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Abstract Effect of growth temperature on the yeast

(Saccharomyces cerevisiae) metabolome has been analysed

by one-dimensional proton NMR spectroscopy (1H NMR).

Potential biomarkers have been first identified by a non-

targeted chemometric evaluation of the spectra, followed

by a comprehensive analysis of bayesian estimated con-

centrations of target metabolites in extracts of cells growth

either at 30 or 37 �C. Tentative identification of metabo-

lites whose concentrations were affected by this mild heat-

shock stress was attempted by partial least squares-dis-

criminant analysis (PLS-DA) on 1H NMR data, combined

with Statistical TOtal Correlation SpectroscopY, and fur-

ther confirmed with empirical data. An extensive assign-

ment for most of the detected NMR signals was performed,

with a total number of 38 identified metabolites. Concen-

trations estimated using automatic BATMAN modelling

revealed that bayesian integration is a sufficient approach

for obtaining relevant concentration changes of metabolites

and biological information of interest. In contrast to when

it is applied directly on spectral data, the application of

PLS-DA on BATMAN recovered metabolite concentration

estimates allowed for a better overview of the investigated

samples, since more metabolites were highlighted in the

discriminatory model. Observed changes in metabolite

concentrations were consistent with the expected process

of temperature acclimation, showing alterations in amino

acid cellular pools, nucleotide metabolism and lipid com-

position. The strategy described in this work can thus be

proposed as a powerful and easy tool to investigate com-

plex biological processes, from biomarker screening and

discovery to the study of metabolite network changes in

biological processes.
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1 Introduction

Metabolomics is a field of ‘omics’ research that is pri-

marily focused on the identification and characterisation of

small molecule metabolites in cells, tissues, organs and

organisms (German et al. 2005). Commonly, nuclear

magnetic resonance (NMR) (Griffin 2003) and mass

spectrometry (MS) (Dettmer et al. 2007) are used for

metabolomics studies. NMR studies mostly include 1H

NMR (Mazzei et al. 2013) and bidimensional heteronuclear

proton-carbon (HSQC) (Kang et al. 2012) whereas MS

studies include direct infusion (Højer-Pedersen et al. 2008)

and hyphenated to chromatography techniques (Farrés

et al. 2015). Less frequently, LC-1H NMR studies are also

reported, mostly in the phytochemistry area (Wolfender

et al. 2005).

The choice between NMR and MS lies in the evaluation

of the pros and cons for both techniques. First, MS sensi-

tivity is higher than that of NMR, which usually allows

identification of only 30–50 metabolites. Second, molecule
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assignment capacity in MS depends directly on the in-

strument accuracy and, without MS[n], compounds can only

be tentatively assigned, as molecular isomers would have

identical molecular masses. For hyphenated chromato-

graphic methods with MS, metabolite assignment can be

performed by their metabolite retention time and m/z val-

ues. However, the power of resolving peaks depends

strictly on the capacity of the chromatographic method,

usually the limiting step. This problem can be circum-

vented by the use of chemometric approaches like multi-

variate curve resolution (MCR) (Farrés et al. 2015).

Traditionally, metabolite identification in NMR spectra

depended heavily on the NMR-spectrometrist’s previous

knowledge and in the ability of identifying the spectral

patterns of each metabolite. Several NMR databases

(Jewison et al. 2012; Wishart et al. 2013) with 1H and 13C

spectra of biological compounds have been recently im-

plemented, significantly helping in speeding-up the as-

signment process. Resolution of overlapping signals in

NMR spectrum is not always as crucial as in (MS) chro-

matographic methods. If an NMR spectrum region cannot

be resolved, it is possible that the resonance signals com-

prised in that region come from metabolites with equiva-

lent signals in other regions of the spectrum, making the

related metabolites equally estimable. And third, signals in

NMR spectra have inherently absolute quantitative infor-

mation, whereas MS requires a calibration curve for each

compound, due to the variable ionisation rates of the dif-

ferent metabolites.

Saccharomyces cerevisiae is a key organism in both

traditional (wine, beer, bread) and technological (bioetha-

nol) fermentation processes. Growth temperature is a key

parameter determining the yeast metabolism. For most

strains, growth is optimal between 25 and 30 �C, whereas
ethanol production is favoured by somewhat higher tem-

peratures (Barnett et al. 2000; Mensonides et al. 2013).

However, high temperatures affect negatively other aspects

of yeast metabolism, including changes in membrane lipid

composition to adapt its fluidity to the growth temperature

(Arthur and Watson 1976). The compromise between

ethanol production and yeast survival is solved in industrial

procedures by using thermotolerant yeast strains (Nonklang

et al. 2008).

In a previous study combining transcriptomics and

metabolomics studies (Strassburg et al. 2010), upregulated

genes during heat stress in yeast were mostly related to

primary metabolism processes. Knowing in advance that

the majority of compounds detectable by NMR belong to

primary metabolites, and due to the fact that any metabolic

approach is tightly dependent on the metabolomics strategy

employed (Dunn et al. 2005), in this study we propose to

use an NMR-based metabolomics approach to study the

yeast thermal response to a mild heat stress.

