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Abstract

Introduction Lactic acid bacteria (LAB) play an impor-

tant role in the food industry as starter cultures to manu-

facture fermented food, and as probiotics. In recent years,

there has been an increasing interest in using LAB cultures

for biopreservation of food products. It is therefore of great

interest to study the detailed metabolism of these bacteria.

Objectives This study aimed at developing an efficient

analytical protocol for real-time in vitro NMR measure-

ments of LAB fermentations, from sample preparation,

over data acquisition and preprocessing, to the extraction of

the kinetic metabolic profiles.

Method The developed analytical protocol is applied to

an experimental design with two LAB strains (Lacto-

bacillus rhamnosus DSM 20021 and Lactobacillus plan-

tarum subsp. plantarum DSM 20174), two initial pH levels

(pHi 6.5 and 5.5), two levels of glucose concentration (2.5

and 0.25 g/l), and two batch fermentation replicates.

Results The design factors proved to be strongly signifi-

cant and led to interesting biological information. The

protocol allowed for detailed real-time kinetic analysis of

11 major metabolites involved in the glycolysis, pyruvate

catabolism, amino acid catabolism and cell energy meta-

bolism. New biological knowledge was obtained about the

different patterns of glutamine and aspartic acid con-

sumption by the two strains. It was observed that L.

plantarum consumes more glutamine at low pH (pH 5.5)

whereas the opposite applies to L. rhamnosus. Regarding

aspartic acid, both of the strains consume it higher at low

pH, and overall L. plantarum consumes it more. L. rham-

nosus did not consume aspartic acid at pH 6.5.

Conclusion The developed analytical protocol for real-

time in vitro NMR measurements of bacterial metabolism

allows a relatively easy investigation of different fermen-

tation factors such as new strains, new substrates, cohabi-

tations, temperature, and pH and has a great potential in

biopreservation studies to discover new efficient biopro-

tective cultures.

Keywords In vitro NMR � Lactic acid bacteria �
Fermentation � Modelling metabolic profiles � Multivariate

curve resolution � Reference deconvolution

1 Introduction

Lactic acid bacteria (LAB) play a very important role in

food industry, and are used as starter cultures to manu-

facture dairy products, sourdough bread, fermented sau-

sages, etc. (van de Guchte et al. 2002). Some of the strains

of lactobacilli are used as probiotics, for which, when used

as food supplements, different health benefits have been

claimed (Ljungh and Wadström 2006; Kumari et al. 2011).

In recent years, LAB are increasingly being used by the

food industry for biopreservation, which is regarded as an
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ecological solution to the problem of food spoilage and can

be defined as the controlled use of antifungal and/or

antibacterial microorganisms or their metabolites for the

purpose of food preservation (Annou et al. 2007; Delav-

enne et al. 2013). There are some health concerns associ-

ated with the chemical preservatives that are commonly

added to food products, whereas the use of biopreservation

does not raise such concerns. However, in order to provide

an efficient biopreservation system, detailed knowledge

about the metabolism of the protective cultures and their

responses to different environmental factors is of great

importance.

Environmental metabolomics, which investigates the

interactions of organisms with their environment and their

response to different environmental stressors (Lankadurai

et al. 2013), can be very useful in the biopreservation

studies, as well as other studies that are related to the

application of LAB for enhancing the sensory properties of

food products. Growth and survival of bacteria that are

used as biopreservatives depend upon their stress response,

i.e. how they can adapt to the environmental changes such

as pH, temperature, carbohydrate source concentration,

other exogenous metabolites, and cell population density.

Sometimes, the adaptive metabolic responses of the cells

can lead to the secretion or increased production of desired

antimicrobial metabolites. In fermented food products, the

reroute of the bacterial metabolism under the stress con-

dition can result in the production of more diverse

metabolites, and such stress induced metabolites can in

certain cases significantly enhance the sensory quality and

structural properties of the food system (Serrazanetti et al.

2009). Therefore, stress conditions can be designed to

augment the quality of fermented food products. In order to

achieve this, a detailed understanding of the metabolism of

the target microorganism and the mechanisms of stress

resistance is a prerequisite. The choice of a suitable ana-

lytical platform and carefully designed experimental plans

can provide this knowledge.

Nuclear magnetic resonance (NMR) spectroscopy is a

powerful analytical technique that can provide valuable

qualitative and quantitative information on chemical and

biological samples. NMR is not selective for any special

groups of chemical compounds and can with advantage be

used for non-targeted analysis of biological samples.

Moreover, NMR requires only simple sample preparation,

is highly reproducible, is non-destructive and leaves the

sample for further analysis (Emwas et al. 2013; Winning

et al. 2008). 1H, 13C, 31P and other nuclides NMR have

been used widely in metabolomics studies related to human

metabolism (Nicholson and Lindon 2008; Govindaraju

et al. 2000; Marin-Valencia et al. 2012; Rothman et al.

2003; Rueedi et al. 2014), disease diagnostics (Emwas

et al. 2013; Wang et al. 2010), and biomarker discovery

(Kim et al. 2008; Smolinska et al. 2012). Other examples

include metabolomic profiling of plants (Kim et al. 2010,

2011), microorganisms (Boroujerdi et al. 2009; Grivet et al.

2003; Ramos et al. 2002; Sekiyama et al. 2011), and host-

gut microbiota interactions (Nicholson et al. 2012). Proton

is one of the most commonly studied nuclei and 1H NMR

has been increasingly used in systems biology and meta-

bolomics (Larive et al. 2014; Nicholson and Lindon 2008;

Reo 2002; Wishart 2008).

NMR has a great potential for studying living organ-

isms, owing to its non-destructive nature, i.e. it can be used

for in vivo and in vitro measurements of biological pro-

cesses, with no quenching of the metabolism required.

Sampling and quenching fractions of a fermentation batch

is tedious and likely to introduce specific errors and irre-

producibilities (Mashego et al. 2007). The real-time nature

of in vivo NMR measurements prevents this problem, and

NMR is the only analytical technique that can provide a

vast amount of qualitative and quantitative information of

the metabolome in a real-time and in vitro/vivo manner.

In vitro/vivo NMR, using mainly proton, carbon, and

phosphorus nuclides has been used to study microbial

metabolism. For instance, 13C in vivo NMR has been

extensively used to investigate regulation of sugar meta-

bolism in lactic acid bacteria (Neves et al. 1999; Ramos

et al. 2002). In vivo NMR has also been used for under-

standing the metabolism of different carbohydrate sources

by Lactococcus lactis (Neves et al. 2005).

