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Abstract Metabolomics is the comprehensive study of

small molecule metabolites in biological systems. By

assaying and analyzing thousands of metabolites in bio-

logical samples, it provides a whole picture of metabolic

status and biochemical events happening within an organ-

ism and has become an increasingly powerful tool in the

disease research. In metabolomics, it is common to deal

with large amounts of data generated by nuclear magnetic

resonance (NMR) and/or mass spectrometry (MS). More-

over, based on different goals and designs of studies, it may

be necessary to use a variety of data analysis methods or a

combination of them in order to obtain an accurate and

comprehensive result. In this review, we intend to provide

an overview of computational and statistical methods that

are commonly applied to analyze metabolomics data. The

review is divided into five sections. The first two sections

will introduce the background and the databases and

resources available for metabolomics research. The third

section will briefly describe the principles of the two main

experimental methods that produce metabolomics data: MS

and NMR, followed by the fourth section that describes the

preprocessing of the data from these two approaches. In the

fifth and the most important section, we will review four

main types of analysis that can be performed on metabo-

lomics data with examples in metabolomics. These are

unsupervised learning methods, supervised learning meth-

ods, pathway analysis methods and analysis of time course

metabolomics data. We conclude by providing a table

summarizing the principles and tools that we discussed in

this review.
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1 Introduction

Omics is the study of the totality of biomolecules. Just as

genomics is the analysis of a complete genome, proteomics

is the comprehensive analysis of proteins, and transcrip-

tomics is the comprehensive analysis of gene transcripts,

metabolomics is the analysis of the complete set of

metabolites, or metabolome, in an organism (Griffin and

Shockcor 2004; Oliver 2002). The metabolome represents

a large number of compounds including parts of amino

acids, lipids, organic acids, or nucleotides. Metabolites are

used in or produced by chemical reactions, and their levels

can be regarded as the ultimate response of biological

systems to genetic or environmental changes. Therefore, it

has been suggested that the metabolome is more sensitive

to systematic perturbations than the transcriptome and the

proteome (Kell et al. 2005).

Cellular processes involve specific metabolites for

reactions. Studying and recording these metabolites can

lead to the discovery of biomarkers which are measureable

biological characteristics that can be used to diagnose,

monitor, or predict the risk of diseases (Xia et al. 2012).

There are several approaches to studying the metabolome,

including target analysis, metabolic profiling and metabolic

fingerprinting (Griffin and Shockcor 2004). Target analysis

focuses on the quantification of a small number of known

metabolites. Metabolic profiling focuses on a larger set of

unknown metabolites. Metabolic fingerprinting focuses on

the extracellular metabolites. Rather than studying indi-

vidual metabolites, metabolomics collects quantitative data

over a large range of metabolites to obtain an overall

understanding of the metabolism associated with a specific

condition (Kaddurah-Daouk and Krishnan 2009).

Discovering biomarkers through metabolomics will help

diagnose, prevent, and produce drugs for treatment of

diseases, including cancer (Griffin and Shockcor 2004),

cardiovascular diseases (Griffin et al. 2011), central ner-

vous system diseases (Kaddurah-Daouk and Krishnan

2009), diabetes (Wang-Sattler et al. 2012) and cystic

fibrosis (Wetmore et al. 2010). Metabolomics can be a

minimally invasive procedure since data can be gathered

from plasma, urine, cerebrospinal fluid (CSF), or tissue

extracts. It has also been used in studying plants to

understand cellular processes and to decode the function of

genes, in studying animals to discover biomarkers, in foods

research, and in herbal medicines (Putri et al. 2013).

The idea behind metabolomics has been in existence

since people have used the sweetness of urine to detect

high glucose in diabetes. In the 1960s, chromatographic

separation techniques made it possible to detect individual

metabolites. Robinson and Pauling’s ‘‘Quantitative Anal-

ysis of Urine Vapor and Breath by Gas–Liquid Partition

Chromatography’’, written in 1971, was the first scientific

article about metabolomics (Pauling et al. 1971). The word

‘‘metabolome’’ was coined by Olivier et al. (1998) and

defined as the set of metabolites synthesized by an organ-

ism. Nicholson et al. first used the word metabonomics in a

publication in 1999 to mean ‘‘the quantitative measurement

of the dynamic multiparametric metabolic response of

living systems to pathophysiological stimuli or genetic

modification’’ (Nicholson et al. 1999). Griffin, in his paper

(Griffin and Shockcor 2004), suggested one of the best

definitions of metabolomics given by Oliver is ‘‘the com-

plete set of metabolites/low-molecular-weight intermedi-

ates, which are context dependent, varying according to the

physiology, developmental or pathological state of the cell,

tissue, organ or organism’’.

2 Databases and resources for metabolomics

In 2004, the Metabolomics Society was established to

promote the growth, use and understanding of metabo-

lomics in the life sciences. The Metabolomics Society later

launched a journal, Metabolomics, published by Springer.

The Society now has a Twitter feed (@MetabolomicsSoc),

which provides news from the Metabolomics Society, its

annual international conference, and the Metabolomics

journal. METLIN, the first metabolomics database, was

also established in 2004. In 2005, the Human Metabolome

Project was launched to find and catalogue all of the

metabolites in human tissue and biofluids. This metabolite

information is kept in the Human Metabolome Database,

which produced its first draft in 2007 (Wishart et al. 2013).

In recent years the number of papers written about meta-

bolomics has been increasing. More than 800 papers were

written in 2009, compared to fewer than 50 in 2002

(Griffiths et al. 2010). As technologies for the quantifica-

tion and analysis of metabolomics are adapted and

improved, the use of metabolomics is expected to continue

to grow.

There are many databases containing metabolomics

data, and each has different information, ranging from

NMR and MS spectra to metabolic pathways. The purpose

of metabolic databases is to organize the many metabolites

in a way that helps researchers easily identify and analyze

metabolomics data. The information found in metabolite

databases has continuously been updated in recent years as

metabolomics studies have become more widely con-

ducted. Just as metabolomics is a new field and new

approaches are still being discovered, metabolomics data-

bases are new and still improving. These databases contain

various types of information, including concentration,

anatomical location, and related disorders. Among the
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databases are the Human Metabolome Database (HMDB),

MassBank, METLIN, lipid metabolites and pathways

strategy (LIPID MAPS), Madison metabolomics consor-

tium database, and Kyoto Encyclopedia of Genes and

Genomes (KEGG).

HMDB contains detailed information for 40,444

metabolite entries with chemical, clinical, and molecular

biology/biochemistry data (Wishart et al. 2013). Each

metabolite in the database includes a ‘‘Metabocard’’ with

information including molecular weights, spectra, associ-

ated diseases, and biochemical pathways. The purpose of

HMDB is to identify all of the metabolites in the human. The

39,293 spectra in MassBank are useful for the chemical

identification and structure interpretation of chemical com-

pounds detected by mass spectrometry (MS) (Horai et al.

2010). METLIN is a repository of over 75,000 endogenous

and exogenous metabolites from essentially any living

creature, including bacteria, plants and animals (Smith et al.

2005). LIPID MAPS is not only the largest database of lipid

molecular structures, but the lipid maps resource contains

information on the lipid proteome, quantitative estimates of

lipids in the human plasma, the first complete map of the

macrophage lipidome, and a host of tools for lipid biology,

includingMS tools, structure tools, and pathway tools (Fahy

et al. 2007). The Madison metabolomics consortium data-

base is a resource for metabolomics research based on

nuclear magnetic resonance (NMR) spectroscopy and MS

(Cui et al. 2008). The current total number of compounds in

the Madison metabolomics consortium database is 20,306.

Finally, KEGG contains information about metabolic path-

ways (Kanehisa 2002).

Metabolomics reporting and databases currently suffer

from a lack of common language or ontologies (Wishart

2007). The issue is further aggravated by the large number

of different types of instruments used in research, each of

which has its own language. This makes working with

different instruments or other laboratories difficult. A

possible solution (Wishart 2007) is standardizing data by

entering data into an electronic record-keeping system such

as LIMS. The establishment of common reporting stan-

dards and data formats would make it much easier to

compare and locate metabolomics data.

3 Experimental methods

While tools for transcriptomics and proteomics have made

significant improvements in recent years, tools for meta-

bolomics are still emerging. No analytical tool can measure

all of the metabolites in an organism, but NMR spec-

troscopy and MS combined come the closest. That is, using

NMR and MS together may result in more complete data

than using them individually. NMR spectroscopy and MS

are the most common technologies used to collect data

from biofluids or tissues. NMR can be used to identify and

quantify metabolites from complex mixtures. NMR spec-

troscopy relies on certain nuclei that possess a magnetic

spin and when placed inside a magnetic field can adopt

different energy levels that can be observed using

radiofrequency waves (Griffin et al. 2011). Proton NMR

(1H NMR) is the most commonly used for metabolomics.