There are two possible approaches to analyse NMR

spectra and both are presented in this work. The first

strategy is the non-targeted analysis of the whole set of

NMR spectra through chemometric methods, like principal

component analysis (PCA) (Bro and Smilde 2014) and

partial least squares discriminant analysis (PLS-DA) (Wold

et al. 2001), with the aim of identifying discriminatory

peaks that can be related to particular metabolites, and if

required, their corresponding peak areas from the raw

spectrum can be compared to estimate the relative changes

in their concentrations. The second approach is the as-

signment of the NMR spectrum peaks to a set of target

metabolites (prior to know whether they are relevant or not

in the studied effect) and the integration of their corre-

sponding signals, followed by the application of chemo-

metric methods to the resulting peak-assigned metabolite

areas data matrix.

Whilst the direct non-target approach is faster and brings

the information to discriminate among tested classes, the

traditional targeted approach allows a better interpretation

of the tested samples. However, metabolites assignment

and confirmation is time-consuming and estimation of their

area can be sometimes complicated due to overlapping

signals. Also, manual peak integration might produce

misleading results caused by human factor. To overcome

with these possible problems of both type of approaches, in

this work we tested the Batman approach (Hao et al. 2012),

currently available in open source in R (R Core Team

2013), which uses a Bayesian approach to estimate the

concentration of metabolites from previously assigned

NMR peaks. This approach has already been confirmed to

provide better and more accurate results than traditional

manual integration approaches (Astle et al. 2012).

2 Materials and methods

2.1 Experimental

2.1.1 Yeast growth

Saccharomyces cerevisiae BY4741 (MATa; his3D1;
leu2D0; met15D0; ura3D0) cells were pre-cultured in YPD

medium on an orbital shaker (150 rpm) at 30 �C overnight.

A 500 ml of YPD medium was inoculated with the pre-

culture to an optical density at 600 nm (OD600) of 0.1 and

divided into eight aliquots of 50 ml. Aliquots were growth

at either 30 or 37 �C (four aliquots each, shaking at

150 rpm). After 6 h of cultivation, at 1.4–1.6 of OD600,

cultures were arrested on ice and 4 fractions of 10 ml were

collected from each culture for metabolite extraction.

Growth was similar for cultures growth at both tem-

peratures (not shown). Cell harvesting was performed by
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centrifugation of each 10-ml fraction at 40009g for 5 min

and discarding the supernatant. Cells were washed after-

wards with 1 ml of 100 mM sodium phosphate buffer (pH

7.0). The resulting pellets were stored at -80 �C and

lyophilised. For both studied temperatures, 15 pellets were

analysed.

2.1.2 Metabolite extraction

Metabolites were extracted by using a slight modification

of the chloroform–methanol extraction protocol (Palomino-

Schätzlein et al. 2013). Pellets were resuspended in

1800 ll of a cold (4 �C) methanol–chloroform (1:2) solu-

tion by vigorous vortexing and submerged into liquid ni-

trogen for 1 min, and afterwards thawed in ice for 2 min.

The process was repeated by a total of five times. Next,

400 ll of water were added to create a biphasic system and

homogenised by vortexing. Organic and aqueous phases

were separated by centrifugation at 16,500 rpm (3 min,

4 �C). The upper aqueous phase was collected, and the

process was repeated once. The combined aqueous phases

were afterwards lyophilised.

2.1.3 NMR sample preparation

Extracts were dissolved in 700 ll of deuterated phosphate

buffer (Na2DPO4 100 mM, pH 7.0) in D2O with DSS

0.2 mM as internal standard. The resulting solution is

placed into the NMR tube.

2.1.4 NMR experiments

Spectra were recorded in a 400 MHz Varian spectrometer,

using a spectrometer frequency of 400.14 MHz with a

OneNMR Probe and a ProTune System (Agilent). Spectral

size range covered from -2 to 10 ppm, consisting of

65,536 data points. The number of scans was 512 and the

relaxation delay was 5 s. For bidimensional TOCSY ex-

periments, 8 scans and 512 t1 increments were used.

2.1.5 NMR spectra preprocessing

Spectra were preprocessed with MestreNova v.9.0

(Mestrelab Research, Spain). Spectra preprocessing con-

sisted in an exponential apodization of 0.5 Hz, a manual

phasing and a baseline correction with Berstein polynomial

of 3rd order. After adjusting the reference to DSS (4,4-

dimethyl-4-silapentane-1-sulfonic acid), regions of water

(4.7–5.1 ppm), methanol (3.30–3.37 ppm) and chloroform

(7.64–7.69 ppm) were removed. Data points with chemical

shift higher than 9.45 ppm or lower than 0.8 ppm were also

removed. The final NMR dataset consisted on a data matrix

of 30 spectra (rows) having 38,213 ppm values (columns)

each one. This data matrix was stored in an ASCII file

format.