One of the interesting applications of in vitro/vivo NMR

has been to study the adaptive stress responses of

microorganisms when they are exposed to environmental

stressors. NMR can be very helpful in this context, by

allowing a real-time, non-destructive and non-perturbing

measurement of the rapid metabolic changes of microor-

ganisms under the stress conditions. As an example of such

a study, in vivo 13C NMR has been applied to investigate

how the metabolism of yeast Saccharomyces cerevisiae is

affected by the concentration of exogenous ethanol and to

model the metabolic profiles (Martini et al. 2004, 2006;

Ricci et al. 2012). Other nuclides such as 23Na have also

been used for in vivo NMR studies of microorganisms. For

example, 23Na NMR spectroscopy was used to study the

sugar transport and to investigate if it is sodium dependent

in live Fibrobacter succinogenes cells (Delort et al. 2002,

2004). Despite all the advantages, one of the drawbacks of

in vivo NMR is related to the heterogeneity of the samples

and the presence of intracellular paramagnetic ions that can

lead to the broadening of NMR signals (Grivet and Delort

2009).

This study presents an efficient analytical protocol for

real-time in vitro 1H NMR analysis of bacterial fermenta-

tions, and an effective solution to the inherent inhomo-

geneity of in vitro NMR measurements of cells. The
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protocol is applied to an experimental design with two

strains of LAB, Lactobacillus rhamnosus DSM 20021 and

Lactobacillus plantarum subsp. plantarum DSM 20174

(hereafter, L. plantarum), two initial pH (pHi) values and

two levels of glucose concentration of a chemically defined

medium. The kinetic profiles of selected metabolites are

modeled by multivariate curve resolution alternating least

squares (MCR-ALS) analysis (Lawton and Sylvestre 1971;

de Juan et al. 2014), or by using the second order derivative

of the signal. The time-series data were processed with

reference deconvolution (Morris et al. 1997; Morris 2007;

Ebrahimi et al. 2014) for lineshape enhancements and

correcting the broadening of the NMR signals during fer-

mentation, and icoshift (Savorani et al. 2010) was used for

spectral alignment. The results of the experimental design

are further analyzed by ANOVA-simultaneous component

analysis (ASCA) (Smilde et al. 2005), and metabolite–

metabolite correlations presented in heat maps.

2 Materials and methods

In this section, the experimental design and procedure, as

well as the data acquisition, processing and analysis are

presented. In the last subsection, some theory and back-

ground on the relevant metabolism of lactic acid bacteria

are presented.

2.1 Experimental design and sample preparation

The experimental design of the study includes two strains

of LAB, L. rhamnosus DSM 20021 and L. plantarum DSM

20174, two levels of glucose concentration, 2.5 and 0.25 g/

l, and two initial pH (pHi) values, 6.5 and 5.5 (See Fig. 1S,

the Online Resource). The goal was to investigate how the

fermentation and the metabolism of the bacteria are influ-

enced by the design factors, and discover some of the

biological differences between the strains. In order to avoid

the full repetition of the names of the samples in the paper,

the following abbreviations were used: ‘R’ for L. rham-

nosus, ‘P’ for L. plantarum, ‘GH’ for samples with high

glucose concentration, and ‘GL’ for samples with low

glucose concentration. As an exmaple, ‘R6.5GH’ refers to

the L. rhamnosus samples with pHi 6.5 and high glucose

concentration. The abbreviations for the samples names are

listed in Fig. 1S (the Online Resource). The strains were

obtained from Leibniz Institute DSMZ-German Collection

of Microorganisms and Cell Cultures (DSMZ, Braun-

schweig, Germany). Chemically defined interaction med-

ium (CDIM) was prepared as described previously

(Aunsbjerg et al. 2015), but glucose and lactate were

excluded, and this CDIM was used as the growth medium

for the bacteria. All the chemicals that were used to prepare

the CDIM and the samples were obtained from Sigma-

Aldrich (Schnelldorf, Germany). Water that was used for

preparing the CDIM was freshly produced Milli-Q quality

(Merck Millipore, Billerica, MA, USA) water. The same

batch of the CDIM was used for all the samples. Phosphate

buffer was prepared with pH 6.5 (0.15 M and the buffer

capacity of 0.09), and pH 5.5 (0.5 M and the buffer

capacity of 0.10). The buffers were used to adjust the pH of

the CDIM to 6.5 and 5.5, and glucose was added to make

the two glucose levels of the design. The prepared CDIM

were filter-sterilized by 0.2 lm pore size filter (Nalgene�,

Thermo Fisher Scientific Inc., Waltham, MA, USA), before

storage in the freezer and also prior to use in the experi-

ments. The strains were stored in Ringer solution with

10 % v/v glycerol at -80 �C until use. Before inoculating

the CDIM, the cells were centrifuged for 15 min at

60009g and 4 �C and washed with CDIM twice, to wash

out glycerol and avoid its signals in the 1H NMR spectra, as

they can overlap with the signals of interest. Then, the cell

pellets were used to inoculate CDIM with 107 CFU/ml.

Deuterated water (D2O) containing 0.1 % 4,4-dimethyl-4-

silapentane-1-sulfonic acid (DSS) was sterilized by 0.2 lm
pore size syringe filters (Minisart�, Sartorius, Goettingen,

Germany) prior to sample preparation. DSS signal served

as an internal reference for the calibration of chemical shift

axis. The samples were prepared by adding 1200 ll of

CDIM and 300 ll of D2O/DSS solution to the cell pellets

after the wash. For in vitro measurements, 1 ml of the

samples was put in autoclave sterilized NMR tubes. To

follow the cell growth in parallel, 200 ll of each sample

was put in 96-well plates, besides 200 ll of the pure cell-

free CDIM as reference, both in duplicates, to measure

optical density (OD) during the fermentation. For all of the

8 samples in the design, duplicate samples were prepared

and analyzed by this procedure.