NMR approaches can typically detect 20–40 metabolites in

tissue and 50 in urine samples (Griffin and Shockcor 2004).

It is non-destructive because the sample does not come in

contact with the detector, usually occurs in a noninvasive

manner, requires no chemical derivation, and can be easily

reproduced (Armitage and Barbas 2014). A major advan-

tage of NMR is that the signal frequencies observed in an

NMR spectrum are directly proportional to the concentra-

tion of the nuclei in the sample (Smolinska et al. 2012).

However, compared to MS, it has a lower sensitivity, only

medium to high abundance metabolites will be detected

(Smolinska et al. 2012).

MS-based metabolomics is more commonly used than

NMR, judging by the number of publications annually that

use each technique (Dettmer et al. 2007). In order to sep-

arate the makeup of a mixture, MS is always coupled to

other separation techniques. Among all hyphenated MS

methods, gas chromatography MS (GC–MS) and liquid

chromatography MS (LC–MS) are most popular, as they

can be used to detect low-concentration metabolites. GC–

MS can be applied to the analysis of low molecular weight

metabolites, and it is highly sensitive, quantitative and

reproducible (Armitage and Barbas 2014). GC–MS is also

preferred in terms of cost and operational issues

(Theodoridis et al. 2012). It can typically detect 1000

metabolites (Griffin and Shockcor 2004). LC–MS, which

can also be prefixed with high (HPLC) or ultra-high

(UPLC) performance, is suitable for the analysis of non-

volatile chemicals, therefore it is complementary to GC–

MS (Armitage and Barbas 2014). It has a high sensitivity

and is less time consuming than GC–MS, but it can be

more expensive (Griffin and Shockcor 2004). One advan-

tage of LC–MS is that it can separate and detect a wide

range of molecules and allows for the collection of both

quantitative and structural information (Theodoridis et al.

2012).

In addition to the three main stream methods mentioned

above, there are also other important spectroscopy and

hyphenated methods. Among all spectroscopy methods,

vibrational spectroscopy is one of the oldest (Li et al.

2012). There are primarily two vibrational methods uti-

lized: Fourier-transform infrared spectrometry (FT-IR) and

Raman spectroscopy (RS). FT-IR is inexpensive and good

for high-throughput screening but it is very poor at dis-

tinguishing metabolites within a class of compounds
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(Griffin and Shockcor 2004) and much less sensitive

compared to MS (Patel et al. 2010). Moreover, even

combining HPLC with FT-IR, the method HPLC–FT-IR

may also have the disadvantage of yielding a low level of

detailed molecular identifications (Nin et al. 2012) and the

progress in this hyphenated technique is slow (Patel et al.

2010). Raman spectroscopy is an extension of FT-IR and it

has been used for the identification of microorganisms of

medical relevance (Dunn et al. 2005). However, although

there are some advantages to RS over FT-IR, it has similar

problems as FT-IR (Griffin and Shockcor 2004). Capillary

electrophoresis mass spectrometry (CE-MS) is a powerful

separation technique for charged metabolites (Dettmer

et al. 2007) and has been predominantly used in targeted

metabolomics (Gika et al. 2014). However, since the ana-

lytical system stability is not as high as in GC or LC–MS, it

is not applied widely in global metabolite profiling

(Theodoridis et al. 2012).

The experimental design is an important aspect to con-

sider before conducting any metabolomics experiments. It

is a plan of data-gathering studies, which is constructed to

control process variation in the experiments and to ensure

potential confounders are not present or are well-charac-

terized (Dunn et al. 2012). The process variation in the

experiments can be introduced in the sample collection,

storage and preparation steps. For example, sample col-

lection time of day (Slupsky et al. 2007), storage and

experiment temperature (Cao et al. 2008; Lauridsen et al.

2007) all have an impact on the metabolites profile deter-

mined. These conditions and procedures, if not standard-

ized, may lead to spurious biomarkers being reported and

may account for a lack of reproducibility between labora-

tories (Emwas et al. 2014). Therefore, a standard operating

procedure is essential to control variation introduced dur-

ing the sample preparation process. There are some sample

procedures for NMR (Emwas et al. 2014) and MS (Dunn

et al. 2011) studies. Controlling for potential confounding

factors is also critical and is better addressed in experi-

mental design (Broadhurst and Kell 2006). In metabo-

lomics research, the confounding factors are those

variables that correlate with both response variables (e.g.

disease status) and metabolites concentrations. Such factors

include but are not limited to age, gender (Emwas et al.

2014), diet (Heinzmann et al. 2010), physical activity

(Enea et al. 2010) and individual metabolic phenotypes

(Assfalg et al. 2008). Those factors, if not properly con-

trolled, could lead to failure of discovering true signifi-

cance or reporting spurious findings (Dunn et al. 2012). For

human studies, we should control for confounders first by

defining more specific criteria in selecting subjects, since

subjects are heterogeneous with respect to demographic

and lifestyle factors. This is especially important in defin-

ing healthy control (Scalbert et al. 2009). Then, it is

recommended to perform sample randomization in order to

reduce the correlation between confounders and sample

analysis order and instrument conditions (Dunn et al.

2012). More advanced statistical experimental design

methods, for example nested stratified proportional ran-

domization and matched case–control design, can be used

when outcomes (e.g. disease status) are imbalance (Dunn

et al. 2012; Xia et al. 2012). For animal studies, where

many confounding factors can be well controlled, large

number of samples are not needed compared to human

studies (Emwas et al. 2014). In fact, by using some sta-

tistical experimental design methods, such as factorial

design and randomized block design, researchers can

minimize the number of samples used and control most

confounders at the same time (Kilkenny et al. 2009). There

are rich literatures discussing experimental design in both

statistical methodology (Box et al. 1978; Montgomery

2008) and its applications in high throughput biological

assays (Riter et al. 2005; Rocke 2004).

4 Data preprocessing

Data preprocessing plays an important role and can sub-

stantially affects subsequent statistical analysis results. It

takes place after the raw spectra are collected and serves as

the link between raw data and statistical analysis. NMR

and MS spectra typically show differences in peak shape,

width, and position due to noise, sample differences or

instrument factors (Blekherman et al. 2011; Smolinska

et al. 2012). The goal of preprocessing is to correct those

differences for better quantification of metabolites and

improved comparability between different samples. Similar

preprocessing considerations and methods can be applied

to both MS and NMR (Vettukattil 2015).

Preprocessing for NMR typically includes baseline

correction, alignment, binning, normalization, and scaling

(Smolinska et al. 2012). Baseline correction is a procedure

to correct the distortion in the baseline caused by system-

atic artifacts. It is very important since signal intensities are

calculated with reference to the baseline (Vettukattil 2015).

Current automatic baseline correction methods are mostly

based on polynomial fitting such as local weighted scatter

plot smoothing (Xi and Rocke 2008) and splines (Eilers

and Marx 1996). After baseline correction, some of

unwanted spectral regions are often removed, such as water

and other contaminations (Vettukattil 2015). Due to dif-

ferences in instrumental factors, salt concentrations, tem-

perature and changes of pH, peak shifts can always been

observed between samples. Therefore, alignment must be

performed in order to correct those shifts. Since most shifts

in NMR are local shifts, it is often insufficient to simply

perform global alignment by spectral referencing
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(Smolinska et al. 2012). Several automatic methods like

icoshift (Savorani et al. 2010) and correlation optimized

warping (Tomasi et al. 2004) can be used to perform local

alignment. After automatic baseline correction or align-

ment, it is recommended to visually inspect the processed

spectra and one can also choose to manually correct

baseline and perform alignment (Vettukattil 2015). Binning

(also known as bucketing) is a dimension reduction tech-

nique, which divides the spectra into segments and replaces

the data values within each bin by a representative value. It

is a useful technique when perfect alignment is hard to

achieve (Smolinska et al. 2012). Traditional equal sized

binning is not recommended since peaks can be split into

two bins. Some adaptive binning methods such as Gaussian

binning (Anderson et al. 2008) and adaptive binning using

wavelet transform (Davis et al. 2007) can overcome this

difficulty to some extent. However, binning can reduce

spectral resolution, therefore, it may be better to avoid

binning when spectral misalignment is not serious or when

identification of metabolites is more important (Vettukattil

2015). Normalization can remove or correct for some

systematic variations between samples, for example sample

dilution factors, which is a key factor in analysis of urinary

metabolites (Smolinska et al. 2012), in order to make

samples more comparable with each other. Typically,

normalization is a multiplication of every row (sample) by

a sample specific constant (Craig et al. 2006). One popular

normalization technique is total integral normalization,

where the total spectral intensity of each sample is the

constant. When some of the strong signals change con-

siderably between samples, probabilistic quotient normal-

ization can offer more robust results than total integral

normalization (Dieterle et al. 2006). Scaling, in metabo-

lomics data analysis, often refers to the column operations

that are performed on each feature (spectral intensity or

metabolite concentration) across all samples in order to

make the features more comparable. Scaling can affect the

results of subsequent statistical analysis and we will briefly

discuss this problem in Principal Component Analysis.

