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Abstract Multiple reaction monitoring (MRM)-based

targeted metabolomics can simultaneously analyze up to

hundreds of metabolites with high-throughput, good re-

producibility, and wide dynamic range. However, when

hundreds or thousands of MRM transitions are measured

with tens to hundreds of biological samples, the complexity

of MRM dataset acquired is no longer amenable to manual

evaluation, and presents a challenge for targeted metabo-

lomics. Here, we developed an R package, namely

MRMAnalyzer, to process large set of MRM-based tar-

geted metabolomics data automatically without any manual

intervention. To demonstrate our MRMAnalyzer program,

we first developed a targeted metabolomic method that

simultaneously analyzes 182 metabolites in one 15-min LC

run, and demonstrated the data processing procedures using

MRMAnalyzer. The data processing steps include ‘‘pseu-

do’’ accurate m/z transformation, peak detection and

alignment, metabolite identification, quality control check

and statistical analysis. Finally, a targeted metabolomic

assay was designed and integrated with MRMAnalyzer to

profile the metabolic changes in Escherichia coli subjected

to the protein expression. The generated MRM dataset

consisting of more than 8000 MRM transitions were

readily processed using MRMAnalyzer within 20 min

without any manual intervention. Fourty seven out of 140

detected metabolites, enriched in six metabolic pathways,

were found significantly affected in E. coli metabolome. In

summary, a targeted metabolomic platform is developed

for high-throughput metabolite profiling and automated

data processing, and the MRMAnalyzer program is a high

efficient informatics tool for large scale targeted

metabolomics.

Keywords Targeted metabolomics � Multiple reaction

monitoring (MRM) � LC–MS/MS � Bioinformatics �
Metabolite profiling

1 Introduction

Metabolome is a collection of biochemically active mole-

cules, namely metabolites, with a high level of chemical

diversity in biological systems (Nicholson and Lindon

2008; Patti et al. 2012; Rabinowitz and Silhavy 2013;

Fiehn 2002). Two mass spectrometry (MS) based ap-

proaches are widely used for metabolite profiling: untar-

geted and targeted metabolomics, each with its advantages

and disadvantages (Dettmer et al. 2007; Lenz and Wilson

2007). Untargeted (or called non-targeted) metabolomics

aims to comprehensively study the metabolome at the

systems level and, therefore, tries to measure all known and

unknown metabolites in a given biological sample. Per-

forming untargeted metabolomic experiments can make

discoveries that bridge the gaps between gene functions,

metabolic activities and biological/physiological pheno-

type (Fiehn 2002; Pernet et al. 2015; Chen et al. 2012). The

major challenges of this approach rest with the
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sophisticated informatics for data processing and time and

efforts required to identify and elucidate chemical struc-

tures of both known and unknown metabolites (Smith et al.

2005, 2006; Tautenhahn et al. 2011; Horai et al. 2010; Zhu

et al. 2013). Many informatics tools like XCMS (Smith

et al. 2006; Tautenhahn et al. 2012; Katajamaa et al. 2006),

MZmine (Katajamaa et al. 2006), MetAlign (Lommen

2009) and many others have been developed for untargeted

metabolomics data processing.

Targeted metabolomics has the less ambitious goal by

selectively measuring a set of known essential metabolites

from biologically relevant metabolic pathways (Patti et al.

2012; Dudley et al. 2010). Triple quadrupole mass spec-

trometry (QqQ-MS) based multiple reaction monitoring

(MRM) technique is widely used for targeted metabo-

lomics, because of its high selectivity and sensitivity, good

reproducibility and wide dynamic range in quantitative

analysis (Buescher et al. 2010; Kvitvang et al. 2011). MRM

technique has two stages of mass selection: the selection of

precursor ion in Q1 and its product ion in Q3. The ap-

propriate selection of the precursor ion-product ion pair,

referred as one MRM transition, representing a given

metabolite, enables the structure specific measurement of

the chosen metabolite. With the rapid development of

QqQ-MS, for example, faster scan speed, higher ionization

efficiency and ion transmission efficiency, it is now pos-

sible to simultaneously analyze hundreds of pre-selected

metabolites with no structural/identity ambiguity. The

ability of MRM based targeted metabolomics to generate

highly reproducible and quantitatively accurate data en-

ables hypothesis-driven metabolomics research. It allows

consistent analyses of a set of pre-selected metabolites in

different sample groups, and determines whether metabolic

pathways are affected by, for example, environmental

stimuli, treatment of drugs, or genetic alterations (Maz-

zarino et al. 2008; Locasale et al. 2012).

In recent years, many efforts were made to continuously

increase the number of metabolites that can be detected

with the MRM based technique. For example, in 2006,

Bajad et al. reported a HILIC-MS based MRM method that

can selectively measure up to 142 metabolites in total in

two positive and negative analyses (Bajad et al. 2006). The

run time for two analyses is around 90 min. The pre-

selected 142 metabolites cover about 25 % of the known

metabolome of bacteria Escherichia coli (E. coli). Later in

2010, Wei et al. developed a column switch method that

employed three different columns to separate and simul-

taneously detect 205 targeted metabolites in a 10-min run,

called multiplexed LC–MS–MRM method (Wei et al.