2.2 Data acquisition and data processing

The sample in the tube was fermented inside the magnet of

the NMR spectrometer at 37 �C (310 K) for 24 h, and 1H

NMR spectra of the sample were recorded every 14 min,

resulting in 102 spectra for each experiment. The spec-

trometer was a Bruker Avance-III 600 spectrometer (Bru-

ker Biospin Gmbh, Rheinstetten, Germany) operating at a

proton frequency of 600.13 MHz (14.1 T), using a double-

tuned TCI probe (cryoprobe) equipped for 5 mm sample

tubes. All the spectra were recorded using the ‘noesygp-

pr1d’ pulse sequence, employing a spectral width of

20 ppm, a recycle delay of 10 s, and 64 scans. Taking the

duplicates into account, the final acquired NMR data

consisted of 16 data matrices, having 102 spectra in the

rows and the ppm variables in the columns. The processing
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of the data, including phase correction, apodization,

Fourier transformation, baseline correction, referencing to

DSS signal, and reference deconvolution, was performed

using the DOSY Toolbox (Nilsson 2009). For reference

deconvolution, DSS singlet and a 5 Hz Gaussian target

lineshape were used.

Reference deconvolution is a post-measurement NMR

data processing method that can correct systematic errors

in NMR spectra. It is previously shown by designed arti-

ficial ‘metabolic’ experiments that reference deconvolution

can be helpful in improving the multivariate analysis

results of NMR data, by enhancing the line-shapes and bi-

linearity of the signals (Ebrahimi et al. 2014). In this work,

reference deconvolution was used to solve the line broad-

ening problem of the in vitro fermentations, and thus to

preserve the bi-linearity of the data. The latter is a pre-

requisite for application of methods such as multivariate

curve resolution alternating least squares (MCR-ALS)

(Engelsen et al. 2013).

The data was then imported into MATLAB 2013b

(MathWorks, Inc., Natick, MA, USA), and further pro-

cessed by normalizing the spectra relative to the DSS

signal area. Then, the icoshift program (Savorani et al.

2010) was used to align the signals, first relative to the DSS

signals and then in the defined intervals, which included

the signals of interest. For a few signals such as acetate,

perfect alignment could not be achieved due to large shifts

of the signals between the samples with the different pHi

values. As the last preprocessing step, and prior to multi-

variate data analysis, spectral regions containing reso-

nances only from noise, water, or DSS were excluded from

the data.

The OD of the samples in the 96-well plates were

measured at 600 nm, automatically every 14 min, in par-

allel with the in vitro NMR measurements, by a Mul-

tiskanTM FC Microplate photometer (Thermo Scientific

Inc., Waltham, MA, USA). The plates were shaken by the

instrument for 2 s before each reading. Only 100 readings

were possible for each experiment, as it was the maximum

allowed number of readings for each time-series mea-

surement on the photometer. The OD curves where plotted

by averaging the OD values of the duplicate wells of each

sample that were measured by the photometer, and sub-

tracting the mean OD value of the CDIM.

2D NMR spectra (including correlation spectroscopy

(COSY), total correlation spectroscopy (TOCSY), 1H-13C

heteronuclear single-quantum correlation spectroscopy

(1H-13C HSQC), and 1H-13C heteronuclear multiple-bond

correlation spectroscopy (1H-13C HMBC) of some of the

ferments at the endpoint of the fermentation were recorded

to support assignments of the resonances; these data were

not used in the data analysis. The signals were assigned by

using human metabolome database (HMDB) (Wishart

et al. 2007, 2009, 2012), and biological magnetic reso-

nance bank (BMRB) (Ulrich et al. 2008) databases.

2.3 Data analysis

2.3.1 Extracting the metabolic profiles

Kinetic metabolic profiles were extracted by using multi-

variate curve resolution-alternating least squares (MCR-

ALS) algorithm (de Juan et al. 2014) on spectral intervals

containing the signals that were well-aligned between the

spectra, or by modeling the minimum of the peaks second

derivative for (singlet) resonances that could not be aligned

by icoshift (Savorani et al. 2010), because of the consid-

erable shift or concentration difference between the sam-

ples. For MCR-ALS modeling, MCR-ALS graphical user

interface (GUI) was used (Jaumot et al. 2005). Non-nega-

tivity constraints were applied on both the spectral and

concentration (time) profiles. As the initial concentrations

of the nutrients in the CDIM were known, their profiles

were scaled accordingly.

2.3.2 Heat maps and ASCA

Pearson correlation coefficients were calculated between

the kinetic profiles of the metabolites in each sample (du-

plicates were averaged). In order to focus on the significant

correlations, the coefficients less than -0.8 were set to -1,

and the coefficients greater than ?0.8 were set to ?1. The

coefficients that were in-between were all set to zero.

Correlation coefficients are shown in heat maps that are

colored by the value of the coefficients.

Analysis of variance-simultaneous component analysis

(ASCA) (Smilde et al. 2005) was performed on the

extracted metabolic profiles and the OD profiles, excluding

lactate and glucose profiles, by using an in-house

MATLAB code. The null hypothesis was tested for the

main and interaction ASCA effect matrices by a permuta-

tion test with 50,000 permutations, in order to evaluate the

statistical significance as expressed in the p-values. Some

of the resulting effect matrices were analyzed further by

principal component analysis (PCA). Prior to the PCA, the

residual matrix was added to the effect matrices and

autoscaling was used.

2.4 Metabolism of lactic acid bacteria

Figure 1 shows homolactic fermentation (glycolysis path-

way) in which pyruvate and subsequently lactate are pro-

duced from glucose. The transfer of a phosphate

group from phosphoenolpyruvate (PEP) to ADP, which is

catalyzed by pyruvate kinase (PK, [EC: 2.7.1.40]), yields
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one molecule of pyruvate and one molecule of ATP. This

reaction is identified as one of the bottlenecks in glycolysis,

at least under the circumstances of limiting glucose con-

centration. It is suggested that after the addition of glucose

or close to its depletion, the high concentration of intra-

cellular inorganic phosphate, Pi, leads to the reduced

activity of PK and as a result the accumulation of PEP and

the formation of a metabolic bottleneck at this level (Neves

et al. 2005; Kowalczyk and Bardowski 2007). However, it

seems that it is not only a single enzyme, but rather many

different enzymes that control the glycolytic flux (Koeb-

mann et al. 2002).