2.1.6 Metabolite identification

A preliminary 1D-STOCSY (Cloarec et al. 2005) detection

of correlated peaks with significant variation between the

two temperatures was performed on the most relevant

proton resonances indicated by VIPs score plot from the

OSC-PLS-DA (see OSC-PLS-DA in Sect. 2.2) of the raw
1H NMR spectral data matrix (step 1 in Fig. 1). This step

does not only serve as a biomarker discovery strategy, but

it can be also applied to do a tentative metabolite assign-

ment since intramolecular signals are likely to be shown as

highly correlated in the 1D-STOCSY. Metabolite assign-

ment (step 2 in Fig. 1) was performed by a detailed tar-

geted metabolite profiling analysis of the 1H NMR and 2D-

TOCSY yeast extract samples, using the 1H NMR spectra

library developed during this work and also using the Yeast

Metabolome Data Base library (Jewison et al. 2012)

(YMDB). Some of the assigned metabolites were further

confirmed by spiking using commercial standards. Online

Resource 1 presents the list of methods used for each

identification.

2.1.7 Metabolite quantification

Relative metabolite quantification was performed using

BATMAN R-package (step 3 in Fig. 1). BATMAN im-

plements a procedure based on the use of a bayesian

model to deconvolute 1H NMR peaks and automatically

assigns these peaks to metabolites from a target list,

whose concentration estimate expressed in arbitrary units

is obtained. BATMAN uses the modelled resonances of

each assigned proton to reconstruct the empirical NMR

spectrum, whereas the noise signal and unassigned

resonances are modelled by wavelets. Proton signals that

showed first-order couplings patterns were modelled us-

ing their spectrometric parameters. In other cases, mul-

tiplets were modelled as a ‘raster’ multiplet, using in-

house 1H NMR spectra, or as a set of singlets. The list

of parameters used to model each proton signal is given

in Online Resource 2. BATMAN allows to interpret data

directly from spectroscopic parameters of weak coupling

spin systems (AX, A2X,…). However, for strongly cou-

pled spin systems, alternative input parameters have to

be chosen. Thus, most of the signals in Online Resource

2 with non-integer proton intensities correspond to AB or

to AA’XX’ proton systems modelled as two AX systems.

D-Glucose proton intensities are referenced as the sum of

the two existing anomeric forms. All these non-integer

proton intensities, including trehalose and glycerol proton

intensities as well, were calculated by manual integration
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with MestreNova software (Mestrelab Research, Spain).

Finally, in order to let the fitting less restrictive and to

obtain a better performance, Glutamine signal 23 (in

Online Resource 2) was defined as a sum of singlets,

each one containing the weighted intensity of the whole

multiplet. Additional parameters related to the bayesian

Fig. 1 Workflow of the NMR metabolomics data analysis procedure used in this work. Different steps are identified by the numbers inside the

circles
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algorithm were also introduced. Some of these input

parameters are summarised in Online Resource 3, while

for the rest of input parameters their default value was

used. More details of the procedure are described else-

where (Hao et al. 2014). After introducing the input data,

each NMR metabolite pattern should be correctly fitted

in its corresponding 1H NMR experimental spectrum

from the yeast extract sample. By performing this step,

we concluded that the modelling of every proton signal

is not necessary for achieving a good estimate. For in-

stance, the use of overlapped signals when the same

metabolite has isolated signals within the NMR spectra

implies that more calculations are required for obtaining

the same concentration estimate.

Running time depends directly on the width of the

chemical shift region studied. To shrink dataset dimension,

only 1 out of each 10 values from the 38,213 spectral set

points were used. In addition, instead of using the whole

spectral dimension, the analysis was performed by select-

ing those spectral regions comprising a number of multi-

plets and removing regions containing only noise. In

Fig. 2b, d, f and g, the individual spectral regions used are

shown. Thus, although all 1H NMR spectra were always

processed simultaneously, metabolite concentrations were

estimated sequentially depending on the region analysed

each time.

Metabolite estimation performance from overlapped

signals was evaluated carefully by observing the residual

wavelet and contrasting whether non-overlapped signals

from the same metabolites have been affected or not by

wavelet penalisation. Therefore, additional regions con-

taining peak signals from the same metabolite were always

fitted if possible. For instance, when peaks from region of

1.15–1.35 ppm are fitted, both L-lactic acid and L-threonine

signals were cross-checked by also adding into the fitting

model their respective resonances from the proton at Ca

and Cb, respectively, which are located above 4 ppm in the

NMR spectrum. In Fig. 2a, c, e and g, a stack plot from a

representative sample showing the sum of deconvoluted

areas and the residual part is presented.

2.1.8 Pathway analysis and transcriptome data mining

Metabolites highlighted in the OSC-PLS-DA (see

Sect. 2.2) of the concentration estimates were correlated

with known yeast metabolic pathways using the KEGG

database (Kanehisa et al. 2012). Transcriptomic data

comparison between yeast cell growing at 29 and 36 �C
was obtained from http://genome-www5.stanford.edu/

(reference GSM1046). Metabolic maps were also obtained

from the KEGG web page (http://www.genome.jp/kegg/

kegg2.html).