Commonly used scaling methods include but not limited to

autoscaling, Pareto scaling and range scaling. More

detailed discussion on these methods can be found in van

den Berg et al. (2006) and Timmerman et al. (2015).

Data preprocessing for MS typically includes noise fil-

tering, baseline correction, normalization, peak alignment,

peak detection, peak quantification and spectral deconvo-

lution. One should note that not all methods use all of the

processing steps listed above, nor do they necessarily

perform them in the same order (Coombes et al. 2005).

Although many preprocessing steps of MS are similar to

NMR, there are still some differences. First, a noise fil-

tering step is often associated with MS data preprocessing

to improve peak detection (Blekherman et al. 2011). There

are many different noise filters, such as Savitzky–Golay

filter, Gaussian filters and wavelet based filters, and

wavelet based methods provide the best average perfor-

mance (Yang et al. 2009), due to their adaptive, multi-scale

nature (Coombes et al. 2005). Second, a de-isotoping step,

which is specific to MS data, can be used to cluster the

isotopic peaks corresponding to the same compounds

together to simplify the data matrix (Vettukattil 2015).

Third, deconvolution is an important step to separate

overlapping peaks in order to improve peak quantification.

However, deconvolution also has the potential to introduce

errors and extra variability to the process (Coombes et al.

2005). There are many software tools available for NMR

and MS data preprocessing, a comprehensive summary of

software tools can be found in Vettukattil (2015).

5 Overview of metabolomics data analysis

There are two different approaches to processing metabo-

lomics data: chemometrics and quantitative metabolomics.

For the former, we directly perform statistical analysis on

spectral patterns and signal intensity data and identify

metabolites in the last step if needed. For the latter, we

identify all metabolites first and then analyze the metabo-

lites’ data directly. Compared to quantitative metabo-

lomics, the key advantage of chemometrics profiling is its

ability of automated and nonbiased assessment of

metabolites data. But it requires a large number of spectra

and strict sample uniformly, which are less concerned in

quantitative metabolomics. Therefore, quantitative meta-

bolomics is more amenable to human study or studies that

require less day to day monitoring (Matthiesen, Spring-

erLink (Online service) 2010). However, the data analysis

methods behind them are similar. In this section, we will

discuss four different types of data analysis methods. Note

that these methods are not totally independent; they differ

only by serving different research purposes. Within each

type of data analysis method, we select the most basic,

important and widely used models or methods based on

published research and review papers we found in meta-

bolomics. The methods we selected cover most core

methods currently in use on metabolomics data analysis

platforms, such as MetaboAnalyst (Xia et al. 2009, 2012).

We also included methods beyond the scope of such plat-

forms. We gave brief introduction of the background,

models and algorithms, important facts and potential lim-

itations for each method that we discussed in detail, toge-

ther with important references and illustrative examples.

For the methods not discussed in great detail, we listed a

few key references. At the end, we briefly summarized all

methods discussed in Table 2 in order to offer readers a

clear overview of these methods.
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5.1 Unsupervised learning methods

When we receive the data after pre-processing, we may

wish to obtain a general idea of its structure. Unsupervised

learning methods allow us to discover the groups or trends

in the data. The word ‘‘unsupervised’’ here implies that the

data we analyze is unlabeled with class membership. The

purpose of unsupervised learning is to summarize, explore

and discover. Therefore we may only need a few prior

assumptions and a little prior knowledge of the data.

Unsupervised learning is usually the first step in data

analysis and can help visualize the data or verify any

unintended issues with the DOE. Among the many differ-

ent unsupervised learning methods, we will discuss four of

the most commonly used methods in metabolomics data

analysis.

5.1.1 Principal component analysis (PCA)

If we have a high-dimensional dataset, e.g., dozens or hun-

dreds ofmetabolites, peak locations, or spectral bins for each

subject,wemaywish to findonly a few combinations of them

that best explain the total variation in the original dataset.

PCA is one of the most powerful methods to perform this

type of dimension reduction (Jolliffe 2005). The main

objective of the PCA algorithm is to replace all correlated

variables by a much smaller number of uncorrelated vari-

ables, often referred to as principal components (PCs), that

still retain most of the information in the original dataset

(Jolliffe 2005). Although the number of PCs equals to the

number of variables, only a limited number of PCs are

interpreted.Moreover, if the first few PCs can explain a large

proportion of variation in the data, we can visualize the data

using a two-dimensional or three-dimensional plot (some-

times called scores and loadings plots) (Fig. 1).

Before we perform PCA, it is recommended to stan-

dardize the variables (Jolliffe 2005). This process consists

of centering each of the p vectors and standardizing each of

them to have variance equal to 1. By doing so, we actually

perform PCA on sample correlation matrix instead of

sample covariance matrix. When the variables have widely

differing variances or use different units of measurement,

the variables with the largest variances may dominate the

first few PCs (Jolliffe 2005). If those variances are bio-

logically meaningful, we do not need to standardize all

variables; otherwise it is highly recommended to perform

standardization before performing PCA (Johnson and

Wichern 2007). We can calculate the sample PC scores

matrix (denoted by Tn�p) of all subjects (denoted by Xn�p

which is the original dataset with n subjects and p vari-

ables). The process can be expressed by the following

formulas T ¼ XP; or tij ¼ xTi pj � Pp�p is the weight matrix

(i.e., loading matrix), xi is the ith row of X, which repre-

sents the values of the ith subject, pj is the jth column of

P which represents the weights of all p original variables

on the jth PC, tij is called the score of the ith subject on the

jth PC. All of the p PCs are uncorrelated and their vari-

ances are eigenvalues of sample correlation matrix (or

sample covariance matrix if not standardized). The largest

eigenvalue corresponds to the first PC, the second largest

eigenvalue corresponds to the second PC, and so on. In

order to measure the contribution of a PC to the total

sample variance, we use its corresponding eigenvalue

divided by the summation of all eigenvalues as a measure.

This is the percentage of variance explained by the corre-

sponding PC. There is no rule for how many PCs to keep;

we usually make the decision by checking the ‘‘variance

explained’’ measure mentioned above or using a scree plot

(Johnson and Wichern 2007).

Here we use a simple example of microbial metabo-

lomics (Hou et al. 2012) to illustrate the basic idea of how

to use PCA. Other examples of how PCA was used in

metabolomics studies can be found in Heather et al. (2013)

and Ramadan et al. (2006). In this study, the authors used

PCA to perform strain selection and to discover unique

natural products. They assumed bacterial strains producing

the same secondary metabolites would group together. The

PCA scores and loadings plots of 47 strains are shown in

Fig. 1.

In PCA, the scores plot is mainly used to discover

groups while the loadings plot is mainly used to find

variables that are responsible for separating the groups. In

the loadings plot, we mainly check the points that are

further from the origin than most other points in the plot.

For the scores plot (Fig. 1a), we can see seven identifiable

groups; these groups were identified by human eye. In the

loadings plot (Fig. 1b), point 1 corresponds to a compound

that is responsible for separating group G7 from the other

groups. We cannot judge which of the points in the load-

ings plot are responsible for separating subjects into groups

using only these two plots; instead, we should go back to

the loading matrix Pp9p to check the weights. Furthermore,

the groups shown in the PCA scores plots are not neces-

sarily the biologically meaningful groups. PCA often pro-

vides a clue for further investigation. Although the authors

mentioned 74 PCs that were generated, which explained

98 % of the variation in the data set, they did not show how

much of the variance was explained by the first two PCs.

Note that PCA may not be powerful if the first few PCs

cannot explain a large proportion of variability of the

sample. For example, if the first two PCs in the plot

account for only 50 % of the total variation, then the

visualization results may be misleading, so we cannot

identify the groups of the strains only by graphs.
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5.1.2 Clustering

Unlike PCA, clustering analysis explicitly aims at identify-

ing groups in the original dataset. All clustering algorithms

group the subjects such that the subjects in the same group or

cluster aremore similar to each other than to subjects in other

groups. Different algorithms may use different similarity

measures, such as various distances and correlation coeffi-

cients. Among the many different clustering methods, we

will only introduce two most common methods in metabo-

lomics as well as in many other areas of data analysis.

