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Abstract Obesity is currently an increasing public health

problem. The intra-uterine environment plays a critical role

in foetal development. The objective of this study is to

investigate the association of obesity with modifications in

the metabolic profiles of pregnant women, and their new-

borns. Based on the PELAGIE cohort (Brittany, France), a

sample of 321 pregnant women was divided into three

groups according to their body mass index (BMI) (normal,

over-weight and obese). Nuclear magnetic resonance-based

metabolomics analyses were performed on maternal urine

and cord-blood samples. Partial least squares regression-

discriminant analysis (PLS-DA), polytomous and logistic

regressions were used to differentiate the metabolic profiles

of the three BMI groups after adjusting for potential con-

founders. Specific profiles were observed for the over-

weight and obese women (BMI[ 25) compared to the

normal-weight women: they had a decrease in urinary

hippurate excretion associated with a decrease in pheny-

lalanine and an increase in creatinine. We also showed an

increase in the urinary excretion of lactate, citrate, acetate,

creatine, and lysine only in obese women (BMI[ 30)

compared to the normal-weight women. The PLS-DA

modelling did not reveal any significant difference between

the cord-blood metabolic profiles of newborns according to

maternal BMI—although infants born of obese women had

a higher birth weight and a lower Apgar score. Our results

confirmed the potential link between obesity and gut

microbiota disruption (changes in urinary acids), as well as

energy and amino-acid metabolism but did not reveal any

disruption among newborns.

Keywords Metabolomics � Obesity � Biomarkers �
System biology

1 Introduction

Obesity, associated with type II diabetes or cardiovascular

diseases, has reached epidemic status. A third of American

women of reproductive age are obese (Orsi et al. 2011).

Now, epidemiological studies have shown increased birth

weight in new-borns from obese mothers, associated with a

higher risk of developing obesity in the future (Muhlhausler

et al. 2013; Symonds et al. 2013). Epidemiological studies,

experimentations on animals and placental models have

shown the critical role played by the intrauterine environ-

ment in foetal development, including a direct transmission

of obesity or metabolic pathologies (Dong et al. 2013;
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Symonds et al. 2013). For example, the male offspring of

mice with gestational obesity developed excess weight,

insulin resistance and hyperleptinemia at adulthood, without

any post-natal obesogenic influence (Dahlhoff et al. 2014).

Furthermore, several human studies based on mother–child

cohorts have found an association between maternal obesity

and disrupted childhood metabolism associated with car-

diovascular diseases (Godfrey and Barker 2000; O’Reilly

and Reynolds 2013; Wen et al. 2011).

These phenomena, known as ‘‘foetal programming’’

involve different mechanisms (Bouanane et al. 2010;

Symonds et al. 2013; Zambrano and Nathanielsz 2013).

First of all, several studies provide supporting evidence on

the involvement of an epigenetic mechanism. In one

human cohort, modifications in DNA methylation at the

leptin and adiponectin genes have been observed in pla-

centas exposed to maternal gestational diabetes mellitus

(Bouchard et al. 2012, 2010). In another, global methyla-

tion levels in the placenta and umbilical cord-blood was

higher with obesity (Norman et al. 2014).

Secondly, overexpression of certain miRNA in foetal

muscle from obese mothers has been shown in a model of

maternal obesity in ewes, suggesting a decrease in adi-

pogenic markers and in inflammatory cytokines (Yan et al.

2013). In rats, the wiring of connections within the

hypothalamic arcuate nuclei (HAC) - a complex energy

and appetite control system—occurs in the first 3 weeks of

life coincident with a peak in leptin in the new-born pups’

peripheral blood. Pups born of obese mothers have a dis-

torted plasma leptin peak that is longer lasting and higher

in amplitude (Kirk et al. 2009). This could be the sign of a

perturbation in HAC development, resulting in future

resistance to leptin feedback and energy balance alter-

ations. Hormonal changes in foetuses from obese moth-

ers—such as increased cortisol levels or decreased

thyroxine (T4) levels—have also been reported as potential

mechanisms involved in programmed obesity (Guzmán

et al. 2006; Magyar et al. 1980; Nuermaimaiti Tuersunjiang

2013; Suter et al. 2012). Changes in placenta function have

also been observed, with inflammation and changes in

glucose or amino acid transport rates (Challier et al. 2008;

Farley et al. 2010; Jones et al. 2009). Maternal reactive

oxygen and nitrogen species, which are associated with

intrauterine oxidative stress, also seem to play a role in

obesity programming. Indeed, oxidative stress is suspected

of being implicated in mitochondrial damage, changes in

pancreas functions and dysfunctions of the electron trans-

port chain in skeletal muscle (Shelley et al. 2009; Simmons

et al. 2005). There is also supporting evidence for a link

between maternal exposure to xenobiotics and chemicals,

and higher Body Mass Index (BMI) in offspring (Janesick

and Blumberg 2011; Karmaus et al. 2009; Smink et al.

