities in relatively small volumes and

thus are cost-effective (Barata et al. 2005; De Meester and

Vanoverbeke 1999). Daphnia magna is also a keystone

species in freshwater food webs, thus it is also an ecolog-

ical model species to study effects of global climate

change. Water temperature, salinity and oxygen levels of

freshwater bodies are likely to be affected by climate

change (IPCC 2014; Adrian et al. 2009; Coutant 1990).

Here an untargeted GC–MS metabolomics study of D.

magna exposed to mild stress provoked by high salinity,

increased temperature and low dissolved oxygen is

presented.

2 Materials and methods

2.1 Chemicals and standard solutions

Pure metabolites: pimelic acid, malic acid, L-phenylala-

nine, L-tyrosine, putrescine, dopamine hydrochloride,

L-histidine, L-methionine, D-maltose monohydrate, myo-

inositol, D-ribose, D-galactose and cytidine used as test

standards were purchased from Sigma-Aldrich (St. Louis,

MO, USA). D-glucose (U-13C6, 99 %), used as the internal

standard (IS), was supplied by Cambridge Isotope Labo-

ratories, Inc. (Andover, MA, USA). Pyridine (anhydrous,

99.8 %), chlorotrimethylsilane (TMCS), methoxyamine

hydrochloride (98 %) (MeOX) and N-methyl-N-

trimethylsilyl trifluoroacetamide ([98.5 %) (MSTFA),

used as derivatizating agents, and the saturated Alkane

standard mixture for the performance test of GC systems

from C7 to C30 were also obtained from Sigma-Aldrich (St.

Louis, MO, USA). Hexane, methanol and chloroform were

analytical reagent grade, and sodium chloride (NaCl) salt

was supplied by Merck (Darmstadt, Germany).

2.2 Sample preparation

2.2.1 Daphnia magna growth conditions

A single laboratory clone F, which has been the subject of

many investigations (Barata and Baird 2000b) was used.

Bulk cultures of 10 animals L-1 were maintained in

ASTM hard synthetic water (ASTM, 1995) as described by

Barata and Baird (2000b). Individual or bulk cultures were

fed daily with Chorella vulgaris Beijerinck (5 9 105 cells
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mL-1, corresponding to 1.8 lg C mL-1) (Barata and

Baird 1998). The culture medium was changed every other

day, and neonates were removed within 24 h. Photoperiod

was set to 14 h light: 10 h dark cycle and temperature at

20 ± 1 �C.

2.2.2 Experimental design

Four days old D. magna juveniles were used for experi-

ment. Experimental animals were obtained from bulk cul-

tures of 100 individuals reared in 10 L of ASTM as

described above (‘‘Daphnia magna growth conditions’’).

Randomly collected animals were exposed to high salinity,

elevated temperature and hypoxia treatments in groups of

ten individuals in 1.2 L jars filled with 1 L of ASTM hard

water. A control treatment of individuals exposed to ASTM

hard water maintained at 20 �C under saturating oxygen

conditions (&9 mg L-1) without salt (0 g L-1 NaCl) was

also included. Each treatment was replicated five times.

Salinity exposed samples were prepared with 5 g L-1 NaCl

in ASTM hard water, temperature samples were prepared

in a water bath at 25 �C and hypoxia samples at B2 mg O2

L-1 were prepared by bubbling liquid nitrogen into the

ASTM hard water thus displacing oxygen from it. The

oxygen levels were controlled by an oxygen sensor,

approximately the levels had to be B2 mg L-1 in every jar

sample. After 24 h of exposition daphnids were collected

from each jar, pooled in an eppendorf, the water was

removed and then samples were frozen in liquid N2 and

stored at -80�C before metabolite extraction.

2.2.3 Extraction and derivatization of metabolites

In the first part of this work, GC–MS method and deriva-

tization step were optimized to obtain high sensitivity and

to maximize the number of detected compounds. Several

standard mixtures (i.e. organic acids, sugars, nucleotides,

nucleosides and amino acids) were tested to optimize the

experimental conditions and the derivatization step in order

to ensure a comprehensive and reliable metabolic profiling.

An aqueous standard solution (1000 lg mL-1) of each

standard was prepared in methanol and stored in the freezer

at -20 �C until their use. Working standard solutions of

50 lg mL-1 were obtained by diluting the stock solutions

with water. Diluted standard solutions of 5 lg mL-1 were

used to optimize experimental conditions and also several

derivatization conditions were tested. Metabolite extraction

was performed with methanol, water and chloroform and

the chemical derivatization was carried out with two

agents, methoxyamine (MeOX) in pyridine and N-methyl-

N-(trimethylsilyl) trifluoroacetamide (MSTFA) with 1 %

of trimethylchlorosilane (TMCS) as a catalyst of the

reaction, which are very commonly used in metabolomics

studies by GC–MS analysis.