2010). Recently, a positive/negative polarity switching

targeted metabolomics method was demonstrated by Asara

et al., that 258 metabolites were measured in a single

15-min run. In all of these studies, one target metabolite

has only one characteristic MRM transition monitored to

increase the throughput in a single analysis (Yuan et al.

2012).

However, with[200 transitions that can be measured in

a single run, the complexity of MRM data acquired in one

experiment is no longer amenable to manual evaluation.

For example, a typical targeted metabolomic study consists

of tens to hundreds biological samples, and 100–500

transitions in each sample analysis. In addition to biolo-

gical samples, various types of quality control samples

such as internal standard test mixture and pooled biological

samples that used to assess the overall performance of in-

strument or data normalization are also necessary. Manual

verification of MRM dataset in a large scale is often la-

borious, erroneous and irreproducible (Reiter et al. 2011;

Tsugawa et al. 2013). Most manual data analysis is based

on ad hoc criteria, precluding the consistent data analysis

across multiple samples or different biological studies, and

lack of an objective and reproducible assessment of the

error rates of analyses. Therefore, efforts have been made

to automate MRM data processing in both proteomics and

metabolomics fields. Many programs for targeted pro-

teomics, such as Skyline (MacLean et al. 2010) and

mProphet (Reiter et al. 2011), have been well developed

and proven outperforming manual analyses. However, very

limited programs are readily available for targeted meta-

bolomics data analysis. Currently, MRM based targeted

metabolomics data is mainly processed using the quanti-

tative analysis software provided by instrument vendors,

such as MultiQuant from AB Sciex, MassHunter from

Agilent. Each MS vendor has its own software, and limits

to process the data acquired from instruments sold by the

specific vendor. The vendor software is primarily designed

for absolute quantitative analyses of chemical compounds,

for example, drugs and pesticides. Processing targeted

metabolomics data heavily relies on the manual verification

of boundaries of peak integration, signal interference, and

metabolite identification by well-trained analytical che-

mists. In addition, the peak alignment across multiple

samples is essential for metabolomics data analysis, but not

feasible with current vendor software.

The development of data processing software for high-

throughput MRM based targeted metabolomics largely lags

behind. Only a very few programs, such as MRMPROBS

(Tsugawa et al. 2013, 2014), MMSAT (Wong et al. 2012)

and MAVEN (Clasquin et al. 2012) have been developed to

process MRM data for targeted metabolomics. For exam-

ple, MRMPROBS requires at least two transitions for one

metabolite and retention time to construct probabilistic

scores for MRM transition grouping and metabolite iden-

tification. In most high-throughput targeted metabolomics

study, only one MRM transition per metabolite is mon-

itored in order to increase the throughput as much as

1576 Y. Cai et al.

123



possible in a single analysis, which makes data processing

not compatible with MRMPROBS. MMSAT is able to

detect MRM peak but lacks metabolite identification ca-

pability. The metabolite identification is still required by

manual verification after data processing, which is labori-

ous and often erroneous. Additionally, these programs lack

the capability to fully automatically process large scale

MRM dataset with thousands of MRM transitions and

various sample types.

In this work, we developed an integrated targeted

metabolomic platform for high-throughput metabolite

profiling and automated data processing. The platform

combines a well-designed targeted metabolomics assay and

an automated data processing R package, named as

MRMAnalyzer. We first developed a MRM based targeted

metabolomics method by combing hydrophilic interaction

liquid chromatography (HILIC) separation and positive/

negative polarity switching towards the detection of 182

polar metabolites in a single 15-min run. Further, we il-

lustrated the newly developed MRMAnalyzer program for

the automated MRM data processing including five steps

such as ‘‘pseudo’’ accurate m/z transformation, peak de-

tection and alignment, metabolite identification, quality

control check and statistical analysis (Fig. 1). Finally, a

targeted metabolomic assay was developed and integrated

with the MRMAnalyzer for automated data analysis to

study the metabolomic changes in E. coli under stress of

the protein expression.

2 Materials and methods

2.1 Chemicals

Chemical standards were all purchased from Sigma

Aldrich (St. Louis, MO, USA) and J&K Scientific (Beijing,

China). Ammonium acetate and ammonium hydroxide

were purchased from Fisher Scientific (Morris Plains, NJ,

USA). LC–MS grade water (H2O), methanol (MeOH) and

acetonitrile (ACN) were purchased from Honeywell

(Muskegon, MI, USA).