2008).

Otherwise, some of these mechanisms (epigenetics,

corticosteroids, miRNA or maternal exposure to chemicals)

are investigated for the understanding of the programming

of obesity for children exposed to famine in utero (Inadera

2013). Most studies have been undertaken in animal

models.

Metabolomics describes the study of the metabolome,

which is defined as the collective set of metabolites produced

or present in a sample of interest, for example blood or other

biological fluid, tissue lysate or cells. Metabolomics based

on spectroscopic techniques, is able to generate ‘‘finger-

prints’’ or metabolic profiles that can be correlated with

phenotypes. The metabolic profile constitutes the ultimate

step in the cellular response, and is considered the key link

between genes and phenotypes (Fiehn 2002). It has come to

be widely used in recent years to identify metabolic path-

ways modified by disease (Vinayavekhin et al. 2010). This

technique has already proved its capacity to study the

physiopathology of obesity in animal and human studies

(Zhang et al. 2013). When it is non-targeted, variations can

be shown in the levels of metabolites between different

groups of population without a priori.

Metabolomics have already been used to investigate

metabolic differences between pregnant and non-gravid

women (Lowe and Karban 2014) as well as to analyse

metabolic differences between obese and normal weight

people (Xie et al. 2012a). The aim of the present study is to

investigate the existence of differential urinary metabolic

profiles in pregnant women according to their obesity sta-

tus, and to understand whether observed changes are

associated with modifications in the new-born metabolic

profile. Thus, we have used nuclear magnetic resonance

(NMR)-based metabolomics analysis on urinary and cord-

blood samples of pregnant women and new-borns from the

PELAGIE cohort (Brittany, France). To our knowledge,

this is the first study to investigate the maternal program-

ming of obesity in a human population, using

metabolomics.

2 Materials and methods

2.1 Population, sample collection and obesity

groups

The population was selected from the PELAGIE cohort,

which includes 3421 pregnant women in Brittany (France)

enrolled during early pregnancy from the general popula-

tion by gynaecologists, between 2002 and 2006. Gynae-

cologists informed the women of the nature of the study

and asked them to participate, after providing written

consent. This consent was accompanied by a letter of

information describing the goal of the study, the
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consortium, data collection procedures and follow-up after

birth (via questionnaires and medical examinations).

Explicit mention was made of the right to refuse to par-

ticipate, and the fact that such a refusal would not have any

effect on the woman’s relationship with her doctor. Both

the INSERM (French National Institute of Health and

Medical Research) ethics committee and the National

Commission in charge of Data Protection (CNIL) approved

the study procedures (Nu902076; 31 may 2002). A detailed

description of this cohort is available elsewhere (Chevrier

et al. 2011). At inclusion, during the first trimester of the

pregnancy (4–15th week), women had to complete a self-

report questionnaire including information about social and

demographic characteristics, diet and lifestyle, and data on

their height and weight (used to calculate BMI). They also

had to return a first morning void urine sample that they

collected and transferred into two vials containing nitric

acid to avoid bacterial degradation. No blood collection

was planned at this step of inclusion because of the absence

of hospital appointment. Samples were mailed to the study

laboratory in a pre-stamped package at ambient tempera-

ture, with routine delivery taking 1–3 days. Upon receipt,

the 10 mL samples were frozen and stored at -20 �C. At

birth, medical data on health outcomes were obtained and

cord-blood samples were collected. After centrifugation,

serum samples were analysed by hospital laboratories and

stored at -20 �C.