Pyruvate can be reduced to lactic acid, through the

reaction:

pyruvateþ NADHþ Hþ $ lactateþ NADþ

catalyzed by lactate dehydrogenase (LDH, [EC: 1.1.1.27]

and [EC: 1.1.1.28] for the L and D enantiomers)) (Hung

and Yellen 2014). NAD is an important cofactor for some

of the reduction–oxidation reactions in biochemical pro-

cesses such as glycolysis. The cytosolic free ratio of

NADH/NAD? determines the redox state of the cell and is

important to keep the redox balance in the cell during

glycolysis. It is suggested that NADH/NAD? can regulate

glycolysis by affecting the activity of involved enzymes

such as LDH (Neves et al. 2005). Accordingly, the ratio of

lactate/pyruvate is regulated by the redox state of the cell

according to the above biochemical reaction, and NADH/

NAD? ratio is the main factor that controls how much of

the metabolized pyruvate is reduced to lactate during gly-

colysis (Hung et al. 2011; Sun et al. 2012).

Depending on the type of the bacteria and the physio-

logical conditions, pyruvate can be converted into other

metabolites than lactate, through other biochemical path-

ways. In this metabolism that is known as mixed-acid

fermentation, acetic acid, formic acid, succinic acid, and

also ethanol can be produced in addition to lactic acid. A

higher NADH/NAD? ratio stimulates higher LDH activity

and consequently promotes homolactic metabolism and

higher lactate formation from pyruvate. On the other hand,

a lower NADH/NAD? ratio reduces the activity of LDH

and shifts the metabolism towards mixed-acid fermentation

(Kowalczyk and Bardowski 2007). Some of the alternative

pathways for pyruvate consumption through mixed-acid

fermentation are shown in Fig. 1. Acetic acid is one of the

important metabolites that pyruvate can be converted to.

Pyruvate dehydrogenase [EC: 1.2.4.1] can convert pyru-

vate to acetyl-CoA and subsequently acetate kinase [EC:

2.7.2.1] can catalyze the production of acetate from acetyl-

P. The activity of pyruvate oxidase [EC: 1.2.3.3] can also

lead to the production of acetate from pyruvate. Pyruvate

can also be converted to a-acetolactate by acetolactate

synthase (ALS, [EC: 2.2.1.6]) (Lahtinen et al. 2011), which

according to the pathways shown in Fig. 1, can be subse-

quently converted to diacetyl and acetoin. Acetolactate is

converted to diacetyl through a non-enzymatic chemical

oxidation with the release of CO2, and diacetyl can be

subsequently reduced to acetoin by diacetyl reductase

([EC: 1.1.1.303] and [EC: 1.1.1.304], for the R and S con-

figurations). Acetolactate can also be directly converted

into acetoin by a-acetolactate decarboxylase [EC: 4.1.1.5]

(Caspi et al. 2014). Synthesis of a-acetolactate is active

only under the condition of surplus pyruvate, and will be

enhanced at low pH values (Le Bars and Yvon 2008). By

mixed-acid fermentation pyruvate can also be converted

into formic acid. This pathway is catalyzed by pyruvate

Fig. 1 Glycolysis (Embden–Meyerhof–Parnas pathway) and the alternative routes for pyruvate catabolism. The metabolites that are written in

red are among the metabolites that were identified by the in vitro NMR measurements of the experimental design samples (Color figure online)
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formate lyase [EC: 2.3.1.54], which is highly sensitive to

oxygen.

Metabolism of amino acids by LAB have important

physiological roles including intracellular pH control,

controlling the redox state of the cells, and being involved

in metabolic stress responses. As LAB are widely used for

the production of fermented food products by the industry,

studying the catabolism of amino acids by LAB is relevant

for the safety and the quality of fermented products.

Studying the metabolism of amino acids by LAB has

received special attention, because the products from

amino acids catabolism can significantly enhance the sen-

sory properties of food products. It is previously reported

that for many of LAB strains, catabolic pathways of amino

acids start with transamination, which requires presence of

a-ketoglutarate (Amarita et al. 2001; Helinck et al. 2004).

LAB strains that have active glutamate dehydrogenase

(GDH, [EC: 1.4.1.2]) can produce a-ketoglutarate from

deamination of glutamic acid, by the biochemical reaction

(Tanous et al. 2002):

glutamateþ NADþ $GDH a-ketoglutarateþ NADHþ Hþ

As catabolism of amino acids can produce aromatic

compounds, especially from the aromatic, branched-chain

and, sulfur-containing amino acids, strains that have higher

activity of GDH can be used for flavor enhancement in

food products (Kieronczyk et al. 2003; Helinck et al. 2004;

Liu et al. 2008). Amino acids can also be used as energy

sources, or be involved in the pathways regarding cells

stress responses (Fernández and Zúñiga 2006). There is not

detailed knowledge on the catabolism of glutamine by

LAB, but it has been observed that several strains of LAB

can metabolize it (Kieronczyk et al. 2001; Williams et al.

2001). For aspartic acid, three catabolic pathways have

been reported that are catalyzed by three different

enzymes: aspartate aminotransferase [EC: 2.6.1.1], aspar-

tate ammonia-lyase [EC: 4.3.1.1], and aspartate decar-

boxylase [EC: 4.1.1.11]. The pathway catalyzed by the

aspartate aminotransferase produces oxaloacetate and

pyruvate, the one catalyzed by aspartate ammonia-lyase,

depending on the conditions can produce fumaric acid,

succinic acid or malic acid, and finally the pathway cat-

alyzed by aspartate decarboxylase can synthesize alanine

(Fernández and Zúñiga 2006).

Nucleosides are very important endogenous metabo-

lites in LAB, as they are used as the building blocks

of DNA and RNA after phosphorylation and forming

nucleotides. They also serve a very important role in

cells energy metabolism. Some bacteria can use nucleo-

sides as carbon source by degrading their pentose ring.

Moreover, it is reported that adenosine may be utilized

as nitrogen source without degradation of purine ring

(Kilstrup et al. 2005). To metabolize adenosine as a

purine source, it should be deaminated by adenosine

deaminase (ADD, [EC: 3.5.4.4]) to yield inosine. Inosine

can then undergo phosphorolytic cleavage, generating

ribose-1-P and hypoxanthine, catalyzed by purine nucle-

oside phosphorylase (PNP, [EC: 2.4.2.1]), according to

the following reaction:

inosineþ Pi$
PNP

hypoxanthineþ ribose-1-phosphate

PNP can also convert adenosine into adenine (Kilstrup

et al. 2005).

