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Abstract

Introduction Pulmonary dysfunctions resulting in post-

operative hypoxaemia is a common complication of car-

diac surgery. The disease is challenging as it lacks

predictive biomarkers. Since a comprehensive metabolic

overview of lung microvasculature injury is lacking, we

have compared the metabolome of patients undergoing

cardiac surgery from blood collected on the first postop-

erative day from the pulmonary artery and left atrium.

Objectives To identify predictive biomarkers and meta-

bolic hallmark of pulmonary hypoxaemia.

Methods Blood samples collected on the first postopera-

tive morning from 47 patients were analysed by nuclear

magnetic resonance and multivariate statistics. Patients’

metabolomes were correlated to the level of partial

pressure of arterial oxygen (PaO2) without supplementary

oxygen treatment measured on the third postoperative day.

Results Three days postoperatively, 32 patients suffered

from hypoxaemia. Spectra recorded on samples collected

on the first morning postoperatively revealed metabolic

perturbations causing disease progressing. Regression

modelling found a 0.97 association between metabolome

and PaO2. Classification modelling distinguished patients

according to later hypoxaemia. Sixty-four metabolites were

identified as the early hallmarks of disease, of which sev-

eral showed significant correlations with PaO2 (r[ 0.55,

p B 0.00001). The tricarboxylic acid cycle, amino acid and

lipid metabolism, together with redox homeostasis were all

found affected. An integrated overview reveals complex

cross-talk between pathways that can be related to the

pathogenesis of hypoxaemia: damaged alveolar-capillary

barrier, edema formation, peroxidation, oxidative stress,

impaired antioxidant defense, and cell damage.

Conclusion Our results indicate unique phenotypes trig-

gering progression into pulmonary dysfunction resulting in

postoperative hypoxaemia. The metabolic hallmarks iden-

tified offer important targets for future treatments.

Keywords Cardiac surgery � Pulmonary dysfunction �
Hypoxaemia � Metabolome � Pathways � NMR

1 Introduction

Pulmonary dysfunction remains to be the most common

complication to cardiac surgery (Clark 2006; Ng et al.

2002). Disturbance of the alveolar-endothelial barrier

affects the pulmonary gas exchange (Ng et al. 2002; Singh

et al. 1992) with development of postoperative hypoxaemia

with nadir values of partial pressure of oxygen in arterial
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blood (PaO2) on the third postoperative day (Ng et al.

2002; Rasmussen et al. 2007).

Disturbance of the alveolar-endothelial barrier is part of

the acute lung injury syndrome which is a life-threatening

condition (Matthay and Zimmerman 2005; Perl et al. 2011;

Ware et al. 2010; Wheeler and Bernard 2007), affecting

more than one million individuals worldwide every year

(Oeckler and Hubmayr 2008). The injury can develop

within a week (Stephens et al. 2013) after direct or indirect

pathophysiological events such as sepsis, pneumonia, car-

diopulmonary bypass (CPB), and severe trauma (Oeckler

and Hubmayr 2008; Perl et al. 2011; Reiss et al. 2012;

Stephens et al. 2013; Weissman 2004). Regardless of the

initial triggering factor, the final result is abnormal gas

exchange (Apostolakis et al. 2009) caused by excessive

inflammation (Milot et al. 2001) and disordered coagula-

tion (Reiss et al. 2012; Wheeler and Bernard 2007).

Endothelial cell swelling, cellular junction widening,

edema accumulation, denuded alveolar membranes,

increased pinocytosis, and alveolar collapse are the hall-

marks of this dysfunction (Rubenfeld and Herridge 2007).

Currently, no therapeutic intervention has proven useful

in impeding disease progression into a state of hypoxaemia

which is one of the criteria for acute lung injury. (Fremont

et al. 2010; Matthay et al. 2012; Perl et al. 2011) As such,

identifying patients at risk of developing clinically

important hypoxaemia earlier in the course of their illness

would enable the development of therapeutic options tar-

geting the disease (Gajic et al. 2011).

Substantial efforts have been made to understand mul-

tiple mechanisms involved in acute lung injury (Bhargava

and Wendt 2012; Levitt et al. 2009; Matthay et al. 2012;

Ng et al. 2002). In general, the research is focused on

understanding the delicate balance between protective and

injurious immunologic responses. Although little is known

about metabolic activity during the injury, recent studies

have reported that the sites of inflammation are charac-

terized by significant metabolic shifts followed by funda-

mental changes in tissue phenotypes (Kominsky et al.

2010). These changes can be revealed by applying

metabonomics (Nicholson et al. 1999, 2002), which

screens for metabolite perturbations in a biological system

as response to pathophysiological modification (Nicholson

et al. 1999). Furthermore, it identifies characteristic disease

phenotypes that reflect the connection between tissue his-

tology and environmental, genetic, and immunologic fac-

tors (Nicholson et al. 2002). Hence, metabonomics is

powerful tool for examining disease-related metabolic

changes and in discovering biomarkers (Shlomi et al.

2009).

The metabolic shifts during lung injury have partly been

revealed (Evans et al. 2014; Rogers and Matthay 2014;

Serkova et al. 2008; Stringer et al. 2011). These changes

are related to energy depletion (Serkova et al. 2008),

oxidative stress, apoptosis (Evans et al. 2014), and

endothelial disruption (Stringer et al. 2011). No studies

have characterized the metabolic phenotypes in patients

undergoing coronary artery bypass grafting (CABG)

involving ischemia–reperfusion through the use of CPB, a

well-established risk factor for developing this condition

due to an indirect pathophysiological event (Ng et al.

2002). As pulmonary dysfunction remains the most com-

mon complication of cardiac surgery (Clark 2006; Ng et al.

2002), we intend to identify biomarkers and the metabolic

hallmarks of postoperative hypoxaemia. Finding and

defining perturbations in the metabolome may explain how

inflammatory and coagulation mediators orchestrate the

metabolism.