Pregnant women were selected from the PELAGIE

according to the following criteria: living infant at birth

(n = 3322) and availability of both urinary and cord blood

samples for each mother–child pair (n = 1061). In addi-

tion, 1 year of inclusion (2004) was selected, to avoid

potential variability due to different storage durations of

biological samples. A detailed description of this method-

ology is published elsewhere (Bonvallot et al. 2013). Of the

338 eligible women, those whose BMI was unavailable or

below 18.5 were excluded (n = 15), because low body

weight can influence metabolic profiles (Norman et al.

2014; Sarlio-Lähteenkorva et al. 2004). Finally, the popu-

lation analysed included 323 women, who were classified

into three groups of BMI, according to the World Health

Organization (WHO)’s definition (WHO Expert Consulta-

tion 2004): the first group comprised women with a BMI of

between 18.5 and \25 (normal weight), the second those

with a BMI between 25 and \30 (overweight) and the

third, those with a BMI of 30 or more (obese).

2.2 Metabolomics analyses

2.2.1 Urinary sample preparation

After thawing at room temperature and vortexing, 500 lL

of urine were mixed with 200 lL of phosphate buffer (pH

7.39) prepared in D2O to which was added sodium

3-trimethylsilyl-1-[2,2,3,3,-2H4]-propionate (TSP, 1 mM).

The phosphate buffer is used to minimize variations in

chemical shift values in the acquired NMR spectra due to

pH differences. TSP served as a chemical shift reference

and D2O served as a field-frequency lock for the NMR

spectrometer. Each sample was vortexed and centrifuged

for 10 min at 8000 rpm to remove any precipitate. Then,

600 lL aliquots were transferred to standard 5 mm—NMR

tubes (Norell ST 500, Landisville, NJ) for analysis.

2.2.2 Serum sample preparation

After thawing at room temperature and vortexing, 200 lL

of serum were mixed with 500 lL of D2O which served as

a field-frequency lock for the NMR spectrometer. Each

sample was vortexed and centrifuged for 10 min at

8000 rpm to remove any precipitate. Then, 600 lL aliquots

were transferred to NMR tubes for analysis.

2.2.3 Metabolomics analyses

Metabolomics analyses of urine and cord-blood samples

were made by NMR spectroscopy using a Bruker Avance

DRX-600 operating at 600.13 MHz (Bruker Biospin,

Germany) and equipped with an autosampler and an

inverse 1H–13C–15N cryoprobe. All NMR spectra were

phase- and baseline-corrected manually using Topspin

(V2.1, Bruker Biospin, Germany). The spectral region

containing residual water resonance (d 5.515–6.600) was

removed and spectra were digitized to 642 and 751 buckets

corresponding to 0.01 ppm intervals using the AMIX

software package (V3.9.11, Bruker Biospin, Germany).

Each integrated region was divided by the total spectral

intensity in order to normalise values. Spectra acquisition,

pre-processing step, and metabolite identification have

been described previously (Bonvallot et al. 2013).

2.2.4 Statistical analysis: metabolic profiles according

to BMI groups

To investigate the association of obesity with specific

metabolomic profiles, we used partial least square dis-

criminant analyses (PLS-DA) and multivariate logistic

regression models. Our objective was not to strictly build

predictive models for obesity but rather to study variations

in both mother and newborn metabolic profiles according

to maternal obesity.

The PLS-DA approach was chosen because it handles

highly collinear and noisy data, such as spectral data and it

has already been used in epidemiological studies which

investigated subtle health effects in relation to highly

variable spectral data (Waterman et al. 2009). It allows
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identifying among the spectrum the most important vari-

ables which discriminate the groups of interest, using

statistics such as the variable importance on projection

(VIP).

Maternal urine and cord blood spectral data were anal-

ysed separately. The original digitized NMR spectral data

were imported into the R software (version 3.1.1) for

multivariate statistical analysis. A preliminary principal

component analysis (PCA) was implemented to remove

potential outliers. Data were then Pareto-scaled to reduce

relative importance of large values, while partially pre-

serving data structure (Worley and Powers 2013). PLS-DA

were applied to Pareto-scaled data. In PLS-DA, linear

combinations of NMR buckets are constructed to maximize

covariance between the Y (BMI groups) and (NMR

buckets) X matrices. Observations are then projected onto

planes defined by a few of these linear combinations (also

interpreted as latent variables). Various PLS-DA models

were generated: a three-level model measuring the link

between the metabolic profiles and the mothers’ BMI in

three groups (Normal vs. Overweight vs. Obese) and four

two-level models measuring the link with BMI in two

groups (Normal vs. others, Obese versus others, Normal vs.