Polar metabolites of the whole organism were extracted

with 400 lL methanol, sonicated for 15 min, and then

200 lL water and 400 lL chloroform were added before

centrifugation at 10,0009g during 15 min, in order to

separate the aqueous and the lipid phase. The aqueous

phase of every sample was transferred to a new eppendorf

and 10 lL of the Internal Standard (IS) [D-glucose (U-

13C6, 99 %)] were added at a concentration of

50 lg mL-1. Afterwards, the extract was evaporated to

dryness with a Speedvac (Thermo Scientific) at 40 �C
during 3 h. When samples were completely dry they were

stored at -80 �C until analysis.

Prior the analysis by GC–MS, a derivatization method

was performed to create thermally stable derivatives suit-

able for the analysis (Orata 2012). The initial conditions

were adjusted from (Vandenbrouck et al. 2010a) and

adapted to the needs of this study, in order to detect the

maximum number of metabolites. The first step was

methoximation with methoxyamine hydrochloride (MeOX)

in pyridine, which was used to stabilize carbonyl radicals

of metabolites and to stop charge transfer. Then,

trimethylsilylation was carried out with N-methyl-N-

(trimethylsilyl) trifluoroacetamide (MSTFA) with 1 % of

trimethylclorosilane (TMCS) as catalyst. Trimethylsilyla-

tion was applied to replace active hydrogens on a wide

range of polar compounds with a trimethylsilyl [–Si(CH3)3]

group. This derivatization method permits to detect the

silylated molecules in the gas chromatography analysis

because it increases the volatility of the metabolites. Dif-

ferent MeOX concentrations (20, 30 and 40 mg mL-1),

MeOX volumes (30, 65 and 100 lL), MeOX temperatures

(20, 30 and 40 �C), MeOX times (90, 525 and 960 min),

MSTFA volumes (30, 65 and 100 lL), MSTFA tempera-

tures (20, 30 and 40 �C) and MSTFA times (30, 60 and

90 min) were tested to improve the derivatization reaction

and to determine the most suitable conditions for the

analysis of D. magna metabolites (Pacchiarotta et al. 2010;

Kanani et al. 2008; Azizan et al. 2012; Kanani and Klapa

2007; Strehmel et al. 2008).

After the extraction of polar metabolites, the final pro-

tocol of the derivatization conditions was implemented: to

the dry residue obtained after extraction from daphnids,

65 lL of 20 lg lL-1 MeOX in pyridine were added. After

mixing for 1 min, the mixture was incubated for 90 min at

30 �C. Thereafter, 30 lL of MSTFA (1 % TMCS) were

added, vortex mixed for a minute and then incubated for

another 30 min at room temperature. Prior to injection,

daphnid derivatized extracts were finally filtrated through a

0.22 lm filters (Ultrafree�-MC, Millipore) and, then

transferred to a chromatographic vial and 5 lL of hexane
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were added to obtain a final volume of 100 lL in order to

be injected into the GC system.

2.3 GC–MS analysis

A Trace GC–MS Thermo Fisher system operated in EI

mode at 70 eV and equipped with a ZB-5MS column

(Phenomenex, 30 m 9 0.25 mm ID 9 0.25 lm) (Van-

denbrouck et al. 2010a) was used. The oven temperature

program was set at 70 �C and then increased at

10 �C min-1 to 250 �C, and then to 310 �C at 5 �C min-1

and held for 5 min, the delay time was 5.3 min and the

time of analysis was 49 min. Other operating conditions

were as follows: carrier gas was He, with a flow rate of

0.6 mL min-1; source temperature, 200 �C; interface

temperature, 280 �C; split ratio of 1:20; detector voltage,

440 V; 2 lL were injected in the split mode injection. The

m/z values were recorded in full scan mode in the range of

m/z 60–650 amu. The mass spectrometer was interfaced to

a computer workstation running Xcalibur software (version

2.2, Thermo Scientific) for data acquisition and processing.

For each detected peak, a linear retention index (RI)

(Strehmel et al. 2008) was calculated using GC RI stan-

dards (hydrocarbons from C7 to C30 were used as internal

standards). Therefore, an n-alkane Standard mixture was

prepared dissolved in hexane at a concentration of

10 lg lL-1, and was injected at the same programme

conditions as the samples in the GC–MS instrument.

2.4 Data analysis

Original full scan GC–MS data sets ‘‘.raw‘‘ from Xcalibur

software (version 2.2, Thermo Scientific) were converted to

‘‘.cdf‘‘ data files by File Converter tool of Xcalibur Soft-

ware to be further processed with MATLAB (The Math-

works, Inc., Natick, MA, USA). Every data matrix

corresponds to one of the samples analyzed by GC–MS

(control and exposed), with 2581 rows (retention times,

49 min run) and the same number of rows equal to 590

columns (m/z values, from 60 to 650 with one unit of mass

resolution). Data values in every data matrix were nor-

malized with the peak area value of the Internal Standard

(D-glucose U-13C6) to correct for the instrumental inten-

sity drifts among injections, and to scale data internally. A

total of 21 individual data matrices [1 blank, 5 controls and

15 exposed (3 treatments 9 5 exposed samples)] with

dimensions of 2581 9 590 (retention times, m/z values)

were obtained and these resulting pre-processed data

matrices were analyzed by MCR-ALS.