3 Results and discussion

3.1 The time-series NMR spectra and the extraction

of the metabolic profiles

When the number of cells increases during fermentation,

the samples can become inhomogeneous because of the

cells coagulation. The inhomogeneity in the sample will

result in line broadening of the signals in the NMR spectra

towards the end of the fermentations. Therefore, for a

time-series measurement of fermentation, signals will get

broader during the fermentation, as long as the cells are

propagating. Lineshape changes by time will definitely

lead to errors in quantitative multivariate analysis of the

metabolic changes of such data, by methods like principal

component analysis (PCA), partial least squares (PLS)

regression, and multivariate curve resolution-alternating

least squares (MCR-ALS) that have bilinearity of the data

as their main principle. Reference deconvolution was used

on the data, in order to enhance the quality of the spectra

and to solve the line broadening problem.

Figure 2 shows some of the resonances from one of the

time-series spectra processed with and without reference

deconvolution with a 5 Hz Gaussian target lineshape, and

subsequently aligned by icoshift program. As can be

observed from the figure, reference deconvolution signifi-

cantly improves the quality of the spectra, and the line-

shapes become more consistent between the spectra after

applying this method, which in turn makes the data more

suitable for bilinear modelling. Moreover, Fig. 2 shows

that using icoshift on reference-deconvoluted data corrects

the shifts in the position of the resonances between the

spectra. This will also lead to the improved multivariate

data analysis results. To our knowledge, this is the first

application of reference deconvolution to improve the

multivariate analysis results of real metabolomics data. In

any further analysis of the data and modeling the metabolic

profiles, the reference deconvoluted and icoshifted data

was used.

77 Page 6 of 17 P. Ebrahimi et al.

123



Table 1 lists the metabolites that were observed to

change during fermentation, as measured by 1H NMR. It

also shows the specific resonances of each metabolite that

was used for extracting the kinetic profiles, and the

method that was applied for this purpose (see Sect. 2.3).

The NMR signals of the modeled metabolites in one of

the ‘R5.5GH’ time-series are shown in Fig. 2S (the

Online Resource). As adenosine and inosine signals

overlap slightly, one MCR-ALS model with two com-

ponents was used to model the profiles of both signals

simultaneously. Besides, as inosine signal shifts between

the samples with pHi 6.5 and 5.5, models were calculated

for the two pHi values separately.

3.2 Cell growth and substrate depletion

The extracted metabolic profiles, as well as the OD curves

are presented in Fig. 3. To avoid repetition of the samples

names, abbreviations that are defined in Sect. 2.1 and

Fig. 1S (the Online Resource) will be used for discussing

the profiles. The OD curves (Fig. 3a) show that cells grow

more rapidly in samples with pHi 6.5, and in samples with

the high glucose concentration. Cell growth (OD values) is

lower in all samples with pHi 5.5, and this effect is more

pronounced in L. plantarum samples. According to the

glucose profiles (Fig. 3b, c), L. plantarum depletes glucose

faster in samples with high glucose concentration, whereas

Fig. 2 Enhancing the quality of real-time in vitro measurements of

bacterial fermentation by reference deconvolution and icoshift.

Reference deconvolution can enhance the lineshapes consistencies

and correct line broadening, and icoshift can align the resonances and

correct the shifts in peaks position; a original time-series data,

b reference deconvoluted data, and c reference deconvoluted and

aligned data
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in samples with low glucose concentration, L. rhamnosus

depletes glucose faster. In the beginning of the fermenta-

tion L. rhamnosus consumes glucose faster, but since L.

plantarum continuously increases its glucose consumption

rate, it overhauls L. rhamnosus towards the end of the

fermentation process. The rate of glucose consumption

decreases in the low pHi value and this affects L. rham-

nosus more than L. plantarum. Both of the studied strains

can obtain energy from glucose through the glycolysis

pathway, which is shown in Fig. 1.

3.3 The homofermentative pathway and mixed-acid

fermentation

Pyruvate is a key metabolite in the homofermentative

pathway where it is converted to lactate as the main

metabolic end-product. Figure 3d, e show the kinetic pro-

files of lactate, for high and low glucose concentration,

respectively. For both strains, a higher amount of lactate is

produced and more pyruvate is accumulated at pHi 6.5

samples compared to pHi 5.5 samples. This difference can

be explained by the difference in the intracellular pH. At

pH 6.5, the intracellular pH is close to neutral (*7.5),

whereas at pH 5.5, the intracellular pH is close to 6.5

(Siegumfeldt et al. 2000). This leads to the higher activities

of PK and LDH (the two enzymes that catalyze the pro-

duction of pyruvate and lactate respectively) in samples

with pHi 6.5, in which the intracellular pH is closer to the

optimum pH of the enzymes activity. In addition, the

activity of LDH seems to be higher in L. plantarum sam-

ples, as higher amount of lactate is produced in these

samples (Fig. 3d, e). On the other hand, as Fig. 3f shows,

more pyruvate is accumulated in L. rhamnosus samples,

which can result from the lower activity of LDH that

converts pyruvate to lactate. According to Fig. 3e, for

‘P6.5GL’ and ‘P5.5GL’ samples, the patterns of the lactate

profiles are different from the other samples. In ‘P5.5GL’,

the concentration of lactate increases slightly even after

glucose depletion, whereas it remains constant in the other

samples. According to the extracted metabolic profiles,

after glucose depletion (see Fig. 3b), pyruvate concentra-

tion decreases in samples with the higher glucose con-

centration (see Fig. 3f). However, this decrease is not

observed in samples with low glucose concentration.

Samples with the lower glucose concentration have a lower

metabolic flux and NADH/NAD? ratio, which as discussed

earlier in Sect. 2.4 can lead to the reduced activity of

enzymes that are involved in the conversion of pyruvate to

other metabolites. (Koebmann et al. 2002).