Overweight, Overweight vs. Obese). The quality of the

three-level models was assessed by the Q2 and the R2

parameters defined as followed:

• Q2 ¼ 1 � PRESSn
RSSn�1

, where PRESS is the predicted residual

sum of squares; RSS, the residual sum of squares and n,

the number of latent variables (LV).

• R2 ¼ 1 � PRESS
TSS

, where TSS is the total sum of squares.

The quality of the 2-level models was assessed by the

Q2, R2 and the area under the ROC curve (AUROC) cri-

teria, following a 3–2 double-k-fold cross-validation. This

consists of two nested cross-validation loops. The mod-

elling procedure, including the cross-validation that deter-

mines the best number of Latent Variables (LV), using the

lower PRESS criteria, forms the inner loop. Cross-valida-

tion for error estimation takes place in the outer loop.

Double cross-validation is recommended in PLS-DA

analysis (Smit et al. 2007; Szymańska et al. 2012). Here, a

limited number of folds for cross validation (n = 3 in outer

loop and n = 2 in inner loop) were chosen to keep an

adequate number of obese mothers in each fold (n = 6 or

7). A random draw was performed to allow equal distri-

bution of Obese and Overweight in each fold. A permu-

tation test (1000 iterations) was conducted for each PLS-

DA model to test for validity. Finally, the spectral regions

(buckets) having VIP above 2 were considered as being

significantly associated with the maternal BMI status and

were used to identify the metabolites of interest. Kruskal–

Wallis tests using crude spectral data were used to confirm

the relationships between BMI groups and concentrations

of metabolites in urine or in serum previously identified.

2.3 Adjustment for confounding factors

As PLS-DA did not allow for adjustment, polytomous and

logistic regressions were then used to assess the association

of urinary metabolic profiles with the BMI group (3 levels)

after adjustment for women’s individual characteristics.

For each metabolite previously identified from the PLS-

DA, the corresponding buckets with VIP[ 2 were simul-

taneously introduced in the models. Results from these

analyses were reported as a global trend (direction of the

association) and an adjusted p value. The literature sug-

gested some major confounding factors. Age, educational

level, alcohol and tobacco consumption, food habits (fruit

and fish consumption), proportion of area covered by cereal

crops in the municipality of residence during pregnancy

(reflecting pesticide exposure) and Apgar score (at 5 min,

only in the analysis of cord-blood) were considered as

potential confounders and were retained in the model if the

likelihood ratio (LR) test was statistically significant for at

least one metabolite. Then, a backward selection using the

LR test was performed to select confounders with an

impact in term of goodness of fit. Finally, none of the

confounders has been kept in the models.

3 Results

Preliminary PCA identified two outliers among the women

(urinary analyses). The first one had a high concentration of

urinary glucose and was identified as diabetic. The second

had no specific characteristics compared to the other indi-

viduals but a high concentration of hippurate was detected

in her urinary sample. The preliminary PCA among the

new-borns (serum analyses) did not identify any outlier.

Table 1 describes the characteristics of the 321 women

finally included in the analyses. Mean maternal age was

30.3 and most of these women had a high educational level

(university degree). Tobacco and alcohol consumption was

limited (28.2 and 15.9 %).

Most of the women were of normal-weight (n = 256),

46 were overweight and only 19 were considered obese

according to the WHO definition. Overweight and obese

women had higher parity than normal weight women

(p = 0.03), higher incidence of high blood pressure

(p = 0.006) and higher incidence of occupational exposure

to solvents (p = 0.047). Infants born of overweight or

obese women had higher birth weight (p = 0.02) and those

born from obese women had lower Apgar scores at 5 min

(p = 0.02).
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3.1 Urinary analyses of pregnant women