Additionally, for initial exploration of GC–MS data, a

new data set was arranged consisting in a single data matrix

where every individual total ion current (TICs) Chro-

matogram of every control and exposed sample were

arranged in the rows of this matrix. Three different single

data matrices of TICs were obtained, one for each of the

three investigated factors (salinity, temperature and

hypoxia), with dimensions of 10 9 2581 [number of

samples (5 controls and 5 exposed) 9 retention times],

which were then submitted to PCA and PLS-DA using PLS

Toolbox 7.3.1 (Eigenvector Research Inc., Wenatchee,

WA, USA).

2.4.1 Initial exploration of GC–MS data

PCA (Wold et al. 1987; Esbensen and Geladi 2010) is an

unsupervised technique that assumes no prior knowledge of

class information and permits the unbiased comparison of

the samples. This allows an initial exploration of the GC–

MS TIC data comparing the behavior between control and

exposed samples according to salinity, temperature and

oxygen levels changes, finding patterns and detecting

possible outliers in the samples. Prior to the chemometric

analysis, some pretreatment methods were applied using

PLS Toolbox 7.3.1 (Eigenvector Research Inc.,

Wenatchee, WA, USA). The first step was to align the

chromatograms to compensate for possible retention time

shifts between chromatographic runs using the correlation

optimized warping method (Tomasi et al. 2004; Nielsen

et al. 1998). After alignment, automatic weighted least

squares from PLS Toolbox 7.3.1 (Eigenvector Research

Inc., Wenatchee, WA, USA) was applied for automatically

removing baseline offsets from TIC data matrices and

variables were mean-centered also using PLS Toolbox

7.3.1 (Eigenvector Research Inc., Wenatchee, WA, USA).

Partial least squares discriminant analysis (PLS-DA)

(Kalivodová et al. 2015; Wold et al. 2001) is a supervised

linear regression technique in which the class for each

group of samples is assigned prior to the construction of the

sample scores plot, and the maximum separation of the

classes (control and exposed samples) is achieved. Variable

importance in projection (VIP) scores (Wold et al. 2001)

were calculated to recognize the chromatographic regions

of interest and to reveal the most influent variables (peak

retention times related with metabolite concentration

changes) discriminating controls and exposed samples.

2.4.2 MCR-ALS analysis

MCR-ALS method allows for the resolution of the pure

elution and mass spectra profiles of all sample constituents

in one or multiple samples analyzed by GC–MS, in a

similar way to the one previously shown for LC-MS

analysis (Farrés et al. 2014) or for other hyphenated

chromatographic techniques (Ortiz-Villanueva et al. 2015).

From the resolved elution profiles of the constituents, their

peak heights or areas can be easily evaluated and compared
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between runs. Due to the high fragmentation of molecules

observed in GC–MS and to the presence of a large number

of derivatized subproducts, the proposed MCR-ALS anal-

ysis is especially helpful because it resolves and distin-

guishes the relevant metabolites profiles of sample

constituents from the irrelevant contributions of the

derivatizing signal, and therefore, it allows for the dis-

crimination of the relevant D. magna elution profiles

(metabolites) from the large number of interfering peaks

(undesired derivatized compounds).

MCR analysis can be mathematically expressed with the

bilinear model shown in the Eq. 1:

D ¼ CST þ E ð1Þ

where C contains the chromatographic profiles of all the

resolved components, ST their resolved (pure) mass spec-

tra, and E is the matrix expressing the error or the variance

not explained by the model, related to background and

other unknown noise contributions. Every full scan GC–

MS gives a data matrix, D, which has the mass spectra at

all retention times in its rows, and the chromatograms at all

m/z values in its columns.

As shown previously, the solution to Eq. 1 for C and ST

is ambiguous if no additional information is available, in

other words, this solution contains rotational and scale

freedom. This problem is usually referred as the factor

analysis ambiguity problem (Tauler 2001). This problem

can affect the resolution of the component profiles. Thus,

exploratory information should be used as constraints

during the resolution process and it can also be used to

build good initial estimates of concentration and spectra

profiles. Constraints such as non-negativity and others are

frequently used in MCR studies (De Juan and Tauler 2007).

In the case of GC–MS data, due to the very high spectral

selectivity, possible ambiguities in the resolution of elution

and spectral profiles are very much diminished or totally

eliminated in most of the cases.

Apart from the derivatizing agent blank sample, five

control and five exposed D. magna samples were obtained

for every investigated treatment: salinity, temperature and

hypoxia. This gives a total number of 21 samples analyzed by

GC–MS [1 blank, 5 controls and 15 exposed (3 treat-

ments 9 5 exposed samples)], giving 21 individual data

matrices, each of them of dimensions 2581 retention times

(between 5.3 min and 49 min) and 590 m/z values (between

60 and 650 m/z values). These individual GC–MS full scan

large sized data matrices were subdivided into eleven dif-

ferent chromatographic time sub-windows to reduce com-

puter storage and execution time requirements. The size

limits of these time subwindows were initially obtained

considering a sufficient number of retention times (approx-

imately 200 retention times) to cover complete peak clusters

and to avoid peak halving. See Table 1 for the details of these

eleven time windows and their retention times.