Figure 3g shows the kinetic profiles of acetic acid,

which is one of the metabolites that pyruvate can be con-

verted to through mixed-acid fermentation. As the profiles

show all the design factors affect the formation of acetic

acid. Overall, L. plantarum samples produce more acetic

acid than L. rhamnosus samples, and its highest yield is

observed in ‘P6.5GL’ samples (Fig. 3g). Amongst the L.

rhamnosus samples, the highest acetic acid was achieved at

pHi 6.5 and low glucose concentration. The higher pro-

duction of acetic acid in samples with the low glucose

concentration can be explained by the smaller NADH/

NAD? ratio in these samples that shifts the fermentation

towards mixed-acid fermentation. Besides, among the

samples with the low glucose concentration, the activity of

acetate kinase [EC: 2.7.2.1] is higher in samples with pHi

6.5 that leads to a higher production of acetate (Fig. 3f). In

a similar way, the lower production of acetate in samples

with high glucose concentration is related to the higher

NADH/NAD? ratio in these samples that stimulates

homolactic fermentation. In samples with high glucose

concentration, formation of acetic acid is increased close to

Table 1 List of the modeled metabolites, the specific signal that was used for extracting the profiles, and the modelling approach that was

applied

Metabolites NMR signal Signal type Profile extracting approach

Glucose 5.23 ppm Doublet MCR-ALS

Lactate 1.32 ppm Doublet MCR-ALS

Pyruvate 2.36 ppm Singlet 2nd derivative

Acetic acid 1.91 ppm (pH 6.5); 1.94 ppm (pH 5.5) Singlet 2nd derivative

a-Acetolactate 1.50 ppm (pH 6.5); 1.51 ppm (pH 5.5) Singlet 2nd derivative

Formic acid 8.46 ppm Singlet MCR-ALS

Glutamine 2.45 ppm Doublet of doublet MCR-ALS

Aspartic acid 2.70 ppm Doublet of doublet MCR-ALS

Adenosine 6.06 ppm Doublet MCR-ALS (separately on pH 6.5 and pH 5.5 datasets)

Inosine 6.08 ppm (pH 6.5); 6.09 ppm (pH 5.5) Doublet MCR-ALS (separately on pH 6.5 and pH 5.5 datasets)

Adenine 8.20 ppm (pH 6.5); 8.22 ppm (pH 5.5) Singlet 2nd derivative
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or after glucose depletion, whereas in samples with low

glucose concentration, acetic acid is formed already from

the beginning of the fermentation. This trend is observed

by comparing the acetic acid profiles of ‘P6.5GL’ and

‘P6.5GH’ samples (Fig. 3g), for instance. In samples with

high glucose concentration, close to the depletion of glu-

cose, the reduced NADH/NAD? ratio stimulates mixed-

acid fermentation, whereas in the samples with low glucose

concentration the small NADH/NAD? ratio from the

beginning of the fermentation shifts the metabolism

towards mixed-acid fermentation.

Figure 3h shows the kinetic profiles of a-acetolactate.
a-Acetolactate can be produced from pyruvate in mixed-

acid fermentation, catalyzed by acetolactate synthase

(ALS, [EC: 2.2.1.6]). According to the a-acetolactate
profiles (Fig. 3h), a-acetolactate is accumulated only in L.

rhamnosus samples, at least to a concentration that is

detectable by 1H NMR. However, according to Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa

and Goto 2000) both of the strains have ALS genes. The

reason that a-acetolactate is accumulated and observed in

only one of the strains may be attributed to the difference

in the activity of ALS, diacetyl reductase ([EC: 1.1.1.303]

and [EC: 1.1.1.304], for the R and S configurations), or a-
acetolactate decarboxylase [EC: 4.1.1.5] between the

strains. The highest concentration of this metabolite is

produced in ‘R5.5GH’ samples, which have high amount

of accumulated pyruvate and also a lower pH value—the

two factors that enhance the production of a-acetolactate
(Le Bars and Yvon 2008). ‘R6.5GL’ samples produce the

lowest amount of a-acetolactate, which can be explained

by the same reasoning. A considerable decline in the

concentration of a-acetolactate is observed in ‘R5.5GH’

samples after glucose depletion (Fig. 3h), which implies

that diacetyl or acetoin are produced. However, signals

from acetoin and diacetyl could not be identified, pre-

sumably due to their low concentration. It is previously

reported that for L. lactis, under the condition of surplus

pyruvate, at pH 5.0 a-acetolactate was mainly converted

into diacetyl, whereas between pH 5.5 and 7.0, it was

mainly converted into acetoin (Le Bars and Yvon 2008).

Diacetyl and acetoin are redox pairs, and depending on

the free NADH/NAD? ratio in the cells, and also activity

of diacetyl reductase, the ratio of the diacetyl that is

reduced to acetoin can vary. Activity of a-acetolactate
decarboxylase also affects the rate of the direct conver-

sion of a-acetolactate into acetoin. The extracted a-ace-
tolactate profiles are not as reproducible as the other

profiles for the duplicates. This can be explained by the

fact that a-acetolactate is highly unstable and in the

presence of oxygen will be quickly converted to diacetyl,

and under anaerobic condition it can be converted to

acetoin.

Figure 3i shows the formic acid profiles. Pyruvate can

be converted to formic acid by pyruvate formate lyase [EC:

2.3.1.54]. Only ‘R5.5GH’ and ‘P5.5GH’ samples produce

formic acid according to the profiles, with the highest

amount being produced by ‘R5.5GH’. The other samples

do not produce detectable amount of formic acid.

Accordingly, it can be concluded that pyruvate formate

lyase is active in the low pH value, pHi 5.5, and when there

is higher amount of carbohydrate source present, and under

these conditions, it is more active in L. rhamnosus samples.

3.4 The catabolic pathways of amino acids

The kinetic profiles of glutamine catabolism are shown in

Fig. 3j. According to KEGG, both of the studied strains

have GDH (Kanehisa and Goto 2000). When examining

the extracted metabolic profiles for glutamine (Fig. 3j), L.

plantarum samples consume higher amount of glutamine

compared to the L. rhamnosus samples. Besides, in L.