2.2 Metabolite extraction

The E. coli cell samples (OD600 nm = 1.0, 10 mL) and

human cell pellets (*106 HeLa cells) were extracted using

a MeOH:ACN:H2O (2:2:1, v/v) solvent mixture. A volume

of 1 mL of cold solvent was added to each cell pellet,

vortexed for 30 s and incubated in liquid nitrogen for

1 min. The samples were then allowed to thaw at room

temperature and sonicated for 10 min. This freeze–thaw

cycle was repeated three times in total. To precipitate

proteins, the samples were incubated for 1 h at -20 �C,
followed by 15 min centrifugation at 13,000 rpm and 4 �C.
The resulting supernatant was removed and evaporated to

dryness in a vacuum concentrator. The dry extracts were

then reconstituted in 100 lL of ACN:H2O (1:1, v/v),

sonicated for 10 min, and centrifuged 15 min at

13,000 rpm and 4 �C to remove insoluble debris. The su-

pernatants were transferred to HPLC vials and stored at

-80 �C prior to LC/MS analysis.

D. melanogaster (w5905 strain) lines were obtained from

the laboratory of Dr. Nan Liu (IRCBC, Chinese Academy

of Sciences, Shanghai, China). The whole body samples of

male flies aged 30 days were prepared by collecting ten

flies in an Eppendorf tube and plunging them into liquid

nitrogen. Then each fly sample was homogenized with 200

lL of H2O and five ceramic beads using the homogenizer

(Precellys 24, Bertin Technologies, France). Then 800 lL
ACN:MeOH (1:1, v/v) was added for metabolite extrac-

tion. The samples then vortexed for 30 s and sonicated for

10 min. The rest of the procedure was the same as de-

scribed for E. coli and human cell samples.

Human plasma samples (200 lL, Equitech-Bio. Inc,

USA) were extracted with 800 lL ACN:MeOH (1:1, v/v).

The samples then vortexed for 30 s and sonicated for

Fig. 1 The integrated targeted

metabolomic platform for high-

throughput metabolite profiling

and automated data processing

using the MRMAnalyzer

program
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10 min. The rest of the procedure was the same as de-

scribed for E. coli sample and human cells.

2.3 LC–MS/MS analysis

The LC–MS analysis were performed using an HPLC

system (1260 series, Agilent Technologies) coupled to a

triple quadrupole mass spectrometer (Agilent 6460 QqQ,

Agilent Technologies). Phenomenex Luna aminopropyl

column [particle size, 3 lm; 100 mm (length) 9 2.1 mm

(i.d.)] was chosen for its wide pH range (1.5–11.0) and

good stability in 100 % aqueous mobile phase and capa-

bility to strongly retain highly polar metabolites. The mo-

bile phase A = 25 mM ammonium acetate and 25 mM

ammonium hydroxide in 100 % water (pH *9.75), and

B = 100 % acetonitrile, were used for both in ESI positive

and negative modes. The linear gradient elutes from 85 to

75 % B (0–2 min), 75 to 0 % B (2–9 min), 0 % B

(9–14 min), 0 to 85 % B (14–15 min), then stays at 85 % B

for 5 min. The flow rate was 0.3 mL/min and the sample

injection volume was 6 lL. ESI source conditions were set
as followings: sheath gas temperature, 350 �C; dry gas

temperature, 350 �C; sheath gas flow, 11 L/min; dry gas

flow, 10 L/min; capillary voltage, 4000 V or -3500 V in

positive or negative modes, respectively; nozzle voltage,

500 V; and nebulizer pressure, 30 psi. For targeted meta-

bolomic analyses, 182 MRM transitions representing the

182 metabolites were simultaneously monitored, and the

positive/negative polarity switching was used. The dwell

time for each MRM transition is 3 ms, and the total cycle

time is 1.263 s.

To construct the metabolite MRM library, each

metabolite standard (100 lg/mL) was first analyzed both in

ESI positive and negative modes via flow injection using

the software MassHunter Optimizer (Agilent Technolo-

gies) to get the optimal MRM transition parameters, such

as ionization polarity, product ion, collision energy and

fragmentor voltage. Then the retention time (rtsingle) of

each metabolite was determined by measuring the corre-

sponding MRM transition individually on a Luna amino-

propyl column. The metabolite MRM library consists of

182 metabolites with metabolite name, ID, MRM transition

parameters and retention time (rtsingle). The related infor-

mation was summarized in Table S1 in the Supplementary

Information.

For targeted metabolomic analyses of the E. coli

metabolic response to protein expression, bacteria E. coli

(BL21 strain) were transfected with plasmid pET22b for

the a-synuclein expression. The samples were then divided

into 36 replicates. Half of the samples (n = 18) were

treated with IPTG (isopropyl-b-D-thiogalactoside, final

concentration = 0.2 mM) to induce the a-synuclein ex-

pression, and the other half (n = 18) were treated with

equal LB medium as controls. For each replicate, 10 mL

solution (OD600 nm = 1.0) was harvested for the metabolite

extraction. Pooled samples were also prepared by mixing

aliquots (5 lL) of each extracted sample. Before LC–MS/

MS analysis, retention time quality control sample (RTQC)

was prepared by mixing ten representative metabolites. The

retention times of the chosen metabolites distribute almost

equally in the 15-min LC run.