5.1.2.1 K-means clustering K-means clustering is cen-

troid-based clustering and is a type of partitioned clustering

method (Hartigan and Wong 1979). Here centroid-based

indicates that each cluster can be represented by a center

vector, which may not be an observation in the original

dataset, Xn9p. Partitioning requires each subject to appear

in exactly one cluster. K-means clustering divides subjects

into k non-overlapping clusters such that each subject

belongs to the nearest mean of the corresponding cluster. If

all of the variables are numerical, we generally choose

Euclidean distance as the metric that distinguishes between

the subject and the center vector. When using Euclidean

distance fails to find meaningful clusters, we may consider

using other distance metrics, for example Mahalanobis

distance, which has the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� yÞTAðx� yÞ
q

. It is

clear that Euclidean distance is a special case of Maha-

lanobis distance when A is identity matrix. In general, A is

a covariance matrix with unknown form, a general and

efficient algorithm (Xing et al. 2002) can be used to learn

the parameters in A together with performing K-means

clustering. Variations of the K-means clustering algorithm

include using median instead of mean as the center vector

and assigning weights to each variable. There are also

some drawbacks to K-means clustering methods. The

major problem is that the number of clusters, ‘‘K’’, is an

unknown parameter, and thus we must determine K before

we employ the algorithm. Visualization tools such as PCA,

multidimensional scaling (MDS) and self-organizing map

(SOM) may help to determine K. There are also some

statistical methods for estimating K, the most widely used

methods are gap statistic (Tibshirani et al. 2001) and

weighted gap statistic (Yan and Ye 2007). Another prob-

lem is that K-means assumes that subjects in each cluster

are distributed spherically around the center (Hamerly and

Elkan 2003). This assumption may lead to poor perfor-

mance on data with outliers or with clusters of various sizes

or non-globular shapes (Ertöz et al. 2003). An adaptive

Fuzzy c-means clustering (Gunderson 1982, 1983) can be

used in these cases. Fuzzy c-means clustering (Bezdek

et al. 1981; Dunn 1973) is an extension of K-means where

each data point belongs to multiple clusters to a certain

degree, which is called membership value. The adaptive

Fuzzy c-varieties clustering algorithm (Gunderson 1983)

which is based on Gunderson (1982) is a data dependent

approach that can seek out cluster shapes and detect a

mixture of clusters of different shapes. Therefore, it

removes the limitation of imposing non-representative

structures in K-means and Fuzzy c-means clustering. An

alternative way to solve the arbitrary cluster shapes prob-

lem is using kernel K-means (Schölkopf et al. 1998) and it

was suggested in Jain (2010). Another limitation of

K-means and other clustering methods is that some vari-

ables may hardly reflect the underlying clustering structure

(Timmerman et al. 2010). One possible way to solve that

problem is performing K-means in reduced space (De

Fig. 1 Using PCA to discover natural products unique to group 7 (Hou et al. 2012)
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Soete and Carroll 1994). Many methods have been pro-

posed to improve the original reduced K-means (De Soete

and Carroll 1994), including factorial K-means (Vichi and

Kiers 2001) and subspace K-means (Timmerman et al.

2013). An alternative solution is using variable selection

(Steinley and Brusco 2008) or variable weighting (Huang

et al. 2005). An illustrative example of using K-means

clustering on metabolites profiles to explore dietary intake

patterns can be found in O’Sullivan et al. (2011). More

details of how to use fuzzy c-means in metabolomics were

explained in Li et al. (2009).

5.1.2.2 Hierarchical clustering Hierarchical clustering

(Johnson 1967) builds a hierarchy and uses a dendrogram

to represent the hierarchical structure. Unlike K-means

clustering, hierarchical clustering does not provide a single

partition of the dataset. It only shows the nested clusters

organized as a hierarchical tree and lets the user decide the

clusters. In order to form the hierarchical tree, we must

choose the similarity metric between pairs of subjects and

pairs of clusters. The similarity metric between two sub-

jects is distance. Different clusters will form by using

different distance functions. Commonly used distance

functions include Euclidean distance, Manhattan distance,

Mahalanobis distance and maximum distance. A general

discussion of distance functions can be found in Jain et al.

(1999). Based on the distance function we choose, we can

construct a distance matrix for all subjects before we per-

form hierarchical clustering. Then we need to select a

linkage function, which is the similarity metric for pairs of

clusters. Different linkage functions will lead to different

clusters. Commonly-used linkage functions include single

linkage, complete linkage and average linkage. A general

discussion of linkage functions can be found in Hastie et al.

(2009). An advantage of hierarchical clustering over

K-means is that it does not stop at a special number of

clusters found, but will continue to split until every object

in the dataset belongs to the same cluster. Therefore, the

hierarchical tree may provide some meaningful finding of

the real structure of the dataset. However, it also has some

drawbacks, for example it may not be robust to outliers.

Hierarchical clustering is often used together with a heat

map to visualize the data matrix. Heat maps use different

colors to represent different entries in the data matrix. The

entries in the data matrix can be either the values of some

variables or some statistic, e.g., correlation coefficient or

p-value. We can add hierarchical clustering trees on the

side or top of the heat map so that we can clearly see the

structure of the data. There is a good example of this kind

of representation from (Poroyko et al. 2011).

In this paper, the authors studied the effect of different

diets on selecting different intestinal microbial communi-

ties using a metabolomics approach. They used a heat map

to show the significant p-values associated with the rela-

tionship between metabolites and bacterial taxa in piglet

cecal content (see Supplementary Fig. 1). The dendrogram

on the left side shows the hierarchical structure of different

genus of bacteria; the one on the top shows the hierarchical

structure of different metabolites. This graph helps us

visualize the degree to which bacteria were associated with

the same or different metabolites. Another similar example

of using hierarchical clustering together with heat map

representation can be found in Draisma et al. (2013), which

used hierarchical clustering to analyze blood plasma lipid

profiles of twins.

5.1.3 Self-organizing map (SOM)

SOM is a powerful tool to visualize high-dimensional data

(Kohonen 1990); it can thus help us visually discover the

clusters in the data. It is an arrangement of nodes in a two-

dimensional (may also be 1D or 3D) grid. The nodes are

vectors whose dimension is the same as input vectors.

Since SOM is a type of artificial neural network (ANN), the

nodes are also called neurons. Unlike other types of ANNs,

SOM uses a neighborhood function to connect adjacent

neurons. The neighborhood function is a monotonically

decreasing function of iterated times and the distance

between the neighborhood neurons and neuron that mat-

ches the input best. It defines the region of influence that

the input pattern has on the SOM and the most common

choice of the function is Gaussian function. More technical

details can be found in Kohonen (1998). In this way, data

points located closely in the original data space will be

mapped to neurons nearby. Every node can thus be treated

as an approximation of a local distribution of the original

space, and the resulting map retains its topological struc-

ture. Before implementing SOM, one may choose the

number of nodes and the shape of grids, either hexagonal or

rectangular. Using a hexagonal grid implies that one node

will have six bordering nodes. After numerous updating

cycles, each subject is finally assigned to a corresponding

neuron, and neighboring neurons can be treated as mini

clusters. These mini clusters may give hints of metabolic

patterns. In order to see the clusters clearly, a unified dis-

tance matrix (U-matrix) representation can be constructed

on the top of SOM. The U-matrix nodes are located among

all neighborhood neurons, and the color codes of each node

represent the average Euclidean distance among weight

vectors of neighboring neurons (Ultsch 2003). Therefore,

the gaps between clusters can be shown by the colors of

U-matrix nodes.

There is an example of using SOM with a U-matrix in

metabolomics research (Haddad et al. 2009). In their paper,

the SOM (see Supplementary Fig. 2) was trained with the

metabolome data from three different fermentations of
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Corynebacterium glutamicum. The color codes show dif-

ferent Euclidean distances between each output node and

its four bordering nodes. White–purple represents short

distance, which implies the subjects (black points) have

similar metabolic patterns, while green–yellow represents

long distance, which implies the subjects have different

metabolic patterns. We can see that the clusters were

clearly separated by the green–yellow gaps. SOM have also

been used to visualize metabolic changes in breast cancer

tissue (Beckonert et al. 2003) and to improve clustering of

metabolic pathways (Milone et al. 2014).

5.2 Supervised learning methods

The purpose of supervised learning is different from that of

unsupervised learning. Supervised learning methods are

widely used in discovering biomarkers, classification, and

prediction, while unsupervised learning methods cannot

complete these tasks. However, these distinctions do not

imply that supervised methods are superior to unsupervised

methods; rather, each was designed to achieve different

objectives of analysis. Supervised learning deals with

problems or datasets that have response variables. These

variables can be either discrete or continuous. When the

variables are discrete, e.g., control group versus diseased

group, the problems are called classification problems.

When the variables are continuous, e.g., metabolite con-

centration or gene expression level, the problems are called

regression problems. The purpose of supervised learning is

to determine the association between the response variable

and the predictors (often referred to as covariates) and to

make accurate predictions. It is called supervised learning

because one or more response variables are used to guide

the training of the models. Usually both a training step and

a testing step are included. Supervised learning algorithms

are applied on the training dataset to fit a model, and then

the testing dataset is used to evaluate the predictive power.

In these steps, we may encounter the following problems:

How to extract or select better predictors? How to evaluate

the fitness and predictive power of the model? And what

learning methods and algorithms to choose?