Obese mothers were distinguished by the first two latent

variables, and overweight mothers to a slightly lesser

extent. The ideal number of latent variables was one or

two, depending on validation loop (mean = 1.77 in the

Normal vs. Overweight vs. Obese model). Separation of

the 3 levels of BMI was significant according to the

Q2 (mean = 0.01, p = 0.006) and R2 (mean = 0.02, p =

0.003) criteria. The separation between normal-weight

women and the rest of the population was significant

according to the AUROC (mean = 0.71, p = 0.001),

Q2 (mean = 0.021, p = 0.004) and R2 (mean = 0.05, p =

0.001) criteria, as well as the separation between normal-

weight and overweight women (AUROC = 0.66, p =

0.003; Q2 = 0.02, p = 0.001; R2 = 0, p = 0.008). The

separation between obese and the rest of the population

was highly significant according to the AUROC

(mean = 0.76, p = 0.001) but not to the Q2 and R2. This

can be explained by the small number of obese women in

the population, leading to a lower performance of the

classical parameters Q2 and R2 in PLS. The separation

between obese and overweight women was not significant

according to any criterion. The score plot derived from the

PLS-DA modelling is shown in Fig. 1. The parameters

resulting from the validation procedures and permutation

tests are described in Table 2.

Because hypertension and occupational exposure to

solvent could also be associated with an increased risk in

obesity, these characteristics were studied by PLS-DA

modelling on urinary metabolic profile. The models did not

produce any significant separation (data not shown).

Next, logistic and polytomous regressions were per-

formed on metabolites having VIP above 2: direction of the

associations and p-values using Kruskal–Wallis test were

presented in Table 3. Hippurate and phenylalanine levels

were lower in obese and overweight women, whereas uri-

nary creatinine was higher. Lactate was higher in obese

(though not in overweight) women, as were creatine,

lysine, citrate and acetate. Two unknown signals

(d = 6.925 and d = 2.345 ppm) appeared modified

between the BMI groups.

Table 1 Characteristics of the 321 pregnant women enrolled in the metabolomics analysis according to their Body Mass Index (BMI)

Characteristics General population

(n = 321)

Normal-weight

women (n = 256)

Overweight women

(n = 46)

Obese women

(n = 19)

p

valuea

Maternal characteristics

BMI (mean ± SD) 22.96 ± 3.85 21.36 ± 1.64 27.35 ± 1.47 33.89 ± 2.96

Maternal weight after pregnancy, in kg

(mean ± SD)

74.67 ± 11.16 71.13 ± 7.94 83.13 ± 5.95 100.67 ± 13.05

Parity = 1 (N, %) 134 (41.88) 116 (45.49) 13 (28.26) 5 (26.32) 0.03

Age (mean ± SD) 30.27 ± 4.22 30.2 ± 4.21 30.77 ± 4.55 29.92 ± 3.61 0.78

Higher educationb (N, %) 194 (60.62) 161 (63.14) 23 (50) 10 (52.63) 0.19

High blood pressure (N, %) 12 (3.75) 6 (2.35) 3 (6.52) 3 (15.79) 0.01

Smoking in early pregnancy (N, %) 90 (28.21) 71 (27.95) 15 (32.61) 4 (21.05) 0.68

Regular or occasional alcohol

consumption (N, %)

51 (15.94) 46 (17.97) 4 (8.89) 1 (5.26) 0.18

Regular or occasional occupational

exposure to solvents (N, %)

138 (50.92) 103 (47.25) 25 (67.57) 10 (62.5) 0.05

New-born characteristics

Gestational age at birth in weeks

(mean ± SD)

39.62 ± 1.14 39.59 ± 1.15 39.59 ± 1.13 40.11 ± 1.05 0.16

Male children (N, %) 157 (48.91) 125 (48.83) 23 (50) 9 (47.37) 1

Birth weight, in g (mean ± SD) 3494.22 ± 393.13 3464.2 ± 368.88 3598.48 ± 493.54 3646.32 ± 382.03 0.06

Birth height, in cm (mean ± SD) 50.11 ± 1.79 50.06 ± 1.73 50.32 ± 2.2 50.21 ± 1.36 0.79

Birth head circumference in cm

(mean ± SD)

34.86 ± 1.32 34.82 ± 1.31 35.01 ± 1.44 35.03 ± 1.12 0.52

Apgar score at 5 min (mean ± SD) 9.9 ± 0.43 9.91 ± 0.4 9.93 ± 0.25 9.63 ± 0.9 0.21

Three groups were identified according to the WHO definition: Normal-weight women (18.5\BMI\ 25), overweight women

(25\BMI\ 30) and obese women (BMI C 30)
a Kruskal–Wallis test for continuous characteristics, v2 test for categorical characteristics
b University degree
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3.2 Serum analyses of cord-blood at birth

The metabolic profiles of the cord-blood samples did not

show any visual separation on the first latent variables, as

shown in Fig. 2. The parameters resulting from the vali-

dation procedure and permutation test are presented in

Table 4. These validation procedures did not show any

significant separation according to the BMI group, irre-

spective of the tested model. No bucket having a VIP

above 2 was found significantly associated with BMI status

by the Kruskal–Wallis test.