2.4 MRMAnalyzer data processing

MRMAnalyzer is developed using R scripts, and is pro-

vided in Supplementary Information. The format for MRM

raw data (.d files from Agilent data acquisition software

MassHunter B.06.00) were first converted to files in mzML

format using the ‘‘msconvert’’ program from ProteoWizard

(version 3.0.6526). Then the mzML files were converted

into text format files using the ‘‘mscat’’ program incorpo-

rated in ProteoWizard (version 3.0.6526) so that the data

can be loaded into R and processed by MRMAnalyzer. The

generated text format files contain four columns: transition

index, Q1 and Q3 specifications of MRM transitions, re-

tention time and intensity, respectively.

The MRM data processing using the MRMAnalyzer

includes five steps: ‘‘pseudo’’ accurate m/z transformation,

peak detection and alignment, metabolite identification,

quality control check and statistical analysis. First, the

whole MRM dataset (in text formats) was read into R and

transformed as ‘‘pseudo’’ high resolution data so that the

continuous wavelet transform (CWT) algorithm can be

used for peak detection. For this purpose, each data point in

one MRM (Q1/Q3) transition was assigned by a ‘‘pseudo’’

accurate m/z (i, i = 1.0000, 2.0000,…, or n, where n de-

notes the total number of transitions), thus the minimum

difference in m/z between these transitions is 1 Dalton and

mass accuracy within one transition is 0 ppm.

Secondly, CWT based peak detection algorithm (cen-

tWave) was used for MRM peak detection. CentWave al-

gorithm was first developed by Tautenhahn et al. (2008) for

peak detection using high resolution LC–MS data, and later

was incorporated into the popular, LC/MS data analysis

software, XCMS. CWT based peak detection algorithm

(centWave function) is chosen mainly for its robustness

against noise interferences. However, centWave function is

primarily designed to process high resolution MS data

only, because it relies on the detection of regions of interest

(ROI) where m/z data have deviations less than a certain

ppm (for example, 20 ppm for TOF data). Therefore, low

resolution MRM data must be converted to ‘‘pseudo’’ high

resolution data so it is compatible with CWT based peak

detection method. In MRMAnalyzer, centWave function

was slightly modified to fit MRM data processing.

Specifically, for manipulation of peaks in data processing
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steps, data in the ‘‘mz’’ column of detected peaks are

converted as integer type before returning. Two main pa-

rameters in MRMAnalyzer is ‘‘peakwidth’’ and ‘‘snthresh’’.

The parameter ‘‘peakwidth’’ for peak detection was set as

c(10, 200). The parameter ‘‘peakwidth’’ is the chromato-

graphic peak width, given as the range of minimum and

maximum values of peak width in seconds. Here in our

experiment, the peak widths of majority chromatographic

peaks are about 10–20 s. But some metabolites, for ex-

amples, choline and N-Acetylputrescine, the peak width

can be as large as 200 s. Thus we use the parameter

c(10,200) for peak detection. The default value of pa-

rameter ‘‘snthresh’’ is set as 3 to sensitive peak detection.

Retention time correction and peak alignment across dif-

ferent samples were achieved by modifying ordered bi-

jective interpolated warping (obiwarp) algorithm

previously developed by Prince et al. (2006). A standard

mixture sample (182STD_mix) that contains all of the 182

metabolites was measured together with biological samples

in each experiment, and was used as the reference sample

for peak alignment and metabolite identification. MRM

peaks detected in each biological sample were aligned to

their corresponding peaks in the 182STD_mix sample.

The identification of detected peak groups was achieved

by comparing the ‘‘pseudo’’ accurate m/z and retention

time between detected peak groups and the metabolite

MRM library. The ‘‘pseudo’’ m/z value must be exactly

matched (0 ppm error), and the retention time shift toler-

ance is set as 60 s. In most cases, one metabolite has either

no or one matched peak group in biological samples. If one

metabolite has multiple matched peak groups, the

metabolite ID is assigned to the peak group with the

highest intensity in reference sample (i.e.,182STD_mix).

The reference sample is carefully prepared and the con-

centration of each metabolite is optimized (Supplementary

Information Table 1) so that the most intensive peak in a

defined retention time region (rtsingle ± 60 s in our ex-

periment) is the target metabolite. Here is the protocol how

the reference sample (182STD_mix) has been thoroughly

optimized and prepared. First, roughly 200 metabolites

(2.5 lM each) were mixed as standard mixture sample and

measured. Then we manually checked (1) whether each

metabolite could be detected; and (2) whether the targeted

metabolite peak is the most intensive peak in a defined

retention time region (rtsingle ± 60 s). The results showed

that 182 standards out of 200 metabolites could be de-

tected, and 152 metabolites (2.5 lM each) have the most

intensive peaks in a defined retention time region (rtsingle ±

60 s). For the other 30 metabolites, we decreased the

concentrations of 3 metabolites with tailing chromato-

graphic peaks and intensive MS responses to 1 lM to re-

duce potential ion suppression effect. The concentrations of

the rest 27 metabolites were increased from 2.5 to

10–45 lM. The increased concentration ensures that the

targeted metabolite peak becomes the most intensive peak

in the defined retention time region (rtsingle ± 60 s). Fi-

nally, we prepared the reference sample (182STD_mix)

with optimized concentrations of each metabolite (Sup-

plementary Information Table 1), and each peak of 182

metabolites was manually re-checked to meet the prereq-

uisite that the most intensive peak in a defined retention

time region (rtsingle ± 60 s) is the target metabolite.