We hypothesized that early stages of pulmonary dys-

function following cardiac surgery may be reflected at the

metabolite level and precede the development of hypox-

aemia on the third postoperative day. We therefore inves-

tigated metabolite changes in blood collected from the

pulmonary artery (PA) and left atrium (LA) on the first

postoperative morning in order to describe changes in the

systemic and pulmonary microvasculature. While both

samples reflect systemic changes of the metabolome, we

expected that metabolic processes confined to the lungs

would be reflected in the difference between the LA and

PA samples.

2 Methods

2.1 Patient cohort and diagnosis

Patients scheduled for elective CABG with use of CPB

were consecutively included in the study after the informed

consent was obtained (study registered at clinicaltrials.gov,

NCT02475694). Inclusion criteria were adults above

18 years of age and in treatment with statins. Exclusion

criteria were treatment with steroids or other immune

suppressor therapies. All patients were monitored with a

pulmonary as well as a LA catheter inserted after induction

of anesthesia and removed 20 h after weaning from CPB.

Of the total cohort of 50 patients, the LA catheter was

displaced in three patients at 16 h, giving a cohort of 47

patients in the present study. Information regarding patients

enrolled in this study is provided in Table 1

Supplementary.

All patients were spontaneously breathing at all times,

but the majority was treated with supplementary oxygen

postoperatively to achieve peripheral oxygen saturation

(SpO2) above 95 %. The clinical diagnosis was based on

the ratio between partial pressure of oxygen and fraction of

inspired oxygen (PaO2/FiO2) calculated from PaO2

87 Page 2 of 15 R. G. Maltesen et al.

123



measured in arterial blood samples collected from the

radial artery 72 h after weaning from CPB and in order to

standardize the measurements, arterial blood samples were

taken while patients were breathing atmospheric air for at

least 10 min.

2.1.1 Samples preparation

To avoid analytical bias due to sample collection, all blood

samples were collected and prepared by the same person.

Blood samples were obtained exactly 16 h after weaning

from the CPB circuit. This time point was chosen because

it lies on the first morning postoperatively, while patients

still were fasting. Blood samples were taken simultane-

ously from the tip of a PA catheter placed after induction of

anaesthesia and from a catheter placed by the surgeons in

the LA after opening of the pericardium. Subsequently,

serum was prepared according to standard procedures,

where blood samples were allowed to clot at room tem-

perature for 30 min, followed by centrifugation at

3000 rpm for 10 min. Aliquots of LA and PA serum were

immediately stored at -80 �C for 3 years.

2.1.2 Biochemical analysis

Blood gas measurements were performed on an ABL837

blood gas analyzer (Radiometer, Copenhagen). Biochemi-

cal assays of serum creatinine, albumin, lactate dehydro-

genase, and C-reactive protein (CRP) were performed on

the multiparametric autoanalyser VITROS FS 5.1 (Ortho

Clinical Diagnostics, Raritan, New Jersey, USA) using

dedicated reagents. The results are presented in Table 1

Supplementary.

2.1.3 Sample preparation for NMR

Prior to NMR measurements, samples were thawed for 2 h

at 4 �C, vortexed, and centrifuged for 5 min at 4 �C and

12,100 g to remove cells and other precipitated materials.

Aliquots of 400 lL of supernatant were mixed with 200 lL
0.2 M phosphate buffer (pH 7.4, uncorrected meter read-

ing) in 2H2O (99 % 2H) to minimize variations in pH and to

reduce serum viscosity. Throughout the whole process, the

samples were kept on ice. The mixture was pipetted into a

5-mm NMR tube and kept at 5 �C until NMR acquisition

(not longer than 24 h).

2.1.3.1 NMR measurements Spectra were acquired on a

Bruker DRX-600 NMR spectrometer (Bruker BioSpin,

Germany and Switzerland) equipped with a TXI (hydro-

gen, carbon, nitrogen) probe (Bruker BioSpin, Switzerland)

operating at 600.13 MHz for 1H. TopSpin 1.3 was used for

the acquisition. The experiments were acquired at a

constant temperature of 310.1 K (37 �C). For the analysis,

a T2 relaxation-edited Carr–Purcell–Meiboom–Gill

(CPMG) (Meiboom and Gill 1958) experiment was used.

This experiment attenuates broad signals from slowly

tumbling proteins and lipoproteins. 128 free induction

decays (FIDs) were collected with 32768 complex data

points over a spectral width of 11.97 ppm and an acquisi-

tion time of 2.28 s. A relaxation delay of 2 s was applied

between each FID during which weak continuous wave

irradiation (cB1/2p = 26.6 Hz) was applied at the water

frequency (presaturation). The total spin-echo relaxation

delay was 67.4 ms and consisted of (s–p–s) elements,

where s is a delay of 0.4 ms and p is a 180� pulse of 22 ls
length. Spectral processing was carried out in TopSpin

version 2.1 (Bruker BioSpin, Germany). Prior to Fourier

transformation, exponential multiplication corresponding

to a line broadening of 0.3 Hz was applied to the FIDs,

which were further zero-filled by a factor of 2 to double the

number of points. Spectra were manually phase- and

baseline- corrected, and the methyl signal of lactate was

used as chemical shift reference at 1.33 ppm.

For metabolite identification, three types of two-di-

mensional (2D) experiments were acquired. 2D J-resolved
1H-NMR experiments, with water pre-saturation during a

2 s relaxation delay were acquired with 8 FIDs for each of

the 80 increments. Spectral width was set to 11.6 ppm and

54.7 Hz in F2 and F1 direction, respectively. Prior to 2D-

Fourier transformation, both dimensions were multiplied

by an unshifted sine bell function and the number of points

was doubled by zero-filling. Further, spectra were tilted by

45� and symmetrized along the F1 axis. After processing,

the skyline projections of 2D J-resolved spectra were

manually baseline corrected and calibrated using the center

of the methyl signal of lactate. 2D homonuclear 1H,1H-

TOCSY (Total Correlation Spectroscopy) and 1H,13C-

HSQC (Heteronuclear Single Quantum Coherence) spectra

with presaturation were run on representative samples, with

different number of FIDs, increments, spectral widths and

mixing times in order to focus on different spectral regions.