plantarum samples, the consumption of glutamine is higher

at pHi 5.5 than at pHi 6.5 (Fig. 3j). For L. rhamnosus

samples, ‘R6.5GH’ and subsequently ‘R5.5GH’ consume

the highest amount of glutamine. For both L. plantarum

and L. rhamnosus, more glutamine is consumed in samples

with the higher glucose concentration. For samples with the

lower glucose concentration, glutamine is consumed to a

much lower extent, with ‘R5.5GL’ samples being the

lowest (Fig. 3j). As glutamine, after being converted to a-
ketoglutarate, plays a role in the catabolism of amino acids

by starting the transamination step as the amino group

acceptor, augmenting its consumption can benefit the cat-

abolism of amino acids. This can be of high interest for

enhancing the sensory properties of food products, as the

catabolism of some amino acids can lead to the formation

of desirable aroma compounds. For this purpose, the

application of the strains that have high GDH activity and

also optimizing influential parameters like pH for increas-

ing glutamine consumption will be helpful. The extracted

kinetic profiles of glutamine provide interesting informa-

tion about the efficiency and the differences of the two

investigated strains in metabolizing glutamine. It is

observed that L. plantarum consumes more glutamine than

L. rhamnosus (Fig. 3j), which can be attributed to the

higher activity of GDH in L. plantarum. Another interest-

ing observation was the contradictory effect of pH on the

consumption of glutamine by the two strains; for L. plan-

tarum, the low pH value (pHi 5.5) enhances glutamine

consumption, whereas for L. rhamnosus samples, con-

sumption of glutamine is higher at pHi 6.5 (Fig. 3j). This

information can be very helpful when these strains are used

in food products. Resonances from the catabolic products

of glutamine were not sufficiently intense to be identified

reliably by 1H NMR.
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Fig. 3 The calculated metabolic profiles and the optical density

curves. The profiles that are marked with the asterisk are scaled using

their initial concentration in the CDIM; a optical density curves,

b and c glucose profiles for samples with high and low glucose

content respectively, d and e lactic acid profiles for samples with high

and low glucose content respectively, f pyruvate profiles, g acetic acid

profiles, h a-acetolactate profiles, i formic acid profiles, j glutamine

profiles, k aspartic acid profiles, l adenosine profiles, m inosine

profiles, and n adenine profiles
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The kinetic profiles of aspartic acid catabolism are

shown in Fig. 3k. According to KEGG (Kanehisa and Goto

2000) both of the studied strains have aspartate ammonia-

lyase [EC: 4.3.1.1], which suggests that they can consume

aspartic acid and produce fumaric acid, succinic acid or

malic acid (Kanehisa and Goto 2000). According to

Fig. 3 continued
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Fig. 3k, L. plantarum samples consume more aspartic acid

than L. rhamnosus, and aspartic acid consumption increa-

ses at the high glucose concentration and the low pHi value.

For L. rhamnosus samples, only ‘R5.5GH’ samples con-

sume considerable amount of aspartic acid, and at pHi 6.5

samples, consumption of aspartic acid is very low.

3.5 Nucleosides and cell energy metabolism

Figure 3l shows the extracted kinetic profiles for adeno-

sine. In our experiment, L. plantarum samples consume

much more adenosine compared to L. rhamnosus samples.

In all L. plantarum samples adenosine is depleted, which is

not the case in L. rhamnosus samples (Fig. 3l). For L.

plantarum, the rate of the adenosine consumption is higher

in samples with high glucose concentration and the higher

pHi value, with glucose concentration having the main

effect (Fig. 3l). The same glucose concentration depen-

dence was observed for the L. rhamnosus. In ‘R6.5GH’

samples, adenosine is consumed at the same rate

throughout the fermentation, but in ‘R5.5GH’ the rate of

the adenosine consumption increases considerably after

glucose depletion (Fig. 3l). L. rhamnosus samples with low

glucose concentration consume the least amount of ade-

nosine among all the other samples. Adenosine can be

converted to inosine by adenosine deaminase (ADD, [EC:

3.5.4.4]) or to adenine by purine nucleoside phosphorylase

(PNP, [EC: 2.4.2.1]). As Fig. 3m shows, inosine is only

produced in L. rhamnosus samples, and analysis of the

genome sequences from L. plantarum indicates that ADD

is missing in these species (Kanehisa and Goto 2000). The

maximum amount of inosine is formed in ‘R5.5GH’ sam-

ples (Fig. 3m). Figure 3n shows the kinetic profiles of

adenine. Based on KEGG, PNP that can synthesize adenine

from adenosine is present in both of the strains (Kanehisa

and Goto 2000). It is observed that adenine is synthesized

in the samples, and the patterns of its profiles are similar

but inversed relative to the shape of the corresponding

adenosine profiles. Overall, L. plantarum samples have a

higher rate of adenine synthesis, and the highest amount of

adenine is accumulated in ‘P6.5GL’ and ‘P5.5GL’ samples

(Fig. 3n). In these samples, the concentration of adenine

increases till the end of glucose depletion, but declines

afterwards, especially in one of the ‘P6.5GH’ samples.

Amongst the L. rhamnosus samples, the highest amount of

adenine is synthesized in ‘R5.5GH’. In ‘R6.5GH’, the

concentration of adenine decreases till the end of glucose

depletion, but starts to rise afterwards (Fig. 3n). As seen in

Fig. 3l, n, L. plantarum consumes all the adenosine present

in the CDIM medium and produces adenine, but no ino-

sine. This is consistent with the presence of adenosine

hydrolase [EC: 3.2.2.7], but the absence of adenosine

deaminase [EC: 3.5.4.4] in L. plantarum. The hydrolase

activity appears to follow the bacterial concentration (OD

value) and not to be dependent upon the growth rate of the

bacteria. The accumulated adenine is not converted into

adenosine monophosphate (AMP) by the adenine phos-

phoribosyl transferase (APRTase, [EC: 2.4.2.7]) or to

hypoxanthine by the adenine deaminase [EC: 3.5.4.2] that

is present in the bacterium. One explanation could be that

adenine is exported into the medium. In L. rhamnosus,

conversion of adenosine is much slower, though this bac-

terium has both adenosine hydrolase and adenosine

deaminase. It is observed that both adenosine and inosine

are accumulated during growth, but the speed of accumu-

lation does not correlate with the growth rate. It appears as

if the increased speed of adenosine consumption after 15 h

with the ‘R5.5GH’ cultures coincided with decreased

accumulation rate of both adenine and inosine, suggesting

that inosine and adenine were both consumed for nucleo-

tide synthesis through the salvage pathway.

3.6 Experimental design and significant factors

In order to investigate the significance of the experimental

design factors, and to analyze some of the effect matrices,

ASCA was applied on the extracted metabolic profiles

including the OD profiles. Figure 4 shows the workflow for

the data analysis and theASCA results.As glucosewas one of

the experimental design factors and lactate production is

highly correlated to the glucose consumption, these two

metabolites were excluded prior to ASCA, in order to focus

on the variation of the other metabolites. Based on the p-

values of the effect matrices in Fig. 4, all the design factors,

strains, pH, andglucose concentrations are statistically highly

significant. The preliminary ASCA results showed that the p-

values for the variance that is related to the replicateswere not

significant, as can be expected for a correctly performed

experiment. Therefore, in the final ASCA, replicateswere not

included as the design factors. The p-values verify the

experimental design and the experimental work.