2.2 Chemometric data preprocessing and analyses

2.2.1 Theory

A brief description of the different statistical and modelling

methods used in this work to analyse 1H NMR spectra is

given below.

2.2.1.1 Statistical total correlation spectroscopy

(STOCSY) In STOCSY (Cloarec et al. 2005), the au-

tocorrelation matrix for a set of 1D NMR spectra of

samples containing mixtures of metabolites is calculated.

High correlations values might reveal which proton

signals belong to the same molecule. STOCSY serves

as a helpful tool for pattern recognition in complex

mixtures (Li et al. 2014). In NMR spectra from biolo-

gical extracts, if two or even more metabolites are

strongly correlated, these correlations might be an evi-

dence of biochemically connected metabolites. However,

we have to be aware that these correlation values might

be also distorted by spectral overlap and noise

interferences.

2.2.1.2 OSC-PLS-DA PLS-DA (Barker and Rayens

2003) is a PLS regression method (Geladi and Kowalski

1986) variant that allows to correlate a set of dis-

criminant response y-variables to a set of correlated X-

variables (in this studied case, the temperature and the

NMR spectral matrix, respectively). As a result, a re-

duced number of new linear combination of the inde-

pendent original X-values (called latent variables, LV) is

obtained. This LV optimally correlate with the variation

in y-variables. For every LV, a vector of weight coef-

ficients is acquired, showing which X-variables affect

most on y.

Orthogonal signal correction (OSC) (Wold et al.

1998) is a signal pretreatment method that removes any

variation within the X dataset uncorrelated (orthogonal)

to y. In this work, the variable importance on projection

(VIP) scores (Wold et al. 2001), which give a weighted

sum of squares of PLS weights for each variable, were

also calculated in order to determine the most influent

variables in the model. X-variables associated with VIP

scores greater than one are considered to be relevant on

the definition of the PLS-DA model (Chong and Jun

2005), since the average of squared VIP score is equal

to 1.

2.2.2 Multivariate analysis of the NMR spectra

The spectra from the previous preprocessing steps were

imported to Matlab R2013a (The Mathworks Inc. Natick,

1616 F. Puig-Castellvı́ et al.
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MA, USA) and analysed with the PLS toolbox 7.3.1 (Ei-

genvector Research Inc., Wenatchee, WA, USA). Principal

component analysis (PCA) was applied to the NMR

spectral data matrix after standard normal variate (SNV)

(Dong et al. 2011) normalisation and mean-centering pre-

processing performed in this order. Although dried pellets

have similar weights (6.9 ± 0.3 mg for pellets collected

from samples cultured at 30 �C, and 6.7 ± 0.8 mg for

37 �C cultured samples), and according to p value sig-

nificance level they are statistically identical (p val-

ue = 0.32), if spectra were normalised by dry weight, data

would be biased. In order to overcome this difficulty,

spectral data (with solvent and DSS regions already re-

moved) was normalised with SNV. PLS-DA of the SNV,

plus OSC-normalised spectra and mean-centered data has

been also performed. In both cases, PCA and PLS-DA,

cross-validation with Leave-One-Out system has been ap-

plied to check the reliability of the obtained models. Ad-

ditionally, two permutation tests and a leave-one-culture-

out cross-validation were executed. In the two permutation

tests applied to the OSC-PLS-DA model, the evaluated

parameters were the cumulative predicted residual sums of

squares and the number of misclassifications. With leave-

one-culture-out cross-validation test, the similarity among

samples from different cultures was tested. In this test, an

OSC-PLS-DA model was built using all samples except

those from one specific culture as a training set, and these

excluded samples were used afterward as a validation set.

This process was repeated for all the cultures.

2.2.3 Analysis on relative concentration estimates

Concentration changes between classes (low and high

culture temperature) were evaluated using a Mann–Whit-

ney–Wilcoxon test and their corresponding levels of sig-

nificance were calculated (step 4 in Fig. 1). In order to

contrast this information, a Kruskal–Wallis one-way ana-

lysis of variance was applied to the same dataset.

PCA and OSC-PLS-DA were also applied to these au-

toscaled concentration estimates (step 5 in Fig. 1). Missing

concentration estimates were imputed by PCA as imple-

mented in PLS Toolbox. The same permutation tests and

leave-one-culture out cross-validation as in the NMR

spectral data were performed to the OSC-PLS-DA model.

3 Results and discussions

3.1 Workflow

A scheme summarising the complete data analysis work-

flow of the acquired 1H NMR data in the analysis of yeast

samples at the two temperatures is shown in Fig. 1.

3.2 Preliminary study of NMR spectral data

Before performing OSC-PLS-DA, NMR spectra were

analysed by PCA. PCA scores plot of the mean-centered
1H NMR spectra from the yeast extract samples shows

clearly that yeast metabolomes obtained for the two growth

temperatures are distinguishable. The separation of the two

sample classes was accomplished with the first component

(PC1), containing 54.28 % of the explained variance

(Online Resource 4a). PCA model using 3 components

explained 86.58 % of the X-variance.