In order to analyze all these data sets, eleven new column-

wise augmented data matrices Daug, corresponding to every

time window containing the information of one blank

derivatizing agent sample, five replicate control samples and

five replicate abiotic exposed daphnids samples, were built

for every type of treatment (salinity, temperature and

hypoxia). A total number of thirty three (3 treatments 9 11

time windows) column-wise augmented data matrices were

obtained by arranging the corresponding data matrices one

on top of each other, containing in all cases the same number

of columns (590 m/z values). In this way, all the measured

mass spectra were linked across all data (with common m/z

values). GC–MS data matrices of a blank sample containing

only the derivatizing agent were included in all analyses to

Table 1 MCR-ALS results in the analysis of the augmented data matrices for the three treatments (salinity, temperature and hypoxia)

Time

window

(Tw)

Retention

time (min)

Dimensions

of the Tw

Salinity Temperature Hypoxia

Estimated

components

Resolved

peaks

R2 (%) Estimated

components

Resolved

peaks

R2 (%) Estimated

components

Resolved

peaks

R2 (%)

1 5.3–8.7 202 9 591 12 8 95.2 13 9 95.9 18 10 96.1

2 8.7–10.0 80 9 591 9 6 96.2 12 8 98 9 6 97.8

3 10.0–12.2 129 9 591 12 11 96.4 13 11 97.4 13 7 98.6

4 12.2–17.0 291 9 591 13 10 94.8 15 12 96.4 17 11 98.2

5 17.0–20.0 181 9 591 8 6 95.7 13 8 97.8 13 9 98.6

6 20.0–22.6 156 9 591 11 9 98.6 11 9 98.7 11 9 98.9

7 22.6–25.2 157 9 591 12 9 98.4 10 7 97.7 13 5 99.6

8 25.2–29.5 260 9 591 10 7 97.9 10 5 97.8 12 3 99.5

9 29.5–34.5 301 9 591 7 4 98.7 7 3 99.2 9 4 98.5

10 34.5–38.7 251 9 591 9 6 99.1 7 3 98.8 9 5 98.7

11 38.7–49.0 581 9 591 8 5 99.1 5 2 98.1 8 1 98.8
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determine the influence of derivatization and to describe the

components influenced by it. In Fig. 1 these column-wise

matrix arrangements are displayed.

Every column-wise augmented data matrix, Daug, corre-

sponding to a time subwindow and containing 11 submatri-

ces (one blank derivatizant, Db; five control (D1…D5) and

the five exposed samples (D6…D10) according to a specific

treatment) can be decomposed according to the bilinear

model Eq. 2 (see also this matrix decomposition in Fig. 1):

Daug ¼

Db

D1

D2

:

:

:
D10

2
6666666664

3
7777777775

¼

Cb

C1

C2

:

:

:
C10

2
6666666664

3
7777777775

ST þ

Eb

E1

E2

:

:

:
E10

2
6666666664

3
7777777775

¼ CaugS
T þ Eaug

ð2Þ

MCR-ALS applied to this augmented data matrix gave

the resolved augmented elution profiles of the resolved

components (Caug) for every sample and a matrix of the

pure mass spectra of the resolved components (ST) for all

samples.

MCR-ALS analysis requires an initial estimation of the

number of components that can be obtained looking at the

sizes of the singular values (Golub et al. 2000) of the

investigated data matrix. Larger singular values are asso-

ciated to systematic changes and lower ones to noise and

minor contributions. This initial estimation can be after-

wards revised according to the explained variances and to

the interpretability of the recovered profiles. The number of

pre-selected components should describe a sufficient

amount of data variance and to include minor contributions

such as background and derivatizing agents effects. Only

components with reliable chromatographic peak shapes

and meaningful metabolite mass spectra are finally

Fig. 1 GC–MS data sets for blank (1), control (5) and exposed (5)

samples. Selection of time and column-wise matrix augmentation for

the first time window (w1) Daug to be analyzed by MCR-ALS.

Processing steps involve resolution of elution profiles (Caug) of the

components present in this time window in the eleven samples [blank

(1), control (5) and exposed (5)] and of their pure mass spectra (ST).

Statistical evaluation of peak area changes between control and

exposed samples via Student’s t test and PLS-DA. Tentative

identification of potential biomarkers via NIST mass spectra matching

and proposal of possible metabolic pathways involved
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considered. MCR-ALS requires also the use of constraints

to give meaningful solutions (for instance positive elution

and spectra profiles) (Tauler and Barceló 1993; Tauler

1995; De Juan et al. 2010). In this work, constraints of non-

negativity to chromatographic and mass spectra profiles

and spectra normalization of the pure mass spectra profiles

(spectra equal height) were applied. The quality of MCR-

ALS models was measured evaluating the lack of fit, which

is the difference among the input data Daug and the data

reproduced by MCR-ALS (CaugS
T), and the percent of

explained data variance (R2).

2.4.3 Biomarkers detection and NIST identification

Resolved elution and spectra profiles can be used then to

investigate potential biomarkers of the exposed effects (see

Fig. 1). Two different procedures were applied to detect

discriminant metabolites. First, a Student’s t test was tested

within the data matrix Caug, resolved components showing

significant concentration differences between groups

(p value lower than 0.05) were finally considered and

identified by their corresponding MS spectrum in ST.