For the first problem, the process of choosing relevant

predictors is called feature selection or variable selection.

There are three main types of feature selection methods:

Wrapper, Filter and Embedded (Guyon and Elisseeff

2003). The Wrapper method scores subsets of variables by

running every trained model on the test dataset and

selecting the model (subset of variables) with the best

performance. The Filter method scores subsets of variables

by easy-to-compute measures before training the models.

The Embedded method, just as its name implies, completes

feature selection and model construction at the same time.

For the second problem, we first need goodness of fit

statistics to measure model fit and predictive power.

Commonly used statistics include but are not limited to:

root mean square error (RMSE) for regression; sensitivity,

specificity and the area under the receiver-operating char-

acteristic (ROC) curve for binary classification. In addition,

we need test datasets to assess the predictive power and

avoid over-fitting issues. Ideally, model validation should

be performed using independent test datasets; however,

gathering objective data can be expensive due to limited

resources and other pragmatic factors. Therefore, various

resampling methods are often used in order to reuse the

data efficiently. These methods include cross validation,

bootstrapping, jackknifing, randomization of response

variables and some others. Among all of them, bootstrap-

ping and cross-validation are used more often in validating

supervised learning models (Hastie et al. 2009). Commonly

used cross-validation methods include k-fold validation

and random sub-sampling validation. Together with

resampling methods, we can obtain a set of goodness-of-fit

statistics. By averaging them we can obtain a single

statistic indicating the fitness and predictive power of the

model. For example, if the average of k RMSEs, which can

be the result of k-fold validation of model A, is lower than

those average RMSEs of other models, then we can con-

clude that model A is the better one under RMSE criteria.

For the third problem, there are many different supervised

learning methods to choose from. Here we briefly introduce

two of the most widely used methods in metabolomics.

5.2.1 Partial least squares (PLS)

PLS (Wold 1966) is a method of solving linear models. A

general linear model has the form Y = Xb?e, where Y is

the response variable, it can be a vector (one variable) or a

matrix (several variables); X is the design matrix whose

columns represent variables and rows represent observa-

tions; b is the vector (matrix) of parameter coefficients and

e is the random error vector (matrix) (Martens 1992).

Generally, we use the ordinary least square solution of b,

which is (XTX)-1XTY. However, in metabolomics analyses,

we always have a large number of variables, such as

metabolites, peak locations, and spectral bins, but a rela-

tively small number of observations. Moreover, these

variables may be linearly dependent, and thus it will be

impossible to use the conventional least squares method to

solve for b in the linear regression model, since it is

impossible to invert the singular matrix XTX. At first,

principal component regression (PCR) was introduced to

solve this problem. Instead of using all original variables,

PCR uses the first few PCs from PCA to fit the linear

regression model. But it is not clear whether those PCs

have high correlation with response variables Y or not.

Therefore, PLS was introduced to tackle this problem
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(Wold et al. 1984). PLS may also stand for projection to

latent structures, which implies how this method works.

The underlying model of the PLS method has the form

(Wold et al. 2001):

Y ¼ UQ
0 þ F

X ¼ TP
0 þ E

�

Similar to PCA, T and U are called X and Y scores, which

are matrices formed by latent variables; P and Q are called

X and Y loadings, which can be thought of as weight

matrices; E and F are residuals, which are the remaining

amounts that cannot be explained by latent variables. The

latent variables, which can be thought of as factors, are

linear combination of the original X and Y variables, i.e.,

for each latent variable t and u, t = Xw and u = Yc; w and

c are called weight vectors. These latent variables may

have chemical or biological meanings. The PLS method

finds a best set of X variables that can explain most of the

variation in Y. Namely, we should find each latent variable

t and u, such that, under some orthogonal conditions, their

covariance reaches its maximum value (Abdi 2010). There

are many variants of the PLS and corresponding algo-

rithms, which may have different orthogonal conditions

and different methods to estimate scores and loading

matrices. It is important to note that PLS is different from

PCA and PCR. First, PCA is an unsupervised learning

method while PCR and PLS are supervised learning

methods. Second, PCR uses the first few PCs in the PCA as

predictors to fit a latent variable regression. Thus, predic-

tors in PCR may only explains the variance in X itself

while a PLS model tries to find the multi-dimensional

direction in the X space that explains the maximum vari-

ance direction in the Y space. Therefore, the PLS method

may often perform better than PCR.

The only parameter we need to specify in PLS is the

number of components to keep. There are two approaches.

First, we can use plots to help us decide the components,

e.g., the Y and X scores plot or R2 plot. Another approach is

using resampling methods together with a measure of

goodness of fit or predictive power. We can select different

numbers of components and check their goodness of fit or

predictive power. Since the PLS method is a dimension

reduction method itself, feature selection is not a required

step in PLS. However, in order to improve interpretation,

robustness and precision, there are also some feature

selection methods that can be used with PLS. For example,

we can use a two-sample t test, a filter method, to select

variables before running PLS. Sparse PLS (SPLS), which is

an embedded method, imposes sparsity when constructing

the direction vectors, thereby improves interpretation and

achieves good prediction performance simultaneously

(Chun and Keleş 2010). Another method called orthogonal

projections to latent structures (OPLS) (Trygg and Wold

2002), can be embedded as an integrated part of PLS

modeling to remove systematic variation in X that is

orthogonal to Y, thus also enhancing the interpretation of

PLS.

Although PLS was first designed to deal with regression

problems, it can also be used in classification problems.

One popular method is called PLS-discriminant analysis

(DA) (Boulesteix 2004; Nguyen and Rocke 2002). In PLS-

DA, Y is a vector whose values represent class member-

ships. When considering model validation in PLS or PLS-

DA, Predicted Residual Sum of Squares (PRESS), Q2 and

R2 can be used in addition to the commonly used diagnostic

methods mentioned above. Note that R2 is a measure of

fitness of the model to the training data set while Q2 and

PRESS are used to evaluate the predictive power of the

model. For the PLS-DA method, it is recommended to use

a double cross-validation procedure (Szymanska et al.

2012) along with the number of misclassifications and the

area under the ROC curve as diagnostic statistics. Using

similar algorithms as PLS-DA, other variants of PLS, like

SPLS and OPLS mentioned above, can also be extended to

classification problem, where they called SPLS-DA

(Chung and Keles 2010) and OPLS-DA (Bylesjö et al.

2006).

Here we use an example to illustrate some application

aspects of the PLS model (Kang et al. 2011) (Fig. 2). The

authors used OPLS-DA to classify coronary heart failure

(CHF) groups and control groups. Figure 2a is a scores plot

of the first two components, which shows the similarities

and dissimilarities of the subjects. In this plot, we can see

that the diseased and control groups can be clearly sepa-

rated by the OPLS-DA model. Figure 2b is the corre-

sponding loadings plot. Different from a PCA loadings

plot, the metabolites identified are responsible for the

classification. The upper section of Fig. 2b shows that

metabolites increased in the control group while the lower

section shows that metabolites increased in heart failure

group. They ran the OPLS-DA model with NMR spectra

data (which is the input data matrix X) and then identified

the metabolites responsible for the separation using results

in Fig. 2b.

PLS method has been successfully applied in numerous

metabolomics studies for disease classification and bio-

marker identification (Marzetti et al. 2014; Velagapudi

et al. 2010; Zhang et al. 2008). Note that the PLS method

sometimes can also be used as a dimension reduction

(feature selection) tool rather than as a classification

method (Bu et al. 2007).

5.2.2 Support vector machine (SVM)

Since metabolomics data is represented in matrix form,

every subject is a row vector; thus, each subject can be
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viewed as a point in a p-dimensional space where p is the

number of variables. If we can separate the data into two

groups, intuitively we can find a ‘‘gap’’ between these two

groups in the p-dimensional space. SVM tries to find such a

gap that is as wide as possible (Cortes and Vapnik 1995).

The margins for the gap are defined by support vectors, i.e.,

the points located on the margins. SVM is trained to

determine the support vectors. The boundary in the middle

of the gap that separates the data is called the separating

hyper plane. The prediction is done by deciding to which

side of the hyper plane new subjects (observations) belong.

The original SVM algorithm is a linear classifier, which

means it can only produce a hyper plane (p - 1 dimension

plane in p-dimensional space) to classify the data. We aim

to find the largest margin, i.e., the largest distance between

two groups, which can be solved by quadratic program-

ming. The related mathematical expression of this problem

has been documented by Bishop (Bishop 2006). However,

it is quite common that the data cannot be linearly sepa-

rated, i.e., a separating hyper plane does not exist. In this

case, we can use kernel trick to map the original data to a

higher dimensional space so that it can be linearly sepa-

rated in that space. Kernel trick or kernel substitution is

very useful in extending algorithms. It substitutes the inner

product (linear kernel) with other kernels. Commonly used

kernels include the polynomial kernel and the Gaussian

kernel (Bishop 2006).