Information obtained from these spectra was used to find

matching metabolites in the Human Metabolome Database

(Wishart et al. 2007). Further metabolite assignments were

performed using AMIX (v. 3.9.10, Bruker BioSpin),

BRUKER bbiorefcode database (v. 2.7.0–2.7.3), and

literature.

2.1.3.2 Quantification of NMR data It was performed

using the AMIX multi integration tool. Peaks of interest

were integrated using the line shape analysis option with a

fixed noise factor of 3.5 and a line shape threshold of 0.01.

Peaks were integrated using the sum of all points in the

region as the integration mode, and normalized to the

glucose metabolite region (3.52 ppm (H-5 of b-glucose)
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and 5.24 ppm (H-1 of a-glucose)). A 36:64 equilibrium

distribution between a- and b-glucose was used in the

calculations. To calculate the concentration of a given

metabolite, we used the following formula:

CXðmMÞ ¼ IX

NX

� CGlucose � 0:64
Nb�Glucose

Ib�Glucose

where CX is metabolite concentration in mM, IX is the

integral of the metabolite 1H peak, NX. is the number of

protons contributing to the metabolite 1H peak, CGlucose is

the chemically determined glucose concentration,

0:64Nb�Glucose is the number of protons contributing to the

b-glucose signal (at 3.52 ppm) used as reference multiplied

by 0.64 (the mole fraction of b-glucose), and Ib�Glucose is

the integral of the b-glucose signal at 3.52 ppm.

2.1.3.3 NMR data preprocessing CPMG spectra were

converted into an n-by-m matrix (n = 94 LA and PA

samples from 47 patients, m = 8700 equal buckets of

0.001 ppm width) in AMIX (Analysis of MIXtures soft-

ware package, version 3.9.10, Bruker BioSpin, Germany)

using the region between d 9 and 0 ppm, and excluding the

water signal region between 4.80 and 4.5 ppm. Further

processing and multivariate modelling were carried out in

MATLAB R2011b (Mathworks, Natick, MA) coupled with

PLS-Toolbox 6.5 (Eigenvector Research, Wenatchee,

WA). Binned data was iCoshifted (Savorani et al. 2010),

normalized to lactate concentration measured 16 h after

surgery, log transformed, and autoscaled.

2.1.4 Multivariate modelling

Several mathematical and statistical modeling approaches

were employed to relate the preprocessed NMR data to

disease phenotypes. Supervised partial least-squares (Wold

et al. 1984) (PLS) regression analysis was used to predict

the hypoxaemia score values used in diagnosis on the third

day postoperatively. PLS discriminant analyses (Wold

et al. 1983) (PLS-DA) was applied to evaluate the diag-

nostic possibilities of NMR and to discover predictive

markers. Due to the large number of variables, several

variable selection methods (Li et al. 2009; Norgaard et al.

2000; Wold et al. 2001) were employed. Most important

variables obtained by each method were combined into a

new data matrix, which was used to build a final PLS and

PLS-DA model. For each model, a multivariate mathe-

matical equation was obtained which provided scores for

each patient derived from the association between inten-

sities and later outcome. The most significant variables

were then identified and quantified. The significance of

each metabolite was assessed by the variable importance in

projection (Eriksson et al. 2001) (VIP) scores. The sign

(positive and negative) of loadings were used to determine

which group the corresponding metabolite was a potential

marker for.

To establish confidence in our results, we adopted two

complementary validation approaches. First, Monte-Carlo

cross-validation was applied to reduce the risk of overfit-

ting, by re-sampling the training set (70 % of samples) and

cross-validation set (30 % of samples) 5000 times. In each

resampling, 14 randomly selected samples were left for

prediction, and 33 remaining samples were used to create

the model. The omitted samples were then predicted, and a

cross-validated (CV) correlation fit (for PLS regression) or

classification fit (for PLS-DA) together with a root mean

square error of cross-validation (RMSECV) were calcu-

lated each time. The final results represent average results

of each parameter from the 5000 runs. The average

RMSECV was further used to detect the optimal number of

latent variables for both PLS and PLS-DA models. This

validation procedure gave us an indicator of how well the

model might work in predicting future samples (Xia et al.

2013). A second level of model validation was performed

by using permutation testing (Good 2011). Here, the

models were tested for randomness, to show that no other

model performed equally well or better than the main

prediction model. After scrambling the group and hypox-

aemia score labels 500 times and performing PLS-DA and

PLS regression modelling, respectively, we compared the

‘true’ optimal model with the permuted models. The

‘‘true’’ model performance was then statistically compared

to the distribution of the permuted models, and a p value

was calculated by means of Wilcoxon’s test. A p

value\ 0.05 was considered significant, meaning that the

predictive power of our approach was significantly asso-

ciated with disease phenotypes and hypoxaemia scores, and

was not a false-positive association resulting from random

prediction.

Additionally, variables found important in the analysis

were further used to assess the influence of other potential

influencing factors such as gender, age, body mass index,

smoking habits, hypertension, and other diseases such as

diabetes and chronic lung disease. For each of the poten-

tially influencing factors, we performed a PLS-DA model

and assessed its sensitivity, specificity, and accuracy.

As the receiver operating characteristic (ROC) curve

analysis is considered to be the standard method for

assessing diagnostic tests performance (Obuchowski et al.

2004; Xia et al. 2013), we chose to present all our results

using this test. The multivariate ROC curve analysis based

on both the calibration and CV set was performed to judge

how well PLS-DA models work in predicting new samples.

Here, the models’ performances were assessed by consid-

ering the frequency with which PLS-DA produced: true

positives (the number of sick patients correctly identified),

true negatives (the number of unaffected patients correctly
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identified), false positives (the number of unaffected

patients incorrectly identified as hypoxaemia patients), and

false negatives (the number of sick patients incorrectly

identified as unaffected). By summarizing these values into

the proportion of hypoxaemia patients that were correctly

classified as positive and the proportion of unaffected

patients that were correctly classified as negative, the

models’ sensitivities and specificities were assessed:

Sensitivity ¼ True positives

True positivesþ False negatives

Specificity ¼ True negatives

True negativesþ False positives

2.1.5 Statistics

The Statistical Package and Services Solutions software

v22.0 was used for the univariate statistical analysis.