Secondly, resolved elution profiles were autoscaled to give

equal relevance to all metabolites whatever is their total

concentration and, focusing more in their relative concen-

tration changes in control and exposed samples. Then,

PLS-DA was applied to MCR-ALS autoscaled resolved

peak areas for selecting candidate metabolites. Variable

importance in projection (VIP) scores (Eriksson et al.

2006) were chosen as selection criteria. Peak areas or

elution profiles showing higher VIP scores than 1 were

considered discriminant metabolites between control and

exposed samples. Metabolites from selected peak areas or

elution profiles were identified comparing RIs (from MCR-

ALS resolved elution profiles) and mass fragmentation

patterns (from MCR-ALS resolved mass spectra profiles)

with the standard mass spectral database of the National

Institute of Standards and Technology (USA) (NIST 2014)

(www.nist.gov/srd/nist1a.htm) and of the Golm metabo-

lome database (GMD) of derivatized compounds (Kopka

et al. 2005; Schauer et al. 2005). Two different values for

the matching factors of experimental and theoretical mass

spectra can be obtained by the NIST Mass Spectral Search

2.2 program distributed with the NIST 2014 library, a

match factor for the unknown and the library spectrum

(direct match), and a match factor for the unknown and the

library spectrum ignoring any peaks in the unknown that

are not in the library spectrum, match factor (MF) and

reverse match factor (RMF), respectively. For each mass

spectrum, 100 hits were retrieved. These matching factors

reported are between 0 (no match) and 1000 (perfect

match). As a general guide, a value of 900 or greater was

considered to be a very good matching; between 800 and

900, a good match; between 700 and 800, a fair match; and

less than 600 a poor or very poor match. In the calculation of

MF, the experimental spectrum is used as a template,

whereas for RMF, the template is the library spectrum. To

increase the reliability of the identification, we have included

the internal linear RI markers in the evaluation of the library

hits, by injecting a saturated Alkane standard mixture from

C7 to C30. An advantage of using this MCR-ALS strategy is

that it allows for a better comparison of theMS spectra of the

resolved peaks with those from the NIST 2014 library,

because of the simultaneous use of peak elution retention

times and of the presence of the GC–MS fragment ions in the

resolved mass spectrum assigned to these peaks.

Finally, as shown in the workflow of Fig. 1, metabolites

tentatively identified as potential biomarkers of salinity,

temperature and hypoxia treatments were further charac-

terized by Kyoto encyclopaedia of genes and genomes

(KEGG) database (www.genome.jp/kegg/ligand.html)

(Kanehisa and Goto 2000) to investigate the possible

metabolic pathways involved.

2.5 Software

Data analyses were performed using MATLAB 2013a (The

Mathworks Inc. Natick, MA, USA) and PLS Toolbox 7.3.1

(Eigenvector Research Inc., Wenatchee, WA, USA) was

used for PCA, PLS-DA and variables importance in pro-

jection (VIP) scores calculations. MCR-ALS toolbox

(Jaumot et al. 2015) were used in MATLAB 2012b (The

Mathworks Inc. Natick, MA, USA) for resolution of

metabolite profiles from full MS scan augmented data

matrices. The tentative identification of the metabolites

was carried out by NIST Mass Spectral Search program

(version 2.2) (http://chemdata.nist.gov/mass-spc/ms-

search/) distributed with NIST 2014Mass Spectral Library.

3 Results and discussion

3.1 PCA and PLS-DA exploratory

and discriminatory analysis of GC–MS TIC

of D. magna control and exposed samples

Preliminary analysis of GC–MS TIC data matrices (see

Fig. 2) was performed for the three treatments (salinity,

Fig. 2a, d, temperature, Fig. 2b, e, and hypoxia, Fig. 2c, f)

using PCA and PLS-DA, respectively. In Fig. 2a, b, PC1-

PC2 scores plot separates control (red) from exposed (blue)

samples. In Fig. 2c (hypoxia treatment) PCA did not dis-

tinguish between control and exposed D. magna samples.

PLS-DA analysis was applied to the same three GC–MS

TIC data matrices and VIP scores were calculated for every

factor: salinity (Fig. 2d), temperature (Fig. 2e) and hypoxia
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(Fig. 2f). In the case of salinity a single latent variable was

selected explaining 83.5 and 98.31 % of the X- and y-vari-

ances respectively. In the case of temperature, two latent

variables were selected explaining 56.19 and 97.19 % of the

X- and y-variances respectively, and in the case of hypoxia,

three latent variables were selected to explain 46.24 and

96.18 % of the X- and y-variances respectively. In all cases,

the number of latent variables used for the PLS-DA model

were much lower than the number of samples used in the

analyses (10 samples).According to these graphs, for salinity

and temperature, a small group of retention times were

selected to explain most of the variance across control and

exposed samples, whereas many retention times were nee-

ded to explain the hypoxia treatment.