Another problem is the stability of the algorithm. If

there are outliers or mislabeled data, the original SVM may

give an unsatisfactory classification result. In this case, we

can use SVM with a soft margin to solve this problem. The

soft margin SVM allows some misclassification in the

training step by adding slack variables to the original

objective function. This modification changes our objective

from maximizing the margin between two groups to

maximizing the margin as cleanly as possible. Here

‘‘clean’’ means only a few misclassified subjects.

Since SVM is a well regularized method, it does not

always require a feature selection step. However, there are

some feature selection methods that can be used to enhance

the performance of SVM and lower its computational cost.

Examples include the recursive feature elimination (RFE)

method and L1 norm SVM (Guan et al. 2009). As dis-

cussed in Sect. ‘‘5.2.1’’, similar validation methods and

diagnostic measures can be applied to the SVM algorithm.

Moreover, these validation methods and diagnostic mea-

sures can help us select optimum parameters such as which

kernel to choose and its parameters.

Fig. 2 PLS example (OPLS-

DA classification): OPLS-DA

scores plot (a) and loadings plot

(b) of urinary NMR spectra

obtained from healthy controls

and patients with coronary heart

failure (Kang et al. 2011)
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Compared to the PLS-DA method, one minor disad-

vantage of SVM is that it is often difficult to visualize and

interpret the classification result using plots; especially

when the number of variables is large. However, for clas-

sification purposes, we still recommended SVM over most

other methods (Mahadevan et al. 2008), and SVM has been

widely used for classification and prediction in metabo-

lomics research, especially in cancer research (Guan et al.

2009; Henneges et al. 2009; Stretch et al. 2012). Moreover,

SVM can also be used in regression problems, where it is

called support vector regression (SVR) (Brereton and

Lloyd 2010). Detailed discussions on SVR and its appli-

cations in metabolomics and chemometrics can be found in

Li et al. (2009).

5.3 Pathway analysis methods

Pathway analysis allows us to detect the biological mech-

anisms in which identified metabolites are involved. Some

metabolic pathway analysis methods are directly borrowed

from gene pathway analysis, e.g., over-representation

analysis (ORA) and enrichment score. Here we provide a

brief introduction to ORA, functional class scoring (FCS)

and some pathway simulation methods.

5.3.1 Over-representation analysis (ORA)

During the research there may be cases where we have a

list of metabolites identified and we only want to know

which pathways are involved in the samples being studied.

There are many metabolic pathway databases available on

the internet. In this case the pathways are already specified

and we only need to test which pathway is significantly

involved based on the available samples. This kind of

pathway analysis is called knowledgebase-driven pathway

analysis (Khatri et al. 2012). Among all of the knowl-

edgebase-driven pathway methods, ORA is well-known

and the simplest. ORA is used to test whether pathways are

significantly different between two study groups. Before

performing ORA, we should have a list of metabolites

showing significant differences between two groups. This

can be done by using two sample tests, e.g., t test or

nonparametric tests, for all metabolites. Then we select

metabolites whose significance reach a predetermined

threshold for false discovery rates (FDRs) or p-values.

Next, we can perform ORA, which is equivalent to a 2 9 2

contingency table (Table 1) test in statistics. After we

obtain all related pathways from knowledgebase, we can

count the number of metabolites in or not in both a known

pathway and the list, then perform a statistical test for

whether this pathway is significantly involved for each

known pathway. The most frequently used tests include the

Chi-square test, which requires larger sample sizes, and

Fisher’s exact test, which is more appropriate for smaller

cell counts in the table and uses a hypergeometric distri-

bution (Agresti 2014).

5.3.2 Functional class scoring (FCS)

ORA is simple to perform, but it has several drawbacks.

First, much information is lost since only the most signif-

icant metabolites are used and the rest are ignored, and

only the number of identified metabolites is considered.

Second, the optimal threshold is unclear. Third, it assumes

improper independence. For example, it assumes that each

metabolite and pathway is independent of others, but in

reality, this assumption may not be valid. Therefore,

another class of methods called FCS was proposed to

address some of the limitations in ORA. A general

framework of univariate FCS methods works as follows:

First, obtain single-metabolite statistics (e.g., t-statistic and

z-statistic) by computing differential expression of indi-

vidual metabolites. Second, aggregate those single-

metabolite statistics to compute a pathway level statistic.

This pathway level statistic can be univariate or multi-

variate. Commonly used univariate pathway level statistics

include mean, median and enrichment score (Holmans

2010). For multivariate statistics, a widely used statistic is

Hotelling’s T2 statistic, which has an F distribution under

the null hypothesis (Johnson and Wichern 2007). The final

step is hypothesis testing. There are two kinds of null

hypothesis: competitive and self-contained. A competitive

test considers metabolites both within and outside of the

pathway, while a self-contained test ignores metabolites

that are not in the pathway. In other words, for a compet-

itive test, the null hypothesis being tested is that the

association between the specific pathway and disease is

average; while for a self-contained test, the null hypothesis

is that there is no association between the specific pathway

and disease (Holmans 2010). For the multivariate statistics,

the null hypothesis is self-contained since the null

hypothesis is that there is no association between

metabolites in the pathway and the phenotype (Holmans

2010). Although multivariate statistics take the correlation

of different metabolites into account, they may not be

necessarily more powerful than univariate statistics (Khatri

et al. 2012). There are also some drawbacks of the FCS

Table 1 ORA analysis table

Metabolites

on list

Metabolites

not on list

Subtotal

Metabolites in the pathway a b a ? b

Metabolites not in the

pathway

c d c ? d

Subtotal a ? c b ? d
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method. If two pathways have the same metabolites, FCS

will give the same result. That is, FCS does not take the

reactions among metabolites (topology structure) into

account. One way to address this problem is to use a cor-

relation measure, such as the Pearson correlation coeffi-

cient, to help us choose the most suitable pathway; another

method is to use pathway reconstruction.

5.3.3 Metabolic pathway reconstruction and simulation

Metabolic pathway/network reconstruction and simulation

are a batch of methods used to refine or construct metabolic

networks. A reconstruction collects all of the relevant

metabolic information of an organism and compiles it in a

mathematical model. The relevant metabolic information

includes all related known chemical reactions, previously

constructed networks, experimental data, and related

research results. After compiling the data into a model, we

can obtain the output of the system and then use it to refine

our model and perform the simulation iteratively. If we

have the knowledge of all involved metabolites, then we

can enhance the predictive capacity of the reconstructed

models by connecting the metabolites within the pathways.

The pathway models can be roughly classified into one of

two categories: static (stoichiometric network models) and

kinetic models. We will first discuss static models and then

give a brief introduction on kinetic modeling.

The mathematical model behind static models is a linear

system. If we treat the metabolic network as a system, then,

based on mass conservation of internal metabolites within a

system, we can express the reaction network by a stoi-

chiometric matrix (S). Each element of S(sij) represents the

coefficient of metabolite i involved in reaction j. At a

steady state, we have Sv = 0, since there is no accumula-

tion of internal metabolites in the system (Schilling et al.

1999). This linear system is called the flux-balance equa-

tion. Here v represents fluxes through the associated reac-

tions in S. These linear equations define the entire reaction

network; all of the solutions to this linear system are valid

steady-state flux distributions. In general, S is an

m 9 n matrix where the number of columns is larger than

the number of rows (n[m), which means there are more

reactions than metabolites (Schilling et al. 1999). More-

over, S is a full rank matrix, which means rank

(S) = m. Therefore, there are multiple solutions to this

linear system. Different solutions define different path-

ways. Based on different research purposes, we may

impose different constraints on the linear system and obtain

different types of solutions.

Here we introduce three kinds of solutions that are the

most widely used in metabolic pathway analysis. The first

type of solution is called elementary modes. In addition to

the flux-balance equation, we add the constraints that all

fluxes are greater than 0. Then, by applying the convex

analysis method, we can find a solution set called ele-

mentary modes (EM) if the following properties are

satisfied:

(i) Uniqueness: The solution set is unique for a given

network.

(ii) Non-decomposability: Each solution in the solu-

tion set consists of the minimum number of

reactions that it needs to exist as a functional unit.

If any reaction in a solution set were removed, the

whole solution set could not operate as a func-

tional unit.

(iii) The solution set is the set of all routes through a

metabolic network consistent with the second

property (Papin et al. 2004).

The second type of solution is called extreme pathways

(EP). By convex analysis, the solution set is called the

extreme pathways if it is under the same constraints of EM

and follows properties below:

(i) Uniqueness: The solution set is unique for a given

network.

(ii) Non-decomposability: Each solution in the solu-

tion set consists of the minimum number of

reactions that it needs to exist as a functional unit.