The quality control samples were processed together

with the biological samples. The allowable retention time

shift of metabolites in RTQC samples is 30 s compared to

the MRM library. Detected metabolites in pooled samples

with coefficient of variation (CV) less than 30 % were

denoted as reproducible measurements.

Finally, statistical analyses between two sample groups

were performed by calculating the fold changes and p val-

ues of metabolites. Welch t test with unequal variances was

used to obtain p values. Metabolites with p values\0.05,

fold changes [1.5, were marked as the significantly

changed metabolites between sample groups. The quanti-

tative and qualitative information of detected metabolites

was output as an excel file for pathway analysis using tools

such as MetaboAnalyst.

3 Results and discussion

3.1 LC–MS/MS method for targeted detection

of 182 metabolites

We have developed a targeted metabolomics method based

on HILIC-MS for the quantitative detection of 182 polar

metabolites with good reproducibility and sensitivity. The

metabolite library including metabolite name, formula,

KEGG ID, MRM transitions, retention time and other in-

formation is listed in Table 1 in the Supplementary Infor-

mation. The 182 polar metabolites in our analysis are

selected for their significant biological functions, covering

32 KEGG metabolic pathways (Supplementary Informa-

tion Table 2). MRM transition for each metabolite was

optimized in both positive and negative modes to decide

ionization polarity, select the product ion monitored in Q3,

and choose optimized collision energy and fragmentor

voltage (Supplementary Information Table 1). The opti-

mized parameters like collision energy and fragmentor

voltage are unique to the specific instrument employed and

the MS parameters should be re-optimized when transfer-

ring the method to another QqQ instrument from different

vendors. Potential interference between MRM transitions

was taken into consideration when selecting a product ion

(Q3 ion). For example, citric acid and isocitric acid have

the same formula and molecular weight and cannot be
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chromatographically separated from each other, so the

characteristic product ions of m/z 87.0 and m/z 73.0 were

chosen as the targeted product ions of citric acid and

isocitric acid, respectively. However, isomeric metabolites

such as fumaric acid and maleic acid, glucose-6-phosphate

and fructose-6-phosphate that cannot be differentiated by

either retention time or product ions, are labeled as one

metabolite (i.e., ‘‘Fumaric acid/Maleic acid’’) in our list.

Positive/negative polarity switching technique is used to

increase the MS detection throughput. In the developed

method, 125 positive transitions and 57 negative transitions

are simultaneously detected in one experiment. The HILIC

separation gradient was optimized using a standard mixture

sample that contains all of the 182 metabolites (referred

as182STD_mix) and tries to separate all metabolites as

much as possible in 15 min (Fig. 2a). For each metabolite,

the retention time is also individually measured, and

marked as rtsingle in the metabolite library for identification

purpose.

3.2 MRMAnalyzer for targeted metabolomics data

processing

MRMAnalyzer package is developed under the R pro-

gramming environment. As illustrated in Fig. 1, the data

processing steps for MRMAnalyzer include ‘‘pseudo’’ ac-

curate m/z transformation, peak detection and alignment,

metabolite identification, quality control check and statis-

tical analysis.

Fig. 2 a Overlapped extracted

ion chromatographs (EICs) for

the 182 metabolites in the

182STD_mix sample. The peak

intensity was normalized to

100 % for each peak. b MRM

data transformation: each MRM

transition (Q1/Q3) is assigned

by a ‘‘pseudo’’ accurate m/z

value ranging from 1.0000 to

182.0000. Peak detection was

operated on each ‘‘pseudo’’

accurate m/z channel using

continuous wavelet transform

based centWave algorithm

1580 Y. Cai et al.

123



At first, the low mass resolution MRM data were

transformed to ‘‘pseudo’’ high mass resolution data so that

CWT based peak detection algorithm can be utilized for

MRM data analysis. The MRM data acquired by QqQ-MS

consist of MRM transition index, retention time and ion

intensity. Aligning all the MRM transitions together forms

a set of 3-dimensional data that consists of MRM transi-

tions, retention time and ion intensity, which is very

similar to high mass resolution data acquired by TOF and

Orbitrap instruments. Inspired by this, here, we introduced

the concept of ‘‘pseudo’’ accurate m/z to convert the MRM

data into the format of high mass resolution data (Fig. 2b).