These two exploratory analysis (PCA and PLS-DA)

showed that exposures to salinity and temperature pro-

duced larger distinctive effects on the metabolite profile of

D. magna samples. However, in the case of low oxygen,

effects were not so pronounced and discrimination of

samples was difficult. However, although GC–MS reten-

tion times with larger VIP scores could already be pre-

liminary investigated, their very large number and the

presence of co-eluting chromatographic peak prevented

determining precisely metabolite profiles of exposed D.

magna samples changed from this preliminary analysis.

Further analysis was then attempted using a deeper MCR-

ALS analysis of the set of individual full scan GC–MS data

matrices for all analyzed samples (control and exposed).

3.2 MCR-ALS analysis of GC–MS full scan data

matrices of D. magna control and exposed

samples

MCR-ALS investigation of full scan data matrices from

GC–MS analysis of control and exposed D. magna samples

allowed the simultaneous resolution of the elution and

mass spectra profiles of a large number of components.

Number of finally resolved peaks, number of resolved

peaks in each time window augmented data matrix for each

treatment, and explained variances of the MCR-ALS model

are summarized in Table 1. Dimensions of the 11 time

window augmented data matrices for the three treatments

and their dimensions are also given in Table 1.

For all treatments, explained variance (R2) percentages

were higher than 94.8 %, and, in all cases, the number of

estimated components was higher than the number of

resolved peaks with reliable chromatographic shapes.

However, this additional number of estimated components

was useful to explain other possible experimental data

variance sources such as background and derivatization

signals. Examples of results obtained in the MCR-ALS

analysis of the GC–MS full scan data are given in Fig. 3

where the representation of resolved concentration and

mass spectra profiles for different components are given.

In Fig. 3a, results from the application of MCR-ALS

analysis on time window 5 for salinity treatment are shown.

In this particular case, optimal results were obtained using

Fig. 2 PCA scores plots of the GC–MS TICs of D. magna extracts

for the salinity (a 5 samples), temperature (b 5 samples) and hypoxia

(c 5 samples) treatments. Red are control samples (control conditions)

and blue are exposed samples (salinity, temperature or hypoxia). PLS-

DA VIP (variables importance in projection) scores plots for GC–MS

TIC retention time variables across salinity (d), temperature (e), and
hypoxia (f) treatments (Color figure online)
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eight components (in different colors), some of them with

highly overlapped (embedded peaks) elution profiles (on the

left) and with multiple MS spectra signals (on the right). On

the left of Fig. 3b, the 11 elution profiles of one of the resolved

components in the different samples (1 blank, 5 control and 5

exposed samples) are given. As it is clearly shown, control

samples showed considerably higher peaks than exposed

samples. On the right of Fig. 3b the mass spectrum of this

resolved component is given. Mass spectrum of this compo-

nent gives the fragmentation pattern of a metabolite assigned

to Arginine [–NH3] (2TMS) derivative according to NIST

2014MS Spectral Search program (www.nist.gov/srd/nist1a.

htm). InFig. 3c concentration andmass spectra profiles of one

component related with the derivatizing agent, MSTFA (m/

z = 73) is shown. Additional profiles related to derivatized

sub-products are resolvedgivingpeak shapeswith an irregular

chromatographic shape. All components of this type were

finally discarded for their further metabolite identification.

Only those MCR-ALS resolved components showing rea-

sonable chromatographic peak shapes (like the one in Fig. 3b)

were considered for their identification and linked to D.

magna metabolome.

3.3 Tentative metabolite identification

Two strategies were implemented to investigate component

profiles changingwith the treatments. Prior to the application

of these analyses, peak areas of the same MCR-ALS com-

ponent profiles in every sample and for all components and

treatments were arranged in a data table for every treatment.

PLS-DAwas applied to these three peak area tables ofMCR-

ALS resolved components in control and exposed samples

for each treatment (10 salinity samples 9 81 peak areas, 10

temperature samples 9 77 peak areas, and 10 hypoxia

samples 9 70 peak areas). In the case of salinity a single

latent variable was selected explaining 67.53 and 96.45 % of

Fig. 3 Examples of elution profiles (left) and of corresponding mass

spectra profiles (right) resolved by MCR-ALS analysis: a applied to

one single control sample in the 5th time window for the salinity

treatment, showing in different colors the 8 component resolved

elution profiles in this time window (left), and the corresponding mass

spectra profiles (right); b applied to the salinity treatment column-

wise augmented data matrix showing the resolution of one of the

components in the 11 simultaneously analyzed matrices, in the order

1st blank sample, 2nd–6th control samples and 7th–11th exposed

samples. And c applied to the same salinity treatment column-wise

augmented data matrix than in b but showing the resolution of the

derivatizing species too (Color figure online)
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the X- and y-variances respectively. In the case of temper-

ature, four latent variables were selected explaining 82.28

and 98.10 % of the X- and y-variances respectively, and in

the case of hypoxia, four latent variables were selected to

explain 73.07 and 98.33 % of the X- and y-variances

respectively. In all cases, the number of latent variables used

for the PLS-DA model were much lower than the number of

samples used in the analyses.