(iii) This solution set is the systemically independent

subset of the elementary modes; that is, no

solution in the set can be represented as a

nonnegative linear combination of any other

solutions in the solution set, namely, they are

convex basis vectors (Papin et al. 2004).

By using these two kinds of solutions, we can analyze or

construct metabolic pathways and networks. Note that we

may have a finite number of solutions for EM and EP,

which means that we may obtain several different path-

ways. A numerical example of the calculation and use of

the EM and EP can be found in Förster et al. (2002). The

key difference between EM and EP is that they treat

internal reversible and irreversible reactions differently. EP

analysis decouples all internal reversible reactions into

forward and reverse directions while EM analysis accounts

for reaction directionality through a series of rules in the

corresponding calculations of the modes. Moreover, EPs

are subsets of EMs, i.e., the numbers of extreme pathways

are smaller (potentially much smaller) than or equal to the

number of elementary modes.

Another important solution corresponds to an indepen-

dent analysis method called flux balance analysis (FBA).

FBA differs from EM or EP by imposing more constraints

and an objective function. Depending on the purpose of the

research being performed, we have different problems of
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interest pertaining to the pathway. For example, we may

want to maximize or minimize the flux of certain reactions;

or want to limit some flux to a certain interval and see how

the pathway changes. Therefore we need to impose an

objective function on the linear system. The problem is

thus transformed into an optimization problem. We can use

linear programming to solve this problem; it does not

matter how many linear constraints we have to impose on

the flux vector. Note that FBA generally gives only one

solution. This is in contrast to EM and EP, which give

several solutions. Figure 3 shows how to perform an FBA

(Raman and Chandra 2009). First, we specify the reaction

network that contains all metabolites and detailed infor-

mation on all possible reactions (Fig. 3, 1st step). Internal

fluxes are denoted by viði ¼ 1; 2Þ and exchange fluxes are

denoted by bjðj ¼ 1; 2; 3; 4; 5Þ. Then, after building the

linear system based on the network structure (Fig. 3, 2nd

and 3rd steps), we can add a biologically relevant objective

function and relevant constraints (Fig. 3, 4th and 5th steps).

The remainder of the task is linear programming (Fig. 3,

last step), which can be accomplished using software

packages, such as MATLAB COBRA toolbox (Becker

et al. 2007).

The pathway constructed using the methods above

cannot show the dynamic state such as regulatory effects,

how the enzymes work, or whether the pathway is in stable

steady state. Therefore, we may use a kinetic model to

simulate the metabolomics network (Tomar and De 2013).

A kinetic reaction network model can be described by

ordinary or partial differential equations (ODE or PDE,

respectively). For example, we can simulate the network

based on the following simple ODE (Steuer 2007).

d

dt
cðtÞ ¼ S� vðc; kÞ;

c(t) is the time-dependent concentration vector of m

internal metabolites, k represents the Michaelis–Menten

kinetics parameters, and S is the stoichiometric matrix. v(c,

k) is a vector of enzyme-kinetic rate equations that consists

of nonlinear functions of c and k. We can see that if we let

the left-hand-side term equal zero (indicating that it is at a

steady state) and let v be a flux vector, then the equation is

exactly the flux balance equation. Given an initial condi-

tion of c(0), the value of the kinetic parameters and the rate

equations v, we can simulate the data through the ODE

given above. A common choice for the rate equations (for

every v in v) is v ¼ vmaxc
cþk

; where vmax is the maximal

reaction velocity. However, sometimes we do not know the

explicit form of the rate equations or it is difficult to esti-

mate the kinetic parameters k. In these cases, we can use

the structural kinetic modeling method (SKM) (Steuer

2007). The SKM method uses the Jacobian matrix as a

local linear approximation of the rate equations. The

Jacobian matrix consists of all first order partial derivatives

of the rate equations and it can be rewritten and estimated

using the SKM method (Wiechert 2002; Steuer 2007).

5.4 Analysis methods for time course data

Variables, for example the concentration of metabolites,

may change with time, thereby creating a time dimension

in the dataset. Unsupervised learning and data visualization

tools are still initially useful for giving us a general idea of

the data structure. We can also use visualization tools such

as PCA, SOM, and heat maps with a hierarchical clustering

structure to detect patterns and groups/clusters of the data.

The only difference is that we should include a time

dimension. In addition, by drawing profile graphs we can

check the profiles of metabolites or subjects for different

clusters. However, if we want to compare the temporal

profiles (similar or different patterns of change) of

metabolites between different subjects or groups of sub-

jects, we need to introduce statistical methods different

from those described above. Among different statistical

methods that can be used to analyze time course data

(Smilde et al. 2010), we only introduce analysis of variance

(ANOVA) based methods.

If we are analyzing one variable over time, e.g., the

expression level of a protein or concentration of a metabo-

lite, and we want to test whether the temporal profiles of this

variable are significantly different under different experi-

mental conditions, a natural choice is to use two-way

ANOVA, which is often used when studying the effects of

different treatments in chemical or biological experiments.

Here we show the basics of this ANOVA model. In meta-

bolomics research, the experimental condition (a) and time

effect (s) can be treated as two fixed effects. The general

linear model for a two-way ANOVA is:

Yijk ¼ lþ ai þ sj þ ðasÞij þ eijk;

where Yijk refers to the measurement obtained from the kth

subject at the jth time point under the ith condition

ði ¼ 1; 2; . . .; a; j ¼ 1; 2; . . .; b; k ¼ 1; 2; . . .nÞ; a and s are

fixed effects corresponding to condition and time; a and b

are the total number of levels for each effect; n is the

number of replicates (often corresponding to subjects) for

each combination of condition and time effects; l is the

overall (grand) mean. In many applications involving the

traditional two-way ANOVA, eijk are assumed to be inde-

pendent random errors following a normal distribution,

denoted by Nð0; r2Þ (Kutner 2005).
Although it seems reasonable to use a two-way ANOVA

to analyze time course data, the data may be better

described by a repeated measures (RM) model. The main

difference between the two-way ANOVA and the RM
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model is that the RM model has a subject error term ðdikÞ;
which takes variation within each group or subject into

consideration. The following is the model of RM:

Yijk ¼ lþ ai þ dik þ sj þ ðasÞij þ eijk;

where i ¼ 1; 2; . . .; a; j ¼ 1; 2; . . .; b; k ¼ 1; 2; . . .; n: dik
are subject effects (within group error) which follow a

normal distribution Nð0; r2dÞ and are independent of ran-

dom error eijk. Other notations are the same as the two-way

ANOVA model mentioned above. In metabolomics

research, there are often some differences between subjects

even within the same groups. If the subjects vary a great

deal within each group, then the RM model will be more

powerful than the simple two-way ANOVA analysis

(Milliken and Johnson 2009). Since each subject is

repeatedly assessed in most time course studies, we

strongly recommend to use the RM model instead of two-

way ANOVA. With the RM model, the user can specify a

variety of correlation structures for the measurement error.

Compound-symmetric correlation is often assumed in

repeated measures analyses. This covariance structure for

the eijk allows for within-subject correlation that is common

over time. If the correlation is expected to decay over time,

it is advantageous to consider autoregressive covariance

structures (Brockwell and Davis 2002) or exponential

covariance functions (Szczesniak et al. 2013).

Inference procedure for RM model is quite similar to

ANOVA. We can calculate the statistics and p-values by

decomposing the total sum of squares (SST) into different

parts as shown in the following formula:

SST = SSðaÞ þ SSðsÞ þ SSðasÞ þ SSðdÞ þ SSE

After validating all assumptions (normality, independence

and homogeneity of the variances), we turn to look at the

ANOVA table (Kutner 2005; Milliken and Johnson 2009).