Descriptive statistics were computed for each group and

the quantitative data was summarized using mean, median,

and standard deviation. Wherever appropriate, data was

visualized by using the Matlab script ‘notBoxPlot.m’

(Campbell 2010) representing the mean, standard error of

mean, standard deviation, and outliers.

The Shapiro–Wilk normality test was applied followed

by either parametric or nonparametric methods. When

comparing metabolite differences between unaffected and

hypoxaemia patients (PaO2\ 8.4 kPa), either an inde-

pendent t test or Mann–Whitney U test was used. When

comparing differences between the three groups (unaf-

fected, mild, severe), either one way analysis of variance

(ANOVA) with Tukey HSD or Dunnett T3 (depending on

homogeneity of variance) multiple comparison post hoc

tests, or the Kruskal–Wallis test with Dunn’s post hoc test

were applied. When comparing data between the LA and

PA, a paired t test or the nonparametric analogue Wil-

coxon-signed rank sum test was used. Significance was set

at p\ 0.05.

In order to visualize global changes between groups, the

means or medians (depending on data distribution) of each

metabolite in the corresponding group were calculated. As

such, metabolite fold changes were calculate as the ratio

between mild and unaffected and severe and unaffected

patients with the formula:

FCM orSð Þ
U

ð%Þ ¼ MðorSÞ � U

U
� 100

where FC is fold change in percentage, M is mild, U is

unaffected, S is severe.

Because the ratio between two metabolite concentra-

tions may carry more information than the two metabolites

alone, the freely available web-based tool ROC Curve

Explorer & Tester (ROCCET) was used to compute all

possible pairs of metabolite combinations that could be

related to later outcomes. Metabolite ratios exhibiting sta-

tistical significance (p\ 0.05) were further used as bio-

marker candidates.

The association between metabolites and PaO2 values

obtained 3 days postoperatively were assessed by Pear-

son’s correlation analysis. ROC curves were established to

determine the prognostic value of each biomarker in future

diagnosis. The area under the curve (AUC) and corre-

sponding 95 % confidence intervals are provided.

3 Results

Hypoxaemia is indicative of the severity of lung injury,

being measured by the partial pressures of oxygen in

arterial blood (PaO2) or the ration between PaO2 and the

fraction of inspired oxygen (FiO2) (De Backer et al. 1997;

Routsi et al. 1999). Two days postoperatively some

patients showed signs of hypoxaemia; however, while

several patients’ blood oxygenation levels return to normal

the following day, others worsened. As lung dysfunction is

known to develop within 72 h postoperatively, and due to

the PaO2 changes observed during the second and third

postoperative day (Pearson correlation coefficient

r = 0.49, p = 0.0003), the PaO2 values measured 72 h

postoperative were used as end-points in this study. As

such, three days postoperatively, 15 patients showed no

signs of hypoxaemia and 32 developed hypoxaemia, of

which 9 presented severe hypoxaemia (Supplementary

Table 1).

3.1 Metabolome screening reveals early signs

of disease

The systemic and pulmonary phenotypes were monitored

by 1H nuclear magnetic resonance (NMR) spectroscopy. A

typical one dimensional (1D) serum NMR spectrum is

characterized by broad resonances from lipids and glyco-

proteins, and narrow resonances from glucose, lactate, and

citrate, among others. Spectra of two samples collected on

the first postoperative day (exactly 16 h after weaning from

CPB), one from a patient not developing hypoxaemia

(PaO2 = 10.7 kPa), and one from a patient developing

hypoxaemia (PaO2 = 4.9 kPa) on the third day postoper-

atively, reveal differences in several signals, of which

lipids are the most significant (Fig. 1).

Since the metabolome mirrors environmental changes

(Nicholson et al. 2002), we hypothesized that the disease

could be reflected at the metabolic level on the first day

postoperatively. Therefore, we screened for possible asso-

ciations between the metabolome and the hypoxaemia
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scores (PaO2) used in diagnosis (Table 1, Supplementary).

Interestingly, PLS regression analysis revealed a strong

correlation between the systemic and pulmonary pheno-

types and PaO2 (R
2 = 0.97, Fig. 2a), indicating that serum

NMR-based metabonomics can be used to screen for early

signs of disease. Based on PLS results (Fig. 2a,b) we rea-

soned that subgrouping the 32 patients diagnosed with ALI

into patients developing mild (8.4[PaO2 C 6.3 kPa) and

severe (PaO2\ 6.2 kPa) hypoxaemia, would provide bet-

ter understanding of underlying mechanisms. Subse-

quently, the differences between the three groups

(unaffected, mild, and severe hypoxaemia) were assessed

by PLS-DA. The models displayed[95 % accuracy

(Fig. 2c). The models were tested for some potentially

influencing factors (Fig. 2d) that could obscure the accu-

racy of our proposed clinical test, and no significant

interference was observed. The duration of anaesthesia,

CABG, CPB, cross-clamp time, and fluid administration is

known to have an impact on patients’ outcome postoper-

atively. Therefore, we attempted to correlate metabolic

information with these intraoperative variables, but did not

detect any strong association (cross-validated R2 values

ranging between 0.14 and 0.51).

We also checked, whether common postoperative

complications such postoperative systemic inflammatory

response syndrome (SIRS) and renal dysfunction, associate

with the metabolome and confound the analysis. PLS

yielded no association between the observed metabolic

changes and indices of SIRS (measured as the levels of

leucocytes; cross-validated R2 = 0.17 and CRP; cross-

validated R2 = 0.04) and renal dysfunction (measured as

creatinine concentration; cross-validated R2 = 0.40) mea-

sured 72 h postoperatively. This increases confidence that

the metabolic linkage found is specific to hypoxaemia.