PLS-DAVIP scores provided themost important variables

(resolved peaks) (see Online Resource 1) that help to dis-

criminate between control and exposed samples, with a

threshold above 1. For salinity, temperature and hypoxia 50 of

the 81 resolved peaks, 27 of the 77 resolved peaks and 24 of

the 70 resolved peaks, respectively (Online Resource 2), were

determined as potential biomarkers (metabolites with signif-

icant concentration changes). Peak areas of MCR-ALS

resolved profiles of control and exposed samples were com-

pared using Student’s t test, which confirmed that 66, 26 and

16 peaks were changing significantly (p\ 0.05) for salinity,

temperature and hypoxia, respectively (Online Resource 2).

Finally, only the peaks chosenbyboth approacheswerefinally

selected to discard false positives. Numbers of selected

biomarkers determined for each treatment agreed well with

sample discrimination already observed in PCA. As with

PCA, there was a good separation of samples of the control vs

exposed samples for salinity and temperature treatments and a

poor separation for hypoxia treatment.

Tentative identification of metabolites for salinity,

temperature and hypoxia treatments using resolved mass

spectra and NIST library spectra matching are shown in

Online Resource 3, 4 and 5, respectively. Most of the

metabolites were identified with high RMF value in their

evaluation in NIST library hits. Metabolite identifications

for salinity, temperature and hypoxia treatments did not

take into account that the derivatization with MSTFA

produced different products from the same metabolite. For

instance, Lysine (3TMS) and Lysine (4TMS) (Online

Resource 3) were found as biomarkers for salinity treat-

ment, both corresponding to the same metabolite (Lysine).

Finally, a total number of 74 potential metabolites whose

concentrations (peak areas) changed with the treatment

were identified, 40, 21 and 13 metabolites for salinity,

temperature and hypoxia treatments, respectively.

For the salinity treatment (Online Resource 3) most of the

50 metabolites detected as potential biomarkers were iden-

tified with RMF values higher than 715, which can be

considered a relatively fair matching factor. For most

metabolites the difference between the theoretical and the

experimental RI, was lower than 148, except for the resolved

peak 52. This peak 52 was identified as Galactose, and it had

a difference between experimental and theoretical RI of 205.

However, this (Galactose) peak had a very good RMF value

(927) showing a very good mass spectral coincidence with

the theoretical mass values. For the salinity treatment, most

of the identified metabolites were amino acids, carbohy-

drates, organic acids and nucleosides. Most of these

metabolites were down-regulated, except 6 metabolites peak

areas, 14, 55, 65, 73, 75 and 76 which were up-regulated.

For the temperature treatment (Online Resource 4), the

identification of the 25 metabolites was reached with RMF

values higher than 747, considered as fair matches, and with

differences between theoretical and experimental RI lower

than 52. The theoretical RI value of the resolved peak 76

could not be calculated because of the n-alkane standard only

permitted to adjust up to a value of RI of 3000, which cor-

responds to the alkane C30. Carbohydrates, amino acids and

organic acids were the most commonly detected metabolites

for changes in the temperature. Only two metabolites were

up-regulated: 1,3-diaminopropane and putrescine.

Twelve of the 13 profiles with peak areas changing with

the hypoxia treatment were identified (Online Resource 5).

This identification of metabolites were reached with a

difference of theoretical and experimental RI lower than

34, and with a RMF value higher than 826, considered as

good matches. Carbohydrates, amino acids and organic

acids were the most commonly detected metabolites. All

biomarkers detected were down-regulated, except resolved

peak number 17 which was up-regulated.

3.4 Metabolic pathways involved

After identifying potential biomarkers of salinity, temperature

and hypoxia treatments, these metabolites were investigated

in KEGG database to detect the possible affected metabolic

pathways. In Fig. 4, the Venn diagram shows the metabolites

identified, commons and unique, in each treatment. Salinity

treatment had 24 uniquemetabolites identified, temperature 5,

and hypoxia 6 unique metabolites. By comparing common

metabolites for salinity and temperature, 11 metabolites were

Fig. 4 Venn diagram of the metabolites detected in every treatment.

Salinity factor is represented by 24, temperature by 5 and hypoxia by

6 unique metabolites, respectively. Salinity and temperature have 11

metabolites in common, whereas temperature and hypoxia, and

salinity and hypoxia have only 2 metabolites coincident for each
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affected in both treatments. Temperature and hypoxia and,

salinity and hypoxia had 2metabolites in common in eachpair

of treatments.

In Table 2 specific enriched KEGG pathways affected by

two or more metabolites were depicted. Metabolic pathways

were sorted considering the percentage coverage of the

pathway (the ratio between the altered metabolites and the

total unique metabolites in the KEGG pathway database). The

top three KEGG pathways represented in Table 2 coincided

with three of the top five pathways described in D. magna

exposed to Cd (Poynton et al. 2011). In this previous study,

metabolomic changes were determined using different tissues

and analytical methods: hemolymph samples and using an

FT-ICR mass spectrometer, respectively. This may indicate

that many of the obtained altered metabolites were unspecific

and probably related with stress. The three tested treatments

decreased the relative amount of two to three metabolites

from the pyruvate metabolism and Cytrate or Krebs cycle,

which are considered critical energy metabolic pathways

under hypoxia or normoxia. Indeed individuals of D. magna,

exposure to high salinity levels supress energy metabolic rates

and oxygen demand (Arnér and Koivisto 1993). Increasing

temperature raised up metabolic demands for oxygen in

Daphnia, which causes hypoxia (Paul et al. 2004a; Paul et al.