4 Discussion

Our work shows modification to seven urinary metabolites

between obese, overweight, and normal-weight pregnant

women, including hippurate, phenylalanine, lactate, cre-

atine, lysine, citrate and acetate, without any measurable

association with specific cord-blood metabolic profile at

birth. The decrease in urinary hippurate and phenylalanine

levels and the increase in creatinine levels were observed in

both obese and overweight women. Increased urinary lac-

tate, creatine, lysine, citrate and acetate levels concerned

only the obese women. Hippurate, lactate and acetate are

organic acids which had already been associated with

obesity and type 2 diabetes, especially in studies investi-

gating the influence of gut microbiota (Calvani et al. 2010;

Dewulf et al. 2013; Phipps et al. 1998; Respondek et al.

2013; Salek et al. 2007; Waldram et al. 2009; Williams

et al. 2002). In particular, the urinary excretion of hippurate

has been associated with gut microbiota having a role in the

metabolism of polyphenolic compounds (Lees et al. 2013).

In addition, there is evidence to suggest that disruptions in

gut flora and their relationship with the host are associated

with the development of obesity (Gross 2013). Decreases

in urinary hippurate have been observed both experimen-

tally and in humans (Calvani et al. 2010; Friedrich et al.

2012; Salek et al. 2007).

Fig. 1 PLS-DA score plot from the 1H NMR urinary metabolic

profile from 321 pregnant women. The score plot is the projection of

observations onto the first two latent variables. The PLS-DA model

was run on Pareto-scaled data (N = 321, R2 = 0.02, Q2 = 0.01).

Three groups of Body Mass Index (BMI). Green triangles normal

weight women, blue circles overweight women, red squares obese

women

Table 2 Validation of the PLS-DA regression models based on maternal urinary metabolic profiles in early pregnancy

Model Best number of

LV (mean ± SD)

Parameter Mean ± SD p value

Normal versus overweight versus obese 1.77 ± 0.76 Q2 0.01 ± 0.08 0.006

R2 0.02 ± 0.03 0.003

Normal versus others 1.33 ± 0.52 AUROC 0.71 ± 0.02 0.001

Q2 0.02 ± 0.12 0.004

R2 0.05 ± 0.04 0.001

Obese versus others 1.77 ± 0.83 AUROC 0.76 ± 0.05 0.001

Q2 -0.11 ± 0.11 0.460

R2 -0.04 ± 0.03 0.070

Normal versus overweight 1.03 ± 0.05 AUROC 0.66 ± 0.03 0.003

Q2 0.02 ± 0.04 0.001

R2 0 ± 0.03 0.008

Overweight versus obese 1.85 ± 0.56 AUROC 0.53 ± 0.06 0.370

Q2 -0.69 ± 1.14 0.540

R2 -0.19 ± 0.13 0.160

Models were validated by a 3–2 double cross validation procedure. Inner loops were used to define the best number of latent variables (LV),

using the lower PRESS criteria, while parameters were estimated in outer loops. P values were calculated using permutation tests (1000

iterations)
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An increase in lactate has already been shown in some

studies—in urine, blood and hepatic tissue (Rull et al.

2009; Serkova et al. 2006). It has been shown that, like

hippurate, lactate is linked to gut microflora, in particular

to Propionibacterium (Dewulf et al. 2013; Respondek et al.

2013). Lactate is also a precursor of gluconeogenesis and

an elevation could be a sign of hepatic disruptions in glu-

cose and glycogen synthesis (Xie et al. 2012b).

Lastly, an increase in acetate levels has already been

observed in the urine and blood of Zucker rat (Serkova

et al. 2006; Waldram et al. 2009). Acetate is suspected to

be linked with microbiome, and in particular with Bifi-

dobacterium—which is already known to have a protective

effect against obesity (Waldram et al., 2009).

It was also shown than amino-acid metabolism could

be modified in the event of obesity (Lees et al. 2013). The

increased urinary lysine we have observed in this study is

consistent with experimental studies carried out in rats.