The F statistics each follow an F distribution under the null

hypothesis (corresponding effects are all zero) with corre-

sponding numerator degrees of freedom. Therefore, we

have three effects to test: two main effects (a and s) and an

interaction effect. Note that we must always test the

interaction between a and s first, since a significant inter-

action may mask the significance of main effects and

influence the explanation of data. The null hypothesis for

the interaction effect is: (as)ij = 0 for all i and j. If the

interaction effect is significant, it implies that the temporal

profiles for different groups (experimental conditions) are

different. Usually, the estimated treatment means plots

(and many other plots) will give us a straightforward

Fig. 3 Flow chart of FBA (Raman and Chandra 2009)
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Table 2 Summary of commonly used metabolomics data analysis methods

Type of

analysis

Basic methods Goal Application Input Output Softwarea

Basic

statistical

testing

Fold change Biomarker

discovery; feature

selection for

supervised

learning

Fold change of

metabolite

concentrations

between two groups

Data tables with class

memberships: each row

represents one subject and

each column represents

concentration of a

metabolite/MS and NMR

peak list or spectral bin

Lists of

selected

metabolites

with

p-values,

volcano plot

(for two

groups)

MetaboAnalystb,

R and

MATLAB

Statistical

testing

Two sample

tests (e.g.

t test)

Identify significantly

different expressed

metabolites between

two groups

ANOVA

with post

hoc

analysis

Identify significantly

different expressed

metabolites for

multiple groups

Unsupervised

learning

Principal component

analysis (PCA)

Data grouping and

visualization

Reduce dimensionality

and check clusters

visually

Same as above, but no need

for class memberships

Scores and

loadings

plots for

visualization

MetaboAnalyst,

R and

MATLAB

Clustering K-means,

fuzzy

c-means,

K-means

in

reduced

space

Group the subjects into

k different clusters

Cluster labels

for each

subject

Hierarchical Show how subjects

form different

clusters

Heatmap,

dendrogram

Self-organizing map

(SOM)

Reduce dimensionality

and check clusters

visually

SOM

Supervised

learning—

classification

Support vector machine

(SVM)

Predict class

memberships

(disease

diagnostic),

biomarker

discovery

All of them are

classification

methods suitable for

metabolomics

research; need to

compare their

performance in real

data analysis

Same as above, but class

memberships are needed

A prediction

model with

selected

metabolites

as predictors

MetaboAnalyst,

R,and

MATLABPartial least square-

discriminant analysis

(PLS-DA), OPLS-DA

and SPLS-DA

Supervised

learning—

regression

Support vector regression

(SVR)

Predict continuous

variables,

calibration,

biomarker

discovery

All of them are

regression methods

suitable for

metabolomics

research; need to

compare their

performance in real

data analysis

The response variables

should be continuous

vector or matrix; for

calibration problem, the

response variables are

concentrations and

covariates are spectral

intensities

A prediction

model with

selected

variables as

predictors

Partial least square

(PLS), OPLS and SPLS

Pathway

analysis

Over-representation

analysis (ORA)

Find biologically

meaningful

metabolite sets or

pathways that are

associated with

certain diseases or

characters

Find related pathways

or metabolite sets

using statistical

testing

Significant metabolites list

and reference pathways

A list of

selected

pathways

with their

p-values or

FDRs

MetaboAnalyst,

bioconductorc

Functional class scoring

(FCS)/enrichment

analysis

Metabolites list with

concentrations and

reference pathways or

metabolite sets
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explanation of main and interaction effects (Milliken and

Johnson 2009).

If the response variable Y is a matrix, then we will need

to analyze multiple metabolites simultaneously, while

taking their correlation structure into consideration. In this

case, we need another method called ANOVA-simultane-

ous component analysis (ASCA). ASCA is a generalization

of ANOVA from the univariate case to the multivariate

case. Statistically, traditional MANOVA is a generalization

of ANOVA. However, MANOVA will not work if the

covariance matrices are singular or the assumption of

multivariate normality is violated. The idea behind ASCA

comes from principal component analysis, which decom-

poses the original data matrix into a component score and a

Table 2 continued

Type of

analysis

Basic methods Goal Application Input Output Softwarea

Elementary modes/

Extreme pathways

Simulation and

pathway

reconstruction

Analyze or

reconstruct

metabolic pathways

Pathway, stoichiometric matrix Several different

possible flux

distributions

MATLAB

Flux Balance Analysis Find the flux

distribution by

maximizing/

minimizing a

reaction based on

some constraints

Pathway, stoichiometric matrix,

constraints, and an objective

function

One unique flux

distribution

Kinetic reaction network

model

Simulate the dynamic

behavior of

metabolites reaction

networks

Pathway, stoichiometric matrix,

Kinetic parameter and rate

equation

Simulation

results of

network

kinetics

Time

course

data

analysis

Analysis of

variance

(ANOVA)

Fixed

effects

ANOVA

Test time

dependent

effects; compare

time profiles for

metabolites from

different

subjects

Two or more given

factors

Data tables with labels (class

membership indicators): each

row represents the observation

value of one subject at one time

point and columns represent

metabolites concentrations/MS

and NMR peak lists or spectral

bins

Testing results of

time dependent

effects for each

metabolite,

time profile

plots

MetaboAnalyst,

R

Repeated

measures

ANOVA method

when we have

multiple within

subjects

measurements

(measured at

different time

points)

ANOVA-simultaneous

component analysis

(ASCA)

ANOVA for

multivariate

response

Scores and

loadings plots

of sub models,

time profiles

plots

Functional based methods

(e.g. smoothing splines

mixed effects model)

Estimate sets of

curves (metabolic

profiles) and

quantify their

differences

Testing results of

the differences

in time profiles

between groups

for each

metabolite

Time series models (e.g.

ARMA model)

Model the

dynamic

properties (e.g.

biorhythm) of

metabolites data

Long time series data

modeling

A model that best

describes the

dynamic

properties of

underlying

biological

process

a We only picked some commonly used software packages or web tools in metabolomics
b MetaboAnalyst is an easy-to-use web based tool that covers most basic computational and statistical methods for metabolomics (Xia et al.

2009, 2012)
c Bioconductor was built on R and provided many useful packages for bioinformatics (Gentleman et al. 2004), including packages for metabolic

pathway analysis (Luo and Brouwer 2013; Zhang and Wiemann 2009)
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loading matrix plus an error term. The following is the full

model (Smilde et al. 2005):

Xhih ¼ lmT þ TKP
T
l þ TKhP

T
2 þ TKhihP

T
3 þ Ehih ;

With the following constraints:

(1)
lTTK ¼ 0T

(2) XH

h¼1
TKh ¼ 0

(3) XIh

ih¼1
TKhih ¼ 0

h = 1, …, H; ih = 1, …, Ih. H denotes the number of

groups and Ih denotes the number of replicates in group h.

Xhih is a K � J matrix where K denotes the number of

available time points and J denotes the number of vari-

ables. l is a K dimensional vector of ones and m is a J

dimensional vector of overall means of variables, so each

row in the matrix lmT represents the overall mean of the

variables. TK is the matrix of ‘‘time’’ effect; TKh represents

the ‘‘time’’ and treatment interaction effect; TKhih is the

interaction of treatment, time, and subject; Ehih is the

matrix of residuals. The corresponding P matrices are

loading matrices. Unlike in ANOVA, we will use the

scores plots of the first few components for each effect

(T matrices, a.k.a., sub-model) to detect the time main

effect or interaction effect; and we can use the corre-

sponding loadings plots to detect which variables are

responsible for the variation. There are some examples of

ASCA scores plots from (Nueda et al. 2007).

In their paper, they mainly discussed the application of

ASCA on time course microarray data. As an example, in

the scores plots of their simulation study (see Supple-

mentary Fig. 3), sub-model a represents the time main

effect and sub-model bþ ab represents the treatment effect

(treatment main effect and its interaction with time effect).

The percentages on the left show how much the compo-

nents in the sub-model (principal components kept in this

T matrix) explain the variation in the corresponding effect

(sub-model). The first plot shows the positive time main

effect exists; the following two show differences between

subjects on the same treatment. Note that in this example,

the time-treatment effect was not modeled independently,

which is different from that in the original paper of ASCA

(Smilde et al. 2005).

There are many other methods for analyzing time course

data that we did not discuss in this paper, such as the time-

series data analysis (ARMA model) (Smilde et al. 2010).

The ARMA model makes sense only when we have many

more than just two or three time points. If our dataset has

many time points and we wish to find and compare the

profile curves, then a functional based method (Berk et al.

2011) may be a good choice. The paper proposed a

smoothing splines mixed effects model that treats each

longitudinal measurement as a smooth function of time and

uses a functional t-type test statistic to quantify the dif-

ference between two sets of curves. See (VanDyke et al.

2012) for a biomedical application related to this approach.

Furthermore, since metabolomics is well suited to longi-

tudinal studies, if we have many time points and experi-

mental conditions, we can use the Hierarchical Linear

Model to fit the data. It treats the time profile as a function

and the parameters of the time profile function as random

variables (Jansen et al. 2004).

6 Conclusions

Metabolomics is a rapidly growing field that has greatly

improved our understanding of the metabolic mechanisms

behind biological processes as well as human diseases. Its

broad goal is to understand how the overall metabolism of

an organism has been changed under different conditions.

Metabolomics has been used to study diseases such as

cystic fibrosis, central nervous system diseases, cancer,

diabetes, and cardiac disease. Using metabolomics could

lead to the discovery of more accurate biomarkers that will

help diagnose, prevent, and monitor the risk of disease.

This review briefly introduced the background of metabo-

lomics, NMR and MS strategies, and data pre-processing.

We then placed our main focus on the data analysis of

metabolomics and described mainstream data analysis

methods in current metabolomics research. These include

unsupervised learning methods, supervised learning meth-

ods, pathway analysis methods and time course data

analysis. Finally, in Table 2, we summarized the key points

of the methods discussed, as well as some basic methods

such as fold change and two sample t test that were not

included in this review. We hope our review will be a

useful reference for researchers without this type of back-

ground in data analysis.
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