In PCA plot of the 2 first components, all tested samples

laid inside the 95 % confidence level. Although two sam-

ples have Q residuals over the 95 % of confidence and one

more is over the 95 % of confidence of Hotelling T2

(Online Resource 4b), they were not considered outliers, as

their removal did not show any significant improvement on

explained variance nor contributed significantly to the

residuals. Scores of the yeast culture batches were ran-

domly distributed, implying that none of the cultures had

an outlying response at the growth temperature. This lack

of any distribution pattern was also observed for colour-

coded scores according to their fractional sampling order

(data not shown). Therefore, the fractioning step did not

either constitute any source of variance nor produced any

sample bias.

3.3 Initial NMR signal assignment of potential

biomarkers

When OSC-PLS-DA was applied to the mean-centered 1H

NMR spectra from the yeast extract samples, one latent

variable (LV) was sufficient to discriminate between the

two sample classes. 53.36 % of the X-variance was already

bFig. 2 1H NMR 400 MHz spectrum of the aqueous cell extracts of S.

cerevisiae grown at 30 �C. a, c, e and g stack plots represent the fit for
the modelled resonances obtained. In black it is shown the empirical
1H NMR spectrum; in dotted grey, the sum of the modelled

resonances; and in dashed red, the difference between the empirical

and the modelled spectra. On the other hand, b, d, f and h stack plots

show the individual models of each one of the used proton

resonances. The orange-dashed boxes represent the different regions

used. Coloured peak signals out of the box represent those signals

used only as a cross-check validation of the fitting performance.

Metabolite names in grey represent some of the identified but not used

proton resonances. Abbreviated metabolites: ADP adenosine diphos-

phate, Ade adenine, AMP adenosine monophosphate, ATP adenosine

triphosphate, DSS 4,4-dimethyl-4-silapentane-1-sulfonic acid, Formic

formic acid, GPC glycerophosphocholine, Hyp hypoxanthine, L-his L-

histidine, L-phe L-phenylalanine, L-tyr L-tyrosine (Color figure online)
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able to explain the 99.99 % of the y-variance (Online

Resource 4c). Scores were very constant within each

sample class. Predictive capacity was totally achieved, with

a 100 % of sensitivity and selectivity. If cross-validation is

performed, correct classification is obtained for the whole

sample dataset as well. Low RMSEC and RMSECV values

were obtained (Online Resource 5). The permutation tests

confirmed the reliability of the model with a p\ 0.001,

and the leave-one-culture-out cross-validation shown a

total predictive capacity for each one of the cultures used

as a validation set.

From the VIP score plot (Online Resource 4d), 83 lor-

entzian-shaped signals were observed whose intensity

corresponds to VIP[ 1, all located below d = 5 ppm ex-

cept for one at d = 8.443 ppm. This fact explains why only

half of the total X variance was needed to explain the y

variance.

Since VIPs were associated to chemical shifts and not to

individual NMR signals, chemical shifts associated to

overlapped signals would give different VIP scores than

those from isolated signals. Another appreciation from the

direct examination of VIP scores plot is that while some of

the VIP scores were close to 1, other reach values of some

orders of magnitude higher, even greater than 1000 (Online

Resource 4e), indicating significant unequal fold-changes of

some resonance signals occurring during the stress situation.

A preliminary assignment of those metabolites whose

concentrations were more affected by the temperature can

be achieved by representing the corresponding 1D-

STOCSY plots of the list of lorentzian-shaped NMR peaks

selected by the OSC-PLS-DA VIPs. In STOCSY plots,

spectrum intensities are differently coloured depending on

their r2 correlation with the selected chemical shift. An

example of 1D-STOCSY for the peak at 3.218 ppm, which

is the chemical shift where the maximum VIP value was

found, is represented in Fig. 3.

As observed in Fig. 3, two 1H NMR regions (around

3.67 and 4.31 ppm) were candidates of containing signals

from intramolecular protons connected to the one associ-

ated to the target resonance at 3.218 ppm. Using the

YMDB, we tentatively assigned the peak of 3.218 ppm to

be from L-glycerophosphocholine, since all three selected

signals are also present in the 1H NMR spectrum of this

metabolite. Using the same strategy, ethanol, DSS, L-

threonine, L-lysine, glycerol and also glycine were tenta-

tively assigned. Also, peaks form L-leucine, L-valine and L-

isoleucine are found to be highly correlated, which agrees

with the fact that they are biochemically linked.

3.4 Metabolite identification in 1H NMR spectra

Metabolite assignment is not straightforward. Although

STOCSY is a useful tool for identifying compounds in NMR

spectra, total assignment of the resonances cannot be

achieved because correlation coefficient values are

negatively affected by spectral overlapping signals and noise

interferences. From the interpretation of bidimensional

NMR spectra, additional assignment of correlated signals

can be obtained, but the total assignment is hardly obtained

due to the overlapping problem. NMR databases represent a

convenient tool to assign metabolite names to resonances,

but slight chemical shifts from the ones reported in library

databases are expected. Even if pH is controlled, other pa-

rameters such as differences in ionic strength may produce

this variation. These peaks can be confirmed from spectro-

scopic data, although the absolute confirmation experiment

is by metabolite spiking. However, in practice, this is not

always possible. Therefore, a good knowledge on the inter-

pretation of NMR spectroscopic data is required to do a

proficient metabolite assignment.