Changes in lysine degradation were observed in obese

Zucker rats compared to lean rats, and are potentially

associated with impairment to energy metabolism,

implying perturbations in insulin resistance (Salek et al.

Table 3 Metabolites linked with separation of the BMI groups in the urine of pregnant women, direction of the association and p value

d 1H (ppm) Metabolite

(VIP[ 2)

BMI class Obese Overweight Global

p
Trend p Trend p

7.56–7.53, 7.97–7.96, 7.84–7.82,

7.64–7.62, 7.56–7.53

Hippurate Versus Normal ! \10–3 ! 0.002 \10–3

Versus

Normal ? Overweight

! \10–3 nd nd

Versus Overweight ! 0.14 nd nd

7.42–7.41, 7.36, 3.99–3,98 Phenylalanine Versus Normal ! \10–3 ! 0.04 \10–3

Versus

Normal ? Overweight

! \10–3 nd nd

Versus Overweight ! 0.006 nd nd

4.12, 1.34–1.32 Lactate Versus Normal % \10–3 % 0.21 \10–3

Versus

Normal ? Overweight

% \10–3 nd nd

Versus Overweight % 0.003 nd nd

4.06, 3.05 Creatinine Versus Normal % 0.02 % 0.002 \10–3

Versus

Normal ? Overweight

% 0.05 nd nd

Versus Overweight = 0.88 nd nd

3.955, 3.045 Creatine Versus Normal % 0.03 = 0.74 0.15

Versus

Normal ? Overweight

% 0.04 nd nd

Versus Overweight % 0.52 nd nd

3.015 Lysine Versus Normal % 0.005 = 0.96 0.06

Versus

Normal ? Overweight

% 0.004 nd nd

Versus Overweight % 0.009 nd nd

2.69, 2.67, 2.65–2.64, 2.56–2.52 Citrate Versus Normal % \10–3 = 0.84 0.01

Versus

Normal ? Overweight

% \10–3 nd nd

Versus Overweight % 0.01 nd nd

1.925 Acetate Versus Normal % 0.06 % 0.17 0.03

Versus

Normal ? Overweight

% 0.09 nd nd

Versus Overweight = 0.43 nd nd

p value are the result of a likelihood ratio test in logistic regression modelling or in ordered polytomous regression Normal\Over-

weight\Obesity (global p value). To ensure the normality of continuous variables, logarithms of hippurate, phenylalanine, lactate, creatinine

and creatine were used. Acetate has been used as a categorical variable, with a cut-off at the median

VIP variable importance in the projection, nd non determined
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2007). Nevertheless, other studies also showed a decrease

in plasmatic lysine levels associated with an increase in

insulin resistance in mice (Won et al. 2013) and a

decrease in lysine levels in the adipose tissue of obese

people (Hanzu et al. 2013). Moreover, lysine acetylation

seems to play a role in some obesity-induced cancers (Lee

et al. 2013). Finally, we know that protein nutrition can

have a consequence on lipid metabolism (Gudbrandsen

et al. 2008). Similar observations were made of

phenylalanine; several authors have linked its increase

with obesity (Kim et al. 2013; Wang et al. 2011;

Whitehead et al. 2007). A relationship between obesity

and the metabolism of branched-chain amino acids was

hypothesized (Adams 2011; Kim et al. 2013). On the

other hand, Won et al. showed a decrease in urinary

phenylalanine concentrations in obese mice (Won et al.

2013). Despite this discrepancy regarding modifications

observed in lysine and phenylalanine levels, it could be

concluded that obesity has an influence on amino acid

metabolism, as has already been suggested in other works

(Zhou et al. 2013).

Citrate is produced from fatty acids and glucose meta-

bolism and is an intermediate in the citrate cycle for energy

production. Its regulation involves insulin and glucose. The

increased levels of citrate we observed are consistent with

certain studies in diabetic or obese rats (Kim et al. 2009; Li

et al. 2008; Shearer et al. 2008), suggesting a link with

hyperglycaemia and insulin resistance, while lowered

levels have sometimes been measured (Salek et al. 2007;

Schirra et al. 2008; Zhao et al. 2010). The increased citrate

levels could be associated with the increase in acetate and

lactate levels, suggesting an up-regulation in the citrate

cycle. In addition, changes in citrate levels could be asso-

ciated with renal pathologies. It is possible that an increase

in the urinary secretion of citrate may be a consequence of

a metabolic stress induced by hyperglycaemia and/or dys-

lipidaemia, or a consequence of renal dysfunctions (Salek

et al. 2007).