In summary, by collecting PA and LA blood samples

16 h after weaning from CPB, applying NMR and
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carbohydrates 
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Glutamate 
Glutamine 

FA 
glucoproteins 
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alanine 
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LDL,HDL 

3-HBA 

lactate 

Fig. 1 Serum metabolic fingerprints. Representative 1D CPMG 1H-

NMR spectral profiles run on samples collected 16 h postoperatively

of a patient not developing hypoxaemia (partial pressure of oxygen in

arterial blood, PaO2 = 10.7 kPa) (black) and a patient showing

hypoxaemia (PaO2 = 4.9 kPa) (red). The diagnosis was based on

PaO2 measured 72 h after weaning from cardiopulmonary bypass

(CPB). Spectral difference (unaffected—hypoxaemia) (red–yellow–

blue colour coded) reveals metabolite fluctuations between the

patients. Higher levels of signals from lipoproteins, fatty acids and

lower levels of lactate, glucose, and some amino acids are observed in

the hypoxaemia compared to unaffected patient. Using a combination

of the NMR metabolic profiling database (BBIOREFCODE, Bruker),

The Human Serum Metabolome Database (HMDB), and literature

references, 63 resonances out of 64 were assigned to metabolites

(Table 2, Supplementary). Spectra were internally calibrated to the –

CH3 signal of lactate at chemical shift (d) = 1.33 ppm. 1D one-

dimensional, CPMG Carr–Purcell–Meiboom–Gill, VLDL very-low

density lipoproteins, LDL low-density lipoproteins, HDL high-density

lipoproteins, Val valine, Leu leucine, Ile isoleucine, 3-HBA 3-

hyroxybutyric acid, FA fatty acids, PUFA polyunsaturated fatty acids,

GPC glycerophosphocholine, PaO2 partial pressure of oxygen, kPa

kilopascal, ppm parts per million, a.u. arbitrary units (Color

figure online)
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Fig. 2 Metabolome screening reveals early signs of disease. Multi-

variate analysis was performed on spectra run on serum collected

16 h postoperatively from the left atrium and PA. Monte-Carlo

validation was used for validation purpose (Methods 5). a Partial

least-squares (PLS) regression reveals that NMR predicts the partial

pressure of arterial O2 (PaO2) measured three day postoperatively

already the first morning post-CPB (predicted correlation R2 = 0.97).

Model robustness was assessed by repeating PLS modeling six times

(R2 = 0.97 ± 0.008, root-mean-square error of cross-validation

RMSECV = 0.251 ± 0.034). b The first two latent variables (LVs)

show patients clustering according to PaO2. Patients developing

severe hypoxaemia (PaO2 B 6.2 kPa) cluster along –LV1; unaffected

patients (PaO2[ 8.5 kPa) cluster along ?LV1; while mild hypox-

aemia patients (8.4[PaO2 C 6.3 kPa) cluster in-between. c Separa-

tion between Unaffected/Mild and Unaffected/Severe patients was

obtained through PLS-discriminant analysis (PLS-DA). Data was

randomly split into a calibration (70 %) and validation set (30 %),

and PLSDA was performed with 5000 iterations. The frequency plots

(gray and pink) show samples distributions from each group

(U unaffected, M mild, S severe) used in the calibration set.

Following PLS-DA, each patient’s predicted score was used to build

the receiver operating characteristic (ROC) curve; each curve

contains the results achieved from 5000 runs. Finally, PLS and

PLS-DA models were further validated by 5009 permuting the labels.

No model was found over-fitted (p\ 0.001). Sensitivity, specificity,

and accuracy are given as percentages. d The possible influencing

factors reveal no interference with the results (AUC\ 0.67). BMI

body mass index, COPD chronic obstructive pulmonary disease

(Color figure online)
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multivariate statistics, the hypoxaemia scores on the third

day postoperatively could be predicted with a root-mean-

squared error (RMSE) of 0.25 kPa (Fig. 2a).

3.2 Metabolic hallmark of postoperative

hypoxaemia

The fingerprints or ‘‘snapshots’’ (Xia et al. 2013) of

metabolism discerned in the screening process were

investigated further. A total of 64 different metabolites

were analyzed, of which one was unidentifiable (Supple-

mentary Table 2). Perturbations in the levels of metabolites

involved in normal cellular functioning (amino acids, car-

bohydrates, ketones), cellular signaling (1,2-diacylglyc-

erol), inflammation (arachidonic and eicosapentaenoic

acid), cell membrane and alveolar surfactant components

(fatty acids, cholesterols, phospholipids) (Chen and Kolls

2010; Saxena 2005) were found crucial in the development

of hypoxaemia (Fig. 3a). The contribution of each

metabolite to modelling PaO2 values was assessed by

variables important in projection (VIPs) scores (Fig. 3b).

Carnitine, arachidonic and eicosapentaenoic acid, glyco-

protein, citrate, phenylalanine, glycine, plasmalogen, and

lysophosphocholine (Lyso-PC), among others, showed

highest scores, indicating their key roles in later outcomes.

In addition, phospholipids and fatty acids (FA) showed

highest fold changes in both hypoxaemia groups compared

to the unaffected patients (Fig. 3b), indicating severe

derangements in their pathways. Most metabolites showed

consistent trends from none-to-mild-to-severe hypoxaemia

(Fig. 3c), indicating their correlation to the degree of later

pulmonary dysfunction and their possible function as pre-

dictive biomarkers. Finally, to understand the metabolic

hallmark of hypoxaemia we have provided insights into the

complex metabolic crosstalk in some of the affected paths

(Fig. 3d), which have the potential to open up for

promising therapeutic targets in the future.

3.3 Insights into the systemic and pulmonary

phenotypes

While the exact origin of these metabolites is unknown,

their release or disappearance from pulmonary (LA) and

systemic (PA) vasculature may reflect their potential

location. This disease is highly compartmentalized there-

fore knowing the origin of each metabolite would add new

insights into translating its phenotypes.

In general, the same metabolic patterns were observed

for both PA and LA samples with some exceptions, par-

ticularly for the severe hypoxaemia group (Fig. 4a, b,

Supplementary Table 3). The levels of N-acetylated car-

bohydrates involved in the synthesis of glycoproteins and

glycolipids (Michal and Schomburg 2012) positively cor-

related with the severity of developing hypoxaemia. Also,

an augmented extracellular supply of pyruvate, alanine,

and citrate was observed in patients with hypoxaemia,

especially in LA samples. Accumulation of ketone bodies

[acetate, acetoacetate, 3-hydroxybutyrate (3-HBA)], car-

nitine, and FA were detected in hypoxaemia patients

compared to unaffected patients. Increased levels of the

inflammatory mediators (PUFA) together with accumula-

tion of metabolites involved in cell membrane and sur-

factant production (phospholipids, cholesterols), seemed to

be consistent in patients developing hypoxaemia. While

PUFA levels were higher, cholesterol levels were lower in

the pulmonary compared to the systemic circulation.