2004b). D. magna is well adapted to hypoxia levels or anoxia,

increasing its hemoglobin content and under severe condi-

tions switching to anaerobic metabolism (Paul et al. 1998).

This means that the three studied environmental stressors had

in common several features related to hypoxia and as a result

shared several metabolites and metabolomic pathways.

Table 2 Most disrupted KEGG metabolic pathways following expo-

sures of D. magna to salinity, high temperature and hypoxia. Unique

metabolites from Online Resources 3, 4 and 5 were included in the

metabolic KEGG pathway analysis. Total number of unique metabo-

lites in KEGG pathway database, N number of altered metabolites, %

is percentage of pathway coverage (N/total)

Total Salinity Temperature Hypoxia

N % Metabolites N % Metabolites N % Metabolites

ko00970 Aminoacyl-

tRNA biosynthesis

23 14 60.9 GLU, LYS, MET, GLY, ARG, TRP, ALA,

SER, TYR, PRO, HIS, LEU, VAL, THR,

ASP

4 17.4 LYS, PRO,

ASP,

SER

3 13.0 LYS, SER,

TYR

ko00290 Valine, leucine

and isoleucine

biosynthesis

18 3 16.7 LEU, VAL, THR

ko00061 Fatty acid

biosynthesis

10 1 10.0 C16

ko00220 Arginine

biosynthesis

24 4 16.7 GLU, ARG, ORN, FMR 2 8.3 FMR, ASP

ko00280 Valine, leucine

and isoleucine

degradation

18 2 11.1 LEU, VAL

ko00020 Citrate cycle

(TCA cycle)

23 2 8.7 FMR, MAL 2 8.7 FMR,

MAL

3 13.0 FMR,

MAL,

CIT

ko00260 Glycine, serine

and threonine

metabolism

44 5 11.4 GLY, SER, TRP, THR, DAP 4 9.1 SER, ASP,

DAP,

GLE

1 2.3 SER

ko00052 Galactose

metabolism

45 3 6.7 GLC, GOL, GAL 3 6.7 GLC,

GAL,

MYO

ko00480 Glutathione

metabolism

40 4 10.0 GLU, GLY, ORN, PYROGLU 1 2.5 PUT 1 2.5 PYROGLU

ko00250 Alanine,

aspartate and glutamate

metabolism

30 3 10.0 GLU, ALA, FMR 2 6.7 FMR, ASP 2 6.7 FMR, CIT

ko00500 Starch and

sucrose metabolism

59 4 6.8 GLC, XYL, MALT, TRE 2 3.4 GLC, XYL

ko00620 Pyruvate

metabolism

28 2 7.1 FMR, MAL 2 7.1 FMR,

MAL

2 7.1 FMR,

MAL

ALA alanine, ARG arginine, ASP aspartate, C16 hexadecanoic acid, CIT citrate, DAP 1,3-diaminopropane, FMR fumarate, GAL galactose, GLC

glucose, GLE glycerate, GLU glutamate, GLY glycine, GOL glycerol, HIS histidine, LEU leucine, LYS lysine, MAL malate, MALT maltose, MET

methionine, MYO myo-inositol, ORN ornithine, PRO proline, PUT putrescine, PYROGLU pyroglutamic acid, SER serine, THR threonine, TRE

trehalose, TRP tryptophan, TYR tyrosine, VAL valine, XYL xylose
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Specific metabolomic effects of salinity included increased

levels of glycerol and trehalose, which are related to cell

osmoregulation (Diamant et al. 2001).

4 Concluding remarks

Detection and identification of Daphnia magna metabolites

whose concentrations suffered changes during the exposi-

tion to the three abiotic factors studied (salinity, tempera-

ture and hypoxia) was achieved. Changes on metabolite

GC–MS peak areas of controls and exposed samples were

statistically assessed for their discrimination. 74 metabo-

lites were identified as possible biomarkers of the studied

effects. For salinity treatment 40 metabolites were identi-

fied, for temperature and hypoxia treaments 21 and 13

metabolites were identified, respectively. The three treat-

ments shared effects in several metabolites related with

pyruvate metabolism and Cytrate or Krebs cycle, which are

linked to energy metabolic pathways under hypoxia. Apart

from common metabolites altered, salinity treatment had

impact in glycerol and trehalose, which are related to cell

osmoregulation.

The methodology proposed in this work confirmed the

usefulness of the combination of GC–MS and multivariate

data analysis tools for metabolomics studies of D. magna,

exposed to mild stress of salinity, temperature and hypoxia.

MCR-ALS analysis is a powerful tool to resolve directly

the chromatographic signals (elution and spectra profiles)

of most of the constituents (metabolites) present in com-

plex biological samples, and differentiate them from the

large number of GC–MS interfering derivatizing signals.
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