Creatinine is a break-down product of creatine meta-

bolism in muscles. Urinary and blood increases in crea-

tinine and creatine have been observed in obese rodents

Fig. 2 PLS-DA score plot from the 1H NMR cord-blood metabolic

profile from 321 individuals. The score plot is the projection of

observations onto the first two latent variables. The PLS-DA model

was run on Pareto-scaled data, (N = 324, R2 = -0.04,

Q2 = -0.07). Three groups of Body Mass Index (BMI). Green

triangles normal weight women, blue circles overweight women, red

squares obese women

Table 4 Validation of the PLS-DA regression models based on cord-blood metabolic profiles at birth

Model Best number of LV (mean ± SD) Parameter Mean ± SD p value

Normal versus overweight versus obese 1.6 ± 1.37 Q2 -0.07 ± 0.06 0.594

R2 -0.04 ± 0.03 0.474

Normal versus others 1.13 ± 0.23 AUROC 0.53 ± 0.05 0.339

Q2 -0.06 ± 0.03 0.513

R2 -0.04 ± 0.03 0.314

Obese versus others 1.08 ± 0.14 AUROC 0.45 ± 0.04 0.711

Q2 -0.06 ± 0.02 0.530

R2 -0.06 ± 0.02 0.530

Normal versus overweight 1.55 ± 0.77 AUROC 0.53 ± 0.04 0.322

Q2 -0.12 ± 0.05 0.845

R2 -0.08 ± 0.03 0.653

Overweight versus obese 1.37 ± 0.48 AUROC 0.39 ± 0.06 0.830

Q2 -0.45 ± 0.14 0.720

R2 -0.37 ± 0.08 0.640

Models were validated by a 3–2 double cross validation procedure. Inner loops used to define the best number of latent variables (LV), using the

lower PRESS criteria, while the parameters were estimated in the outer loops. P values were calculated using permutation test (1000 iterations)
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(Calvani et al. 2010; Duggan et al. 2011; Salek et al. 2007;

Schirra et al. 2008; Williams et al. 2005; Zhao et al. 2010).

This phenomenon could be explained by cardiac or skeletal

muscle hypertrophy as an adaptation to support the

increase of body mass induced by obesity (Xie et al.

2012b). Urinary secretion of creatinine is also used to

measure renal function. An increase could be the conse-

quence of renal dysfunctions, linked with obesity (Kim

et al. 1969; Proczko et al. 2013).

In recent years, studies have shown that NMR-based

metabolomics on urine samples is able to identify obesity

biomarkers. To the best of our knowledge, our study is

the first to use metabolomics trying to investigate the

mechanisms governing the transmission of obesity. Our

inability to observe the effect of obese or overweight

mothers on offspring metabolic profile must be put into

perspective. First, the low number of obese women

(n = 19) induces a low statistical power. Obesity mea-

surement by BMI, calculated using physiological param-

eters (weight, height) collected by questionnaire may

result in measurement errors, in particular an underesti-

mation of obese women’s weight, leading to a weak

separation of BMI subgroups. Lastly, it is possible that

certain modifications to metabolic profile are not visible

at birth—but appear later.

The NMR technique used does have certain advantages:

the analysis is highly quantitative, measures are repro-

ducible and required preparation is minimal (Dumas et al.

2006; Smolinska et al. 2012). The other commonly-used

technique in metabolomics is mass spectrometry coupled

with chromatographic techniques, the advantage of which

is the possibility of detecting metabolites in lower con-

centrations (Werner et al. 2008; Breitling et al. 2006). It

would be interesting to reproduce this kind of study using

mass spectrometry, in order to confirm and improve the

results of our study.

5 Concluding remarks

Metabolomics has potential for the study of obesity and the

identification of biomarkers, with the possibility of a global

measurement of metabolic dysfunctions in a biological

matrix. This study has shown several modifications to the

urinary metabolic profile of obese and overweight pregnant

women when compared with normal-weight pregnant

women, yet without being able to show any modification to

blood metabolic profile of offspring at birth. Changes

observed include modifications to amino acid metabolism,

citrate cycle, and microbiome-host relationships. More

studies on large human samples will be necessary to

establishing strong evidence on metabolic modifications

involved in the transmission of obesity.
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