Increased levels of triglyceride-rich lipoproteins and their

breakdown products (free FA, di-, tri-acylglycerols, and

glycerol) were observed in both PA and LA samples of the

hypoxaemia patients. Decreased antioxidant levels (his-

tidine, plasmalogen, and hypoxanthine) were observed only

in the severe group with a tendency towards consumption

by the pulmonary system. Finally, increased extracellular

levels of osmoprotectants and cell volume regulators

(glycine, glycerophosphocholine (GPC), and glutamate)

were found in both PA and LA samples of the hypoxaemia

patients. Collectively, these changes reflect a yet unraveled

part of the complex pathophysiology and provide new

insights into the multiple mechanisms involved in the

progression to, or protection from, hypoxaemia post-CPB.

3.4 Early markers for hypoxaemia

A list of several metabolites is not ideal for developing

cost-effective diagnostic tests, and due to general lack of

hospital NMR instrumentation, diagnosis based on fewer

metabolites would be more convenient, if they provide

sufficient information to generate robust clinical models.

Therefore, we have explored all metabolites individually or

as ratios between metabolites and found powerful predic-

tive markers. Several serum metabolites measured 16 h

postoperatively were found significantly correlated to PaO2

measured 72 h after weaning from CPB (Fig. 5a, Supple-

mentary Table 4) and several showed strong predictive

power for mild and severe hypoxaemia with high

(AUC[0.8, p\0.0001) (Fig. 5b, Table 5 Supplementary).

4 Discussion

This is the first study of its kind, exploring metabolic

changes on the first postoperative day following cardiac

surgery with the use of CPB in patients at-risk of devel-

oping pulmonary dysfunction with hypoxaemia. We have
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demonstrated that the metabolome changes so dramatically

that the degree of hypoxaemia can be predicted at least

2 days before the clinical diagnosis.

NMR spectra (Fig. 1) and multivariate modelling

accurately related perturbations in the metabolome recor-

ded first morning postoperatively with later diagnostic

Fig. 3 Metabolic hallmark of hypoxaemia. a Metabolites found

contributing to the progression into postoperative hypoxaemia. b The

importance of each metabolite in the progression was assessed by

variable importance in projection (VIP) scores. The greater the score,

the more influential the metabolite; VIP scores[ 1 indicate important

metabolites in predicting later outcomes, whereas VIP scores\ 0.5

indicate less important metabolites. Metabolic fold changes were

calculated as percent change in mean between mild and severe vs.

unaffected patients ((M - U)/U)*100), where M is mild, U is

unaffected). Metabolite labelled with asterisk were found varying

significantly between groups, by using ANOVA or its nonparametric

analogue Kruskal–Wallis test (*0.09[ p C 0.01,

**10-2[ p C 10-3, ***10-4[ p C 10-5, ****p\ 10-5). c Con-

centration distribution of some of the most discerning metabolites; SD

standard deviation, SEM standard error of mean, U unaffected,

M mild, S severe, Asterisks black significant difference between

unaffected and mild, red significant difference between unaffected

and severe. d Simplified metabolite pathways. Only identified and

quantified metabolites are colored (blue higher concentration, green

lower concentration in hypoxaemia compared to unaffected patients),

whilst unidentified metabolites in the same pathways are in grey.

NAcGlc N-acetylglucosamine, Ara ? Epa arachidonic acid (Ara, 20:4

x-6) and Eicosapentaenoic acid (Epa, 20:5 x-3), Lyso-PC lysophos-

phatidylcholine, FA fatty acids; UFA unsaturated fatty acids, GPE

glycerophosphoethanolamine, Est. esterified, U unidentified, PUFA

polyunsaturated fatty acids, NAcGal N-acetylgalactosamine, GPC

glycerophosphocholine, TAG triacylglycerol, 3-HBA 3-hydroxybu-

tyric acid, DAGPL diacylglycerophospholipid, 1,2-DAG 1,2-diacyl-

glycerol, PE phosphoethanolamine, TMAO trimethylamine-N-oxide,

PGA phosphoglyceric acid, PEP phosphoenolpyruvate (Color

figure online)
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Fig. 3 continued

Fig. 4 Systemic versus pulmonary phenotypes. To understand what

happens during the short passage from heart-to-lung-to-heart, the pair

t test or its nonparametric analogue Wilcoxon-signed rank sum test

(depending on the data distribution) were used to check for

differences between left atrial (LA) and pulmonary artery (PA)

samples in each group. a Heat map visualization depicts the metabolic

abundances between LA and PA samples in the hypoxaemia groups

compared to unaffected patients (blue higher levels in hypoxaemia

compared to unaffected patients; red lower levels in hypoxaemia

compared to unaffected patients). Of 64 metabolites, 43 varied

between LA and PA samples in at least one group (Table 3,

Supplementary). b For example, higher levels of carnitine and

arachidonic acid were found leaving the lungs in both mild and severe

hypoxaemia patients; while histidine and arginine were found to be

consumed by the pulmonary system (lower levels in LA samples) in

the severe acute lung injury group but not in the mild hypoxaemia nor

in the unaffected group. Additionally, citrate was significantly

increased in both mild and severe hypoxaemia groups compared to

unaffected group, however, its levels were found unchanged when LA

samples were compared to PA samples. Asterisks: *0.09[ p C 0.01,

**10-2[ p C 10-3, ***10-4[ p C 10-5. SD standard deviation,

SEM standard error of mean, U unaffected, M mild, S severe; for

metabolite abbreviations see Fig. 3 (Color figure online)
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scores (Fig. 2a, b). It is noteworthy that the metabolome

not only contained information about the future degree of

oxygenation impairment 2 days later, but could also

accurately differentiate mild and severe hypoxaemia from

unaffected patients with 79.3 and 98.5 % sensitivity, and

96.6 and 92 % specificity, respectively (Fig. 2c). While

some of these findings have previously been reported

occurring in patients diagnosed with acute lung injury or

acute respiratory distress syndrome (Evans et al. 2014;