Each MRM transition (Q1/Q3) is assigned by a ‘‘pseudo’’

accurate m/z value corresponding to one specific metabo-

lite. In our work, 182 MRM transitions were assigned by

the ‘‘pseudo’’ m/z values ranging from 1.0000 to 182.0000.

The minimum difference in m/z between transitions is 1

Dalton and mass accuracy within one transition is 0 ppm.

The integer ‘‘pseudo’’ accurate m/z values used in this

manuscript can be exchanged by other numerical values

such as 0.1000, 0.2000,…,n. But it should be noted that

‘‘pseudo’’ accurate m/z values representing different MRM

transitions must be different values. The new 3-dimen-

sional dataset that consists of ‘‘pseudo’’ accurate m/z, re-

tention time and ion intensity could represent the original

MRM data, and is also compatible with CWT based peak

detection method. More important, the data transformation

principle demonstrated here ensures that our MRMA-

nalyzer program can process MRM data acquired from any

QqQ-MS instrument or under any experimental conditions.

After MRM data transformation, peak detection was

operated on each ‘‘pseudo’’ accurate m/z channel using a

recently introduced CWT based peak detection algorithm

(centWave, Fig. 2b). centWave algorithm was first devel-

oped by Tautenhahn et al. (2008) and requires high

resolution LC–MS data. We chose centWave algorithm for

peak detection mainly for its robustness against noise in-

terferences. The results show that multiple peaks are

readily detected in each transition for the real biological

samples. Taken one E. coli sample as an example, as many

as 2046 peaks were detected in 182 MRM transitions,

ranging from 0 to 39 peaks per MRM transition (Supple-

mentary Information Fig. 1). Among these transitions, 29

of 182 transitions have no peak detection. However,

the majority of transitions have more than one peak de-

tected, highlighting the sensitivity of peak detection

algorithm.

Later, peak alignment and grouping were performed

across multiple biological samples. A mixture of 182

metabolite standards (referred as 182STD_mix) was mea-

sured together with biological samples, and used as the

reference sample for retention time correction and peak

alignment (Fig. 3a). MRM peaks detected in each

biological sample were aligned to their corresponding

peaks in 182STD_mix sample (Fig. 3b). Therefore, each

peak group consists one peak from 182STD_mix sample

and multiple MRM peaks detected from biological sam-

ples. The detected 182STD_mix peak is used for identifi-

cation purpose while the MRM peaks in biological samples

are used for quantitative and statistical analyses. After peak

alignment and peak grouping, most interference peaks in

biological samples are removed. Only 795 MRM peak

groups were detected in E. coli bacteria samples, ranging

from 0 to 22 peak groups per transition (Supplementary

Information Fig. 2). Among the 182 MRM transitions, 17

transitions have no peak group detection, 38 transitions

have one peak group detected, and the rest 127 transitions

have more than one peak group detected.

Finally, the metabolite identification step is followed by

matching the metabolite in the metabolite library to the

detected 795 MRM peak groups. The metabolite library

consists of metabolite name, MRM transitions and corre-

sponding ‘‘pseudo’’ accurate m/z values, and retention time

(Supplementary Information Table 1). The ‘‘pseudo’’ ac-

curate m/z value must be exactly matched (0 ppm error),

while the retention time shift tolerance is set as rtsingle ±

60 s (Fig. 4a). For the 18 replicates of bacteria samples

mentioned above, 45 out of 182 metabolites has no mat-

ched peak groups, therefore these metabolites are not de-

tected in these biological samples. The other 137

metabolites have at least one matched groups. Then the

metabolite is assigned to the peak group with highest MRM

peak intensity detected in the reference sample (i.e.,

182STD_mix). As a result, 137 metabolites were identified

in the 18 replicates of E. coli samples (Fig. 4b). Peak

groups having no matched metabolites are signal interfer-

ences in the biological samples. This metabolite identifi-

cation procedure requires a prerequisite that the most

intensive MRM peak in a defined retention time region

(rtsingle ± 60 s) in the 182STD_mix reference sample is the

target metabolite. During the preparation of 182STD_mix

sample, the concentration of each metabolite is compre-

hensively optimized and manually inspected to satisfy this

prerequisite (see Sect. 2). The accurate assignment of

metabolite ID to the peaks detected in reference sample

was achieved by comparing the detected peaks in reference

sample with the MRM peaks measured in single metabolite

standard, and at least two qualifier transitions per single

standard have been monitored to get the reliable assign-

ment. As shown in Fig. 4a, there are interference peaks

detected in biological samples (RT = 725 s, black lines).

However, no corresponding peak detected in reference

sample (182STD_mix). Next, the developed targeted

metabolomics method and the MRMAnalyzer data pro-

cessing workflow was applied on the targeted analyses of

four different types of biological samples, including
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bacteria (E. coli), fruit fly (D. melanogaster), human cell

lines (HeLa cells) and human plasma, and 115–139

metabolites were detected in different biological samples

(Fig. 4b). The results demonstrated that the technique can

be used to profile a variety of biological samples with

different metabolite coverage.