In Fig. 2b, d, f and h, the metabolite identification in a
1H NMR 400 MHz experiment of a yeast cell extract is

summarised. A wide range of biomolecules were identified,

comprising a-amino acids, sugars, nucleotides, organic

acids and osmolytes. Online Resource 1 presents the list of

methods used for each peak assignment. The number of

Fig. 3 1D-STOCSY plot at 3.218 ppm. Regions with segments with r2 correlations above 0.99 are encapsulated in the grey regions (Color figure

online)
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assigned metabolites in this study is on the average range

of most NMR metabolomics studies, despite the fact that

they use NMR spectrometers of higher magnetic fields,

with higher sensitivity and resolution. In our case, how-

ever, the deconvolution process with BATMAN allowed to

obtain each metabolite signal, regardless of the overlapping

degree. In manual integration, some of the peaks are so

small that artifacts might be produced because of the signal

noise. By using BATMAN, the noise is modelled by

wavelets and the signals from the compounds are more

precisely estimated. This principle is also applied for peaks

located in the shoulder of water signal, such as trehalose or

glucose.

3.5 Metabolite quantification of yeast cell extracts

In this study we propose metabolite quantification by using

a procedure based on bayesian intregration. NMR meta-

bolomics software based on Bayesian algorithms have been

presented in previous literature, as the R-Pakage BQuant

(Zheng et al. 2011). However, this software does not take

profit of all the spectroscopic data from each signal. Other

softwares can be used alternatively, such as the NMR suite-

derived Chenomx NMR suite (Chenomx Inc., Canada). It

has been previously stated that BATMAN ‘‘gave very

comparable results to Chenomx, with r2[ 0.996 when

templates were optimised’’ (Hao et al. 2014). In contra-

position to Chenomx, BATMAN is a free and open source

software. In this work the efficiency of BATMAN to obtain

estimates of biologically interpretable data is tested.

Resonances used to estimate each metabolite concen-

tration are shown in Online Resource 4, whereas their

corresponding spectroscopic parameters are detailed in

Online Resource 2.

Relative concentration estimates of the identified

metabolites are presented in Online Resource 6. Due to

deformations in peak shape, three concentration estimates

of histidine were not estimated. Twenty eight metabolites

showed significant concentration changes with p\ 0.05

due to temperature stress: at 37 �C, 22 metabolites (in-

cluding cytosine, glutathione, ATP, formic acid and acetic

acid, among others) had their concentration diminished

when compared to 30 �C cultured samples, whereas six

metabolites (including glycerophosphocholine and tre-

halose, among others) had increased their concentration.

The same list of affected metabolites are significant with

p\ 0.05 when the statistical test performed was the

Kruskal–Wallis one-way analysis of variance.

In contrast with OSC-PLS-DA in the spectra matrix,

more metabolites are highlighted now as being influenced

by changes in temperature. Metabolite quantification re-

vealed that glycerophosphocholine, one of the metabolites

that had been pinpointed with STOCSY (and associated

with a VIPscore = 1075.7 in the OSC-PLS-DA), has low

concentration in the sample (it is the 28th in the list of most

abundant estimated metabolites). In the studied system,

glycerophosphocholine concentration is increased by a

factor of 5.57, but due to the fact that this molecule has 9

magnetically and chemically equivalent protons, its inten-

sity value in the 1H NMR spectra is increased by ap-

proximately 50-fold, which explains its high VIP score

obtained in the OSC-PLS-DA.

The tentative biomarker discovery strategy from the raw

spectra matrix presented before is a convenient method to

perform a tentative biomarker discovery, but should not be

used for obtaining conclusions about general sample

composition, since peak overlapping distorts the interpre-

tation of the signals, and both OSC-PLS-DA and STOCSY

are negatively affected because of this. On the opposite, to

perform a biomarker discovery strategy focused on con-

centration estimates is time-consuming in comparison to

direct screening by PLS-DA on spectral data.

However, in our dataset, yeast metabolome is too stable

within samples of the same class (Online Resource 4c),

provoking that when the proposed strategy focused on the

spectral data is applied, too many metabolic changes are

highlighted instead of only those more intense. Since

biomarkers should not be a large list of metabolites, by

increasing the VIP score threshold in two orders of mag-

nitude (dotted line in Online Resource 4d) the list of

biomarkers was restricted to three (glycerophoshocholine,

fatty acids and acetic acid). Since two of these metabolites

are related to the lipid fraction, an alteration of this fraction

due to the growth temperature is suggested.