Serkova et al. 2008; Stringer et al. 2011), we report

Fig. 5 Biomarkers predict progression into hypoxaemia after cardiac

surgery 2 days before clinical diagnosis. a The relation between

serum metabolites (either alone or as ratio between two metabolites)

measured first morning (exactly 16 h) after weaning from CPB and

the PaO2 values measured on day 3 postoperative was calculated by

Pearson’s correlation coefficient (Pearson’s r) (Table 4, Supplemen-

tary). Examples of scatter plots are illustrated, showing correlation

between left atrial-derived metabolites and PaO2 (Pearson’s

r = 0.45–0.64, p\ 0.001). Additionally, the relation between blood

O2 measured 16 h and the PaO2 measured on day 3 after surgery is

shown, indicating no significant correlation (Pearson’s r = 0.264,

p = 0.08). (b) We calculated the area under the curve (AUC) for each

biomarker candidate (Table 5, Supplementary), and, among others,

citrate, phenylalanine, carnitine, TMAO, Ara ? Epa, isobutyryl-

glycine, PUFA, alanine, and NAcGlc were identified as powerful

predictive markers of later outcome. U unaffected, H hypoxaemia (all

mild and severe patients), S severe. For metabolite abbreviations see

Fig. 3
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metabolic changes occurring before the clinical signs of

hypoxaemia.

From PA and LA samples, several metabolites were

observed to vary between patients (Fig. 3 and 4). Of these,

several markers significantly correlated with PaO2

(p B 0.05) (Fig. 5a,b). These are markers of antioxidant

status and peroxidation (histidine, plasmalogen, PUFA);

ATP depletion and reactive oxygen species (ROS) forma-

tion (citrate); inflammation [arachidonic and eicosapen-

taenoic acid, 1,2-diacylglycerol (1,2-DAG)]; changes in

osmotic and cell-volume regulation (glycine); membrane

injury (phospholipids); and mitochondrial dysfunction

(carnitine). The use of metabonomics predicting postop-

erative hypoxaemia with AUC and detection rates as

described here has not been reported before.

The range of changes found in this study, from carbo-

hydrates to amino acids, ketone bodies, FA, and phos-

pholipids adds information to the present knowledge of the

pathophysiology leading to hypoxaemia induced by an

indirect insult to the lungs by cardiac surgery with use of

CPB. The metabolic manifestations of mild and severe

hypoxaemia compared to the unaffected patients appear to

be similar, indicating the existence of common pathways.

Therefore, knowledge of the core pathways and their

interconnections may help us understanding the patho-

genesis. The role of each metabolite and its connection to

other metabolites in the human body is far from being fully

understood. Nevertheless, in the following, we try to

combine our observed alterations with possible roles of

single metabolites into a model of intracellular processes

leading up to hypoxaemia.

We observed altered metabolite levels down-stream of

glucose metabolism. Pyruvate, alanine, and tricarboxylic

acid (TCA) metabolite levels positively correlated with the

severity of hypoxaemia. Their levels were higher in the

pulmonary circulation (LA) compared to the systemic cir-

culation (PA), indicating that pulmonary cells release these

metabolites. This suggests an impaired oxidative phos-

phorylation in the lung tissue. In line with these observa-

tions, our results confirm previous studies conducted on

plasma (Stringer et al. 2011) and bronchoalveolar lavage

fluid (BALF) (Evans et al. 2014) samples collected from

patients diagnosed with acute lung injury, in which the

levels of TCA metabolites were found to be increased.

Increased TCA levels were also found predicting the pro-

gression from SIRS to multiple organ failure in critically ill

patients (Mao et al. 2009) and in predicting sepsis out-

comes (Langley et al. 2013). Carnitine, normally found in

mitochondria, helping FA delivery for b-oxidation, was

significantly increased in LA samples of patients with

hypoxaemia, which may also indicate impaired oxidative

phosphorylation and a possible leakage into the blood-

stream. Supporting this, isobutyrylglycine, a marker of

impaired mitochondrial FA b-oxidation, was also associ-

ated with severity of hypoxaemia. Mitochondrial impair-

ments enhance oxidative stress (Jana et al. 2013), causing

alveolar cell death (Chow et al. 2003). Under homeostatic

conditions, however, various antioxidants are capable of

alleviating the damaging effects of ROS from the system

(Scheibmeir et al. 2005), but an insufficient antioxidant

barrier cannot counteract this damage. Low levels of the

antioxidants histidine, urocanate, and plasmalogen in

patients with severe hypoxaemia, in contrast to the mildly

affected patients, may indicate an inefficient scavenging

ability leading to a continued ROS presence, especially in

the pulmonary microenvironment. The lower histidine

levels in LA samples of the severely affected group may

indicate an increased pulmonary demand to counteract

peroxidation events. In addition, we found lower levels of

the antioxidant hypoxanthine in patients developing

hypoxaemia. Interestingly, previous metabonomics work

conducted by Evans and co-workers on BALF of patients

diagnosed with the severe lung injury form acute respira-

tory distress syndrome revealed a 41 fold increased in

hypoxanthine levels compared to healthy subjects (Evans

et al. 2014). Our results may be complementary to their

findings, as hypoxanthine may diffuse in the lungs early in

the stage of pulmonary dysfunction, and may accumulate

later in the stage of full blown disease. To verify this

hypothesis other studies involving both blood and BALF

samples collected at different time points during disease

progression should be performed.

It has been demonstrated that 2-hydroxybutyric acid is

an early marker of increased lipid oxidation (Nishiumi

et al. 2012). Membrane bound phospholipids and PUFA are

susceptible to oxidation leading to the formation of highly

reactive hydroperoxides (Crader and Repine 2012). These

react with many biochemical substances having enormous

impacts on normal cellular functioning, including

endothelial activation and surfactant phospholipid disrup-

tion. In this study, the levels of PUFA and adipic acid (a

byproduct of peroxidation (Jana et al. 2013) were found

correlating with later pulmonary dysfunction, whereas

plasmalogen (implicated in protection against ROS and

peroxynitrite formation (Zoeller et al. 2002) levels were

decreased, especially in the severe hypoxaemia group.