In this work, the incorporation of 182STD_mix used as

the reference sample for peak alignment and metabolite

identification can largely reduce the laborious work and

errors on metabolite identification compared with manual

verification. For example, the ‘‘Find by MRM’’ function in

MassHunter software (version B.06.00) is the most popular

way to extract and identify MRM peaks across multiple

samples in targeted metabolomics. But there are issues with

MassHunter software (or other vendor software) that pre-

clude the consistent and automated data analysis of large

scale datasets across multiple samples or different biolo-

gical studies. For example, in MRM-based targeted meta-

bolomics, more than one peak are often observed in one

MRM transition across the chromatograph (Supplementary

Information Fig. 3a). As illustrated in Supplementary In-

formation Fig. 3a, using the ‘‘Find by MRM’’ function in

MassHunter, the targeted metabolite ID was by default

assigned to the most abundant peak in the MRM transition

across the chromatograph. As a result, metabolite GDP

(guanosine diphosphate, Q1/Q3 = 444.1/152.1) was as-

signed to the most abundant peak (RT = 740 s) in one

sample, while assigned to another abundant peak

(RT = 610 s) in another sample, generating inconsistent

data analyses. In reality, the examples given in Supple-

mentary Information Fig. 3 happen quite often due to un-

expected interferences and complexity of biological

Fig. 3 a Retention time

correction based on the

reference sample

(182STD_mix). A mixture of

182 metabolite standards

(182STD_mix) was measured

together with E. Coli samples

and used as the reference

sample for retention time

correction (dash line). b MRM

peak alignment and grouping

using the reference sample

(182STD_mix). A set of MRM

peaks detected in E. coli

samples (pseudo accurate m/z:

153.000) are aligned to the

corresponding MRM peak

observed in the reference

sample (182STD_mix). Each

peak group consists one peak

from 182STD_mix sample and

multiple MRM peaks detected

from biological samples

(n = 18)
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samples. To solve this issue, one can manually verify re-

tention times of each detected peak to correct the wrong

assignments, but it is too laborious for a large scale dataset.

Our MRMAnalyzer program readily solves this issue

through peak alignment. All MRM peaks detected in each

biological sample were aligned to their corresponding

peaks in reference sample (182STD_mix). As shown in

Fig. 3b (Supplementary Information), the MRM peaks at

740 s in different samples were successfully aligned to the

standard MRM peak in reference sample (182STD_mix),

and subsequently identified as GDP. The interference peak

at 610 s has no corresponding peak in reference sample,

therefore discarded as interferences by the program.

Sometimes manual verification based on retention time is

not reliable due to non-linear and irreproducible shift of

retention time across different samples. As illustrated in

Fig. 4 (Supplementary Information), two MRM peaks were

detected in one transition channel (Q1/Q3 = 176.2/70.2)

within retention time rtsingle ± 60 s. The targeted metabo-

lite citrulline has a retention time of 376 s in RT library.

During manual analysis, the interference peak group 1 with

higher intensity and smaller retention time shift (4 s com-

pared to RT library) is usually mistakenly assigned as

citrulline. With the incorporation of reference sample

(182STD_mix) for peak alignment and identification, the

interference peaks (peak group 1) in biological samples are

removed after peak alignment, and the less abundant peaks

(peak group 2) were correctly identified as citrulline. Each

metabolite peak in reference sample was carefully manually

verified during method development and optimization to

ensure 100 % accuracy of identification. Therefore, our

program can readily process large scale of MRM dataset in

an effective way and ensure that the detected peaks are

identified accurately. However, the low abundant peaks are

still suggested to be further verified manually for accurate

peak integration, and a more interactive program interface

will be more helpful and will allow users to manually verify

the peak integration in the future.

3.3 Targeted metabolomic assay for metabolic

profiling

We developed a targeted metabolomic assay that combines

high-throughput metabolite profiling and automated data

processing using MRMAnalyzer, and demonstrated its

utility for metabolite profiling of large sets of biological

samples. Several quality control features are incorporated

with the assay and compatible with MRMAnalyzer pro-

gram for data analysis. We performed the targeted meta-

bolomic analyses of E. coli subjected to the expression of

a-synuclein protein. a-synuclein, an abundant and con-

served presynaptic brain protein, is implicated as a critical

factor in Parkinson’s disease (PD) (Mezey et al. 1998).

Two groups of bacteria samples, with and without the ex-

pression of a-synuclein, were analyzed and each group has

18 biological replicates as a demonstration.