3.6 Metabolic alterations observed by multivariate

analysis of their concentration estimates

The first principal component in the preliminary PCA of

the concentration estimates already explained 41.46 % of

the total variance, and allowed the separation among the

two classes of samples (those at 30 �C from those at

37 �C). PC2 (14.17 % of the variance) scores were ho-

mogeneously distributed within the 95 % of confidence

limits, except for one sample. The residual value associated

to that sample was below the limit but it had a high

leverage (large hotelling T2 value). Variance explained by

the model without this sample did not improve substan-

tially (55.92 %). Scores projection for the 2 first PCs is

represented in Fig. 4a.

OSC-PLS-DA LV1 on the autoscaled concentration es-

timates explained a 99.92 % of the y-variance using

44.33 % of the X-variance. All samples were correctly

classified when cross-validation is performed. Low values

of RMSEC and RMSECV were obtained (Online Resource

5). The permutation tests confirmed the reliability of the
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model with a p\ 0.001, and the leave-one-culture-out

cross-validation shown a total predictive capacity for each

one of the cultures used as a validation set.

Score values distribution can be observed in Fig. 4b. In

Fig. 4c, LV1 weights for each metabolite are displayed.

According to LV1, negative weights (in white) show those

metabolites with larger concentrations at 30 �C, whereas
positive weights (in black) indicate the opposite (lower

concentrations at this temperature). In Fig. 4d, VIP scores

are given. They indicate those metabolites whose

concentrations have changed when culture temperature

changed significantly (defined by a threshold of 1).

Metabolites more important in the definition of the 37 �C
class were 6 (L-histidine), 11 (L-lysine), 20 (L-alanine), 28

(glycerophoshocholine) and 38 (trehalose). For the 30 �C
class, the metabolites of interest are 13: 1 (L-threonine), 5

(glutathione), 7 (formic acid), 8 (NAD?), 9 (L-valine), 10

(AMP), 13 (L-isoleucine), 14 (acetic acid), 15 (L-leucine),

16 (L-phenylalanine), 17 (cytosine), 18 (L-glutamine) and

24 (L-aspartic acid).

Fig. 4 a PCA scores projection on PC1 and PC2 subspace. White and

grey dots correspond to 30 and 37 �C, respectively. b LV1 PLS-DA

scores against each sample. c LV1 weights barplot. Negative weights

are coloured in white, whereas positive weights are coloured in black.

d VIP scores barplot. Bars with VIP values below threshold of 1 are

coloured in grey. Other bars are coloured as their corresponding weight

bars. Metabolites represented are the following: 1 L-threonine, 2

ethanol, 3 fatty acids, 4 L-glutamic acid, 5 L-glutathione, 6 L-histidine,

7 formic acid, 8 NAD?, 9 L-valine, 10 AMP, 11 L-lysine, 12 L-arginine,

13 L-isoleucine, 14 acetic acid, 15 L-leucine, 16 L-phenylalanine, 17

cytosine, 18 L-glutamine, 19 orotidine, 20 L-alanine, 21 orotic acid, 22

L-lactic acid, 23 glycine, 24 L-aspartic acid, 25 uracil, 26 L-tyrosine, 27

glycerol, 28 glycerophosphocholine, 29 ADP, 30 L-proline, 31 D-

glucose, 32 citric acid, 33 L-asparagine, 34 succinic acid, 35 ATP, 36

adenine, 37 hypoxanthine, 38 trehalose. p value significance levels:

*p\ 0.05, **p\ 0.01, ***p\ 0.001 (Color figure online)
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Only a fraction of the metabolites identified as affected

by growth temperature by the univariate statistical analysis

(either at p\ 0.05 or p\ 0.01 confidence levels) was also

detected as such by OSC-PLS-DA. This multivariate sta-

tistical analysis appeared thus to be more restrictive,

probably because it models the whole set of metabolites for

a given temperature at the same time, including their inter-

replicate variability. Therefore, only those metabolites with

concentration changes that are varying at unison within

classes (but not among them) will be considered important

for the model and highlighted as significant. On the con-

trary, in univariate statistical analysis, metabolites are

evaluated one-by-one, whether or not their concentration

change significantly, and coordinated metabolic variations

cannot be detected.

Trehalose is one of the metabolites marked, both in the

univariate and multivariate analysis, but it is not high-

lighted in the OSC-PLS-DA on NMR spectra. This diver-

gence can be due to the effect of the applied pretreatment.

Since NMR spectra were mean-centered instead of au-

toscaled, and trehalose is the identified metabolite with

lowest concentration (Online Resource 6), its significance

in the OSC-PLS-DA model was masked underneath other

more concentrated significant metabolites. Therefore, in

order to accomplish a biological interpretation from NMR

data, it is preferred to perform the quantification of the

effects on (autoscaled) metabolite concentrations rather

than a direct interpretation from the spectrum.

3.7 Pathway analysis and biological interpretation

From a total of 28 metabolites whose concentrations varied

between 30 and 37 �C and were present in the KEGG

database (see below), 25 of them felt into four functional

categories according to KEGG: amino acid metabolism (14

metabolites), nucleotide (purine and pyrimidine) metabo-

lism (7 metabolites), respiration (TCA cycle and oxidative

phosphorylation, 4 metabolites) and Pyruvate metabolism

(4 metabolites). Some metabolites may belong to more

than one category (Table 1). A comparison of these results

with the transcriptomic analysis of yeast cells grown at

36 �C (GSM1046, http://genome-www5.stanford.edu/) re-

vealed a rather good correlation between the metabolite

changes and gene expression data (Table 1).