The ketogenic capacity (3-HBA, acetoacetate, and

acetate) positively correlated with progression of hypox-

aemia, and elevated levels are known to be indices of

inadequate energy supply, or poor metabolism, leading to

excessive triglyceride and fatty acid breakdown. This may

partially explain the increased levels of circulating free FA,

glycerol, triacylglycerol, and lipoproteins in both PA and

LA samples of patients with hypoxaemia. Choline, phos-

pholipids, 1,2-DAG, PUFA, and cholesterol are essential

for structural integrity and cell membrane signaling. An
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increase in their levels reflects an activation of the pro-

tective mechanism and a possible structural derangement in

patients progressing into disease. Lipids are highly inter-

connected signaling molecules that regulate metabolic,

innate immune and inflammatory processes, and alteration

in one lipid will automatically trigger major deregulation in

several signaling pathways causing profound physiological

responses (Wymann and Schneiter 2008). The levels of

arachidonic and eicosapentaenoic acids were higher in

patients with hypoxaemia, especially in LA samples,

indicating an increased inflammatory environment. These

PUFA may be released by activation of phospholipase A2,

hydrolyzing membrane glycerophospholipids (Wymann

and Schneiter 2008), which may also indicate cell mem-

brane injury. According to Wymann and Schneiter, accu-

mulation of diacylglycerols activates protein kinases,

increases production of ROS and oxidative stress, and

induces the synthesis of pro-inflammatory cytokines.

Because one of the characteristics of this disease is dys-

function of alveolar surfactants, the increased levels of

some phospholipids, especially in LA samples of hypox-

aemia patients, may also be partly explained by surfactant

leakage, which could indicate a damaged endothelial-

alveolar barrier.

Interestingly, decreased arginine and citrulline levels

were observed in the group developing severe hypoxaemia,

especially in the pulmonary circulation. In fact, blood

arginine depletion has previously been linked to ALI

(Murakami et al. 2007; Naz et al. 2013), sepsis (Murakami

et al. 2007) and cystic fibrosis (Luiking et al. 2005), and

supplementation of arginine was observed to reduce

inflammation (Murakami et al. 2007). The deficiency of

arginine was not due to lack of metabolites involved in its

synthesis, as lysine, glutamate, and proline levels were

increased in these patients. During stress responses, blood

lysine levels are known to increase to reduce oxidative

stress (Jana et al. 2013). The increased levels of lysine

observed especially in LA samples from hypoxaemia

patients may reflect an attempt to counteract oxidative

stress. In addition, dimethylamine (DMA) was elevated in

sick patients. DMA is synthesized from asymmetric

dimethylarginine, the endogenous inhibitor of NO synthe-

sis, and an increased level of this metabolite may result in

accumulation of ROS and reactive nitrogen species con-

tributing to lung dysfunctions (Naz et al. 2013).

N-Acetylated carbohydrates involved in synthesis of

glycolipids and glycoproteins (Michal and Schomburg

2012) were also found positively correlating with the dis-

ease. These acids are part of the pentose metabolism, which

is known to be more active under stress (Zachara et al.

2004), especially under hypotonic stress conditions. Inter-

estingly, the osmolytes counteracting cellular swelling

(GPC, glutamate, and glycine) were elevated in

hypoxaemia patients, probably indicating activated mech-

anisms involved in cell-volume regulation and the pre-

vention of cell death (Naguro et al. 2012).

Thus, our findings suggest increased glucose metabo-

lism, defects in the mitochondrial respiratory system

affecting ROS generation, impaired antioxidant state,

increased peroxidation and oxidative stress, cell membrane

derangements, cellular swelling and cell damage in patients

developing hypoxaemia.

It is important to bear in mind that some of above

mentioned mechanisms are still not proven beyond doubt,

hence the discussed metabolic considerations and conse-

quences are somewhat hypothetical, yet plausible to

explain important derangements leading to hypoxaemia.

Based on our findings, the serum metabolome seems to

reflect not only metabolic changes in the systemic but also

in the pulmonary responses to later hypoxaemia. However,

as these changes are minimal, they may not fully reflect the

impairments occurring in the lungs. Including metabo-

nomics analysis performed on BALF samples may there-

fore add further insights into the metabolic changes in the

lungs.

Regarding our study design, there are some limitations.

The small sample size, especially in the severe hypoxaemia

patients, may bias the results. The fact that we achieved

similar results in LA and PA samples offers to some extent

confidence in data validity, however, the results must be

verified in larger studies. We used serum samples for the

analyses. Since the coagulation processes take some time,

the samples were left half an hour at ambient temperature

before centrifugation. In this period metabolic changes may

have occurred. However, all samples were treated equally

and, therefore, the differences between samples can be

expected to reflect the true changes in the patients. In

addition, blood metabolite levels might not fully reflect

changes in intracellular metabolism. Regarding the choice

of methodology, despite the robustness and informative

nature of NMR, the technique suffers from low sensitivity

and signal overlap impeding identification of metabolites

occurring at low concentrations, and therefore, some

potentially important changes were not detected. In the

future, collecting different biological matrices and ana-

lyzing samples by both NMR and e.g. mass spectrometry-

based approaches would add more insights to the patho-

genesis of postoperative pulmonary dysfunctions.

5 Conclusion

In conclusion, by mapping metabolic perturbations at an

early stage, we have identified metabolite hallmarks of

hypoxaemia, which may bridge the gap between patho-

genesis and full-blown disease. Markers such as
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arachidonic and eicosapentaenoic acid, citrate, carnitine,

glycine, phenylalanine, arginine, and histidine serve as

central nodes in their metabolism and therefore have a high

impact in predicting disease progression. No single

metabolite captured the complexity of hypoxaemia alone,

as different pathways simultaneously showed imbalances.

Therefore, to prevent early progression into hypoxaemia,

therapeutics targeting several pathways may be more

effective.
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