The matrices that represent the strain related and pH

related variances of the dataset were constructed by adding

the residual matrix to the corresponding effect matrix that

is given by ASCA, and were subsequently autoscaled and

analyzed by PCA. Figure 5a shows the scores and the

loadings biplot of the PCA analysis of the ASCA separated

strains effect matrix. The first loading mainly describes

consumption of adenosine, glutamine, and aspartic acid,

and the concomitant production of acetic acid and adenine.

The second loading mainly describes production of inosine,

pyruvate, a-acetolactate, and formic acid. The PCA biplot

shows that both L. rhamnosus and L. plantarum can

metabolize adenosine, glutamine, and aspartic acid, but L.

plantarum consumes them more. Furthermore, L. plan-

tarum can produce more acetate and adenine, whereas, L.
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rhamnosus can produce more inosine, pyruvate, acetolac-

tate, and formic acid. This information was presented in a

more segmented, but detailed manner by the extracted

profiles, but the PCA results of the ASCA separated strain

effect matrix, provides a more general and comprehensive

overview of the strains differences in terms of the pro-

ductions and consumption of the metabolites.

Figure 5b shows the PCA results of the pH separated

effect matrix. For samples with pHi 6.5, the end points of

the fermentation mainly lead towards pyruvate and acetate,

and for the samples with pHi 5.5, towards a-acetolactate,
adenine, formate, and inosine. As observed from this

plot, aspartate consumption increases at pHi 5.5 than at pHi

6.5, whereas consumption of adenosine and glutamine

decrease. Figure 3S (the Online Resource) shows the PCA

results of the strain specific pH effect matrix (the interac-

tion between strain and pH).

The strain specific pH effect matrix (the interaction

between the strains and pHi) was also analyzed by PCA.

The resulting scores and loadings plots are presented in

Fig. 3S (the Online Resource). In the scores plot, only

samples with the high glucose concentration are shown,

because the samples with the lower glucose concentration

are not influenced by the pH change as much as the sam-

ples with the higher glucose concentrations. The combi-

nation of the first and the third PCs show the fermentation

trajectories of the two strains and how they are affected by

the change in pHi. The strains follow quite different

Fig. 4 The workflow for extracting the metabolic profiles by MCR-

ALS and subsequent ASCA analysis. Some of the profiles were

extracted by 2nd derivative approach. The explained variance and the

p-values of the ASCA effect matrices are shown. ‘XStrain’, ‘XpH’, and

‘XGlucose’ are the main effect matrices of the corresponding design

factors. ‘XStr9pH’ and ‘XStr9Glc’ are the strain-pH and strain-glucose

interaction effect matrices, and ‘XpH9Glc’ is the pH-glucose interac-

tion effect matrix
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trajectories at the same pHi value, and also the metabolic

shift in their metabolism due to the change in the pHi is

different. The perturbation in L. rhamnosus fermentation

by pHi change is more pronounced than in the L. plan-

tarum, as the metabolic shift from ‘R6.5GH’ to ‘R5.5GH’

is stronger than the shift from ‘P6.5GH’ to ‘P5.5GH’.

3.7 Pearson correlations and metabolite–metabolite

heat maps

Figure 4S (the Online Resource) shows the correlation

between the metabolites as heat maps, calculated as

described in Sect. 2.3.2. These maps show which

metabolites are highly correlated during the fermentation

process. Table 1S shows number of the positive correla-

tions that are bigger than 0.8 and the negative correlations

that are smaller than -0.8, for all the samples. For L.

rhamnosus samples with the higher glucose concentration,

the numbers of the positive and negative correlations are

increased considerably by the change of the pHi from 6.5 to

5.5. This means that the change in the pH can significantly

alter the metabolic state of the L. rhamnosus samples with

the higher glucose concentration and by the decrease in pH,

the concentration of more metabolites will decrease or

increase concordantly, to reach a new metabolic equilib-

rium. This probably will help the cells to deal with the

exerted pH stress. For L. plantarum samples with the high

glucose concentration, the numbers of the positive and

negative correlations decrease slightly at pHi 5.5 compared

to pHi 6.5. However, this level of perturbation in the

metabolism is not comparable to the change that is

observed in the corresponding L. rhamnosus samples.

Therefore, it can be concluded that the metabolism of L.

rhamnosus is more sensitive to pH decrease than the

metabolism of L. plantarum. For L. rhamnosus and L.

plantarum samples with the lower glucose concentration,

the numbers of the positive and negative correlations

between the metabolites are smaller compared to the

samples with the higher glucose concentration. The num-

bers do not change between the two pHi values. This may

be due to the fact that the concentration of glucose in these

samples is too low for the metabolism to reach equilibrium,

and therefore the cells, being under the shortage of the

carbohydrate source, cannot respond to the pH stress by

shifting to a new metabolic state.

4 Concluding remarks

An efficient analytical protocol was developed for in vitro

NMR studies of bacterial metabolism, from sample

preparation to kinetic observation of metabolic changes.

The protocol was successfully applied to an experimental

design involving two LAB strains, two pH values and two

initial glucose levels, where all the design factors proved to

be highly significant and led to interesting biological

information. One of the interesting biological findings was

the different patterns of glutamine consumption by the two

Fig. 5 PCA results of the ASCA effect matrices: a strains effect matrix, b pH effect matrix. The arrows on the scores trajectories show the time

progression
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strains. As glutamine plays a role in the catabolism of

amino acids, augmenting its consumption can benefit the

catabolism of amino acids, and consequently enhance the

sensory properties of food products. Using the developed

protocol, NMR proved to be an excellent analytical plat-

form for real-time investigation of the gross details of

bacterial metabolism. As for the data processing, reference

deconvolution proved to be a necessary and elegant solu-

tion to the inherent inhomogeneity of in vitro NMR mea-

surements of cells. It is recommended that reference

deconvolution should be considered as a standard tool to

enhance lineshapes and improve multivariate analysis

results. The protocol can be used for studying different

aspects of bacterial metabolism, and allows relatively easy

investigation of different fermentation factors such as new

strains, cohabitations, new substrates and deleterious

metabolites, as well as temperature and pH.
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