The figure in Online Resource 7 showed a summary of

both metabolic and transcriptomic data. Note that affected

metabolites and pathways are concentrated in particular

areas of the total map, particularly at the top right (nu-

cleotide metabolism), central-bottom right (amino acid

metabolism) and at the centre of the map (energy gain,

from sugar catabolism at the top, to oxidative phosphory-

lation at the bottom). In addition, most of affected

metabolites (red and blue dots) are implicated in at least

one of the enzymatic steps catalyzed by a deregulated gene

product, others lie shortly upstream or downstream of the

same metabolic pathway (Online Resource 7).

Transcriptomic analysis showed deregulated genes in

the fatty acid metabolism pathways (Online Resource 7).

Although no KEGG-coded metabolite identified by NMR

data analysis can be directly assigned to this pathway, it is

like that the fatty acids singlet signal may be related to the

alteration of the fatty acid pathway. Similarly, glyc-

erophosphocholine concentration changes may be related

to the deregulation of nine genes codifying enzymes of the

Glycerophospholipid metabolism (Online Resource 7). In

fact, different lipid composition changes are expected be-

cause of the type of experimental methodology applied to

the analysis of yeast samples. The enhanced lipid biosyn-

thesis allows compensating fluidity instabilities due to the

changes in temperature (Sakamoto and Murata 2002;

Torija et al. 2003).

Finally, glutathione showed a reduced concentration in

37 �C grown yeast cells, an effect probably related to the

deregulation of different peroxidases and reductases in-

volved in its metabolism (Table 1). Similarly, concentra-

tions of NAD?, related to the redox cell machinery, are

notably diminished in cells grown at 37 �C, which may be

related to a decreased mitochondrial function (McConnell

et al. 1990). This putative redox potential alteration may be

related to the low acetate/ethanol ratio observed at 37 �C
relative to cells grown at 30 �C, as a consequence of the

interconversion between ethanol and acetate controlled by

the NAD?-dependent aldehyde dehydrogenase (Racker

1949).

Trehalose, one of the few metabolites with elevated

concentration at 37 �C, is not metabolically linked to the

other altered metabolites, although the enzymatic reactions

leading to its production and degradation are also catalyzed

by deregulated gene products (Online Resource 7). Tre-

halose has been identified as a cellular protector to different

stresses, including heath shock (Elbein et al. 2003; Estruch

2000). Our results (and others) suggest that trehalose

concentration changes may be also part of the yeast ac-

climation process to high temperatures (Farrés et al. 2015;

Strassburg et al. 2010).

Globally, our data showed a general decrease of many

amino acid and nucleotide-related metabolites, whereas

gene expression data of the same pathways indicate an

overexpression of many enzyme-codifying genes. There is

no easy way to translate changes in gene expression to

changes in concentrations of metabolites, but it should be

remembered that amino acids are rather strictly regulated,

in part by negative feed-back mechanisms in which the

absence of a given metabolite triggers transcription of the

genes involved in the corresponding enzymatic pathway

(Hahn and Young 2011; Hinnebusch 2005). Amino acid
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pools are known to decisively determine the capacity of de

novo synthesis of proteins in yeast, and their composition

may vary in processes leading to changes in the cell protein

composition (Onodera and Ohsumi 2005; Suzuki 2013). At

this point, it is important to point out that in our study, cells

were allowed to acclimate to both temperatures for two to

three cell doublings, and therefore the observed changes

would not reflect a typical heat shock, but rather reflect an

acclimation process i.e., the compensative reaction to the

actual effects of the temperature, including changes in the

global content in sugars, lipids and proteins, which in turn

are reflected by changes in both the transcriptome and the

metabolome.

4 Concluding remarks

1H NMR combined with statistical multivariate data ana-

lysis tools has been able to produce a robust and reliable

interpretation of the effects of temperature on yeast meta-

bolism. Detection of significant changes on the concen-

tration of some metabolites using OSC-PLS-DA of 1H

NMR spectra, in 1D-STOCSY format, is a feasible and

rapid strategy.

By using Mann–Whitney–Wilcoxon’s statistical test on

the comparison between metabolite concentration esti-

mates at the two temperatures, 28 metabolites were de-

tected as significantly affected (p\ 0.05) by the

temperature. From those, only 18 were highlighted on the

corresponding PLS-DA, which appears to be more re-

strictive, probably because it includes the inter-replicate

sample variability.

We consider that changes in glycerophosphocholine

concentration may indicate more general changes in

membrane composition, likely related to the different

growth temperature.

Apart from alterations on lipid membrane composition,

other metabolic changes, such as the increase in the con-

centrations of some stress indicators like trehalose, were

also detected. It is concluded that the combination of 1H

NMR metabolomics and multivariate data analysis tools

are by themselves sufficient to obtain data interpretable

form a biological point of view.
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