The targeted metabolomic assay was designed as shown

in Fig. 5. Pooled samples were prepared by mixing aliquots

of all the biological samples, and used as quality control

(QC) samples to evaluate the stability and reproducibility of

the instrument. At the beginning of a batch, three pooled

samples are used for column conditioning, and the pooled

Fig. 4 a The metabolite

identification using

MRMAnalyzer: each of the 182

metabolites in MRM library was

matched to the detected peak

groups by comparing their

‘‘pseudo’’ accurate m/z value

and retention time. The

‘‘pseudo’’ accurate m/z value

tolerance is set as 0 ppm, and

the retention time shift tolerance

is set as 60 s. b The number of

metabolites detected in D.

melanogaster, bacteria E. coli,

HeLa cells, and human plasma

samples using the developed

targeted metabolomic method

combined with the

MRMAnalyzer data processing
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samples are injected at a regular interval (every nine sam-

ples) throughout the assay analysis. After pooled samples, a

retention time quality control (RTQC) sample is introduced

to ensure that the retention time shift is within 30 s com-

pared to the metabolite library. The RTQC sample contains

ten metabolites, and the retention time of each metabolite

distributes almost equally in the 15-min LC run (Supple-

mentary Information Fig. 5). If retention time shifts more

than 30 s, the metabolite identification may fail during data

processing. In our bacteria analyses (roughly 22 h in total),

the retention time shift is within 10 s compared to the MRM

library (Supplementary Information Fig. 6). The RTQC

samples were analyzed three times at the beginning, in the

middle, and at the end of a batch, respectively. A

182STD_mix reference sample is analyzed once in the

middle of the batch, and used as reference for peak align-

ment and metabolite identification. In addition, all biolo-

gical samples were randomized and placed into the run

sequence that helps to eliminate the viability in analysis

caused by the run order. The MRMAnalyzer program is

capable to automatically and simultaneously process RTQC

samples, pooled samples and 182STD_mix reference sam-

ple and ensures passing requirements on quality control

before processing the biological sample data. The pro-

cessing of the whole MRM dataset that consists of 36 bio-

logical samples, five pooled samples, three RTQCs, and one

182STD_mix (more than 8000 MRM transitions in total)

using the MRMAnalyzer program takes less than 20 min.

All acquired MRM data were converted and analyzed

by MRMAnalyzer program, and results were summarized

in Fig. 5b. 140 metabolites were detected in the E. coli

metabolome with our targeted metabolomic method. For

each of detected metabolite, the quantitative and

qualitative information was output as an excel file

(Supplementary Information Table 3). The quantitative

information includes metabolite intensity in each sample,

fold change, and p value between two groups, while the

qualitative information includes metabolite name, KEGG

ID, and HMDB ID. 47 of 140 metabolites were deter-

mined as significantly changed with p value less than

0.05 and fold change higher than 1.5. The other detected

93 metabolites remain unaffected by the protein expres-

sion. The significantly changed 47 metabolites were

further submitted to pathway enrichment analysis using

MetaboAnalyst (Xia et al. 2009; Xia and Wishart 2011).

The enrichment analysis demonstrated that six pathways

including pyrimidine metabolism, protein biosynthesis,

and citric acid cycle are significantly affected by the

expression of a-synuclein (p\ 0.05) in E. coli meta-

balome (Supplementary Information Table 4). Protein

biosynthesis related that metabolites such as lysine,

arginine and histidine are up-regulated with the expres-

sion of a-synuclein. Energy metabolism related metabo-

lites in citric acid cycle pathway such as NADH and

succinic acid were also up-regulated with the expression

of a-synuclein.

Fig. 5 Targeted metabolomic analysis of E. coli metabolome

changes in response to protein a-synuclein expression. a Run order

sequence for the designed targeted metabolomic assay. b 140

metabolites were detected in E. coli samples. 47 metabolites were

significantly changed with the expression of a-synuclein (p val-

ue\ 0.05, and fold change [1.5). Six metabolic pathways are

significantly affected by the expression of a-synuclein
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4 Concluding remarks

In summary, we developed a targeted metabolomic plat-

form for the quantitative detection of 182 polar metabolites

in a single 15-min LC–MS/MS run, and demonstrated an R

package, MRMAnalyzer for the automated data processing.

The MRMAnalyzer program can quantitatively detect and

identify metabolites from the low resolution MRM data

through five processing steps, including ‘‘pseudo’’ accurate

m/z transformation, peak detection and alignment,

metabolite identification, quality control check and statis-

tical analysis. The data transformation strategy by assigning

each MRM transition to a ‘‘pseudo’’ accurate m/z ensures

that the MRMAnalyzer program can process MRM data

acquired from any QqQ-MS instrument or any experimental

condition. Further, a reference sample that contains all the

targeted 182 metabolites was measured together with bio-

logical samples and used for peak alignment and metabolite

identification, that can effectively reduce the laborious work

and errors on metabolite identification compared with

manual verification. Finally, a well-designed targeted

metabolomics assay that consists of retention time quality

control samples (RTQC), quality control pooled samples,

and biological samples was integrated with the MRMA-

nalyzer program, and applied to characterize the metabolic

changes in bacteria E. coli under the stress of protein ex-

pression. In conclusion, the developed MRMAnalyzer

program could automatically and efficiently process large

scale MRM dataset, and is capable to find dysregulated

metabolites and related metabolic pathways. We hope it is a

valuable tool for researchers to facilitate the respective

biological studies using targeted metabolomics.
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