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Abstract The liver is an active organ in energy meta-

bolism, and hepatocellular carcinomas (HCC) therefore

unavoidably induce a series of metabolic alterations in the

serum metabolome. In this study, 587 sera from HCC pa-

tients, hepatitis B virus (HBV) infected subjects and

healthy control subjects were employed to characterize

metabolic alterations using a liquid chromatography tan-

dem mass spectrometry-based metabolomics approach. D-

Galactose significantly increased whereas undecanoyl-L-

carnitine and PE (P-18:0/0:0) decreased in HCC patients

when compared with non-HCC controls (HBVs and NCs).

These metabolites were finally identified as independent

diagnostic factors for HCC discrimination. The combina-

tion of discriminative metabolites and alpha-fetoprotein

could also significantly improve the diagnostic perfor-

mance for HCC in terms of the sensitivity, specificity and

area under the curve of the receiver operating characteristic

curve; these three parameters displayed values of 0.96, 0.92

and 0.98, respectively. Furthermore, network and pathway

analyses were conducted to explore the latent relationship

among differential metabolites. In the network analysis,

metabolites of diverse categories (including amino acids,

dipeptides, phospholipids, fatty acids, steroids and acyl-

carnitines) reflected the correlation between metabolite

categories on material and energy conversion in HCC.

Meanwhile, metabolites mapped in the pathways for pri-

mary bile acid biosynthesis and alanine, aspartate and

glutamate metabolism revealed a centrality and significant

variances. These results indicated that substantial bio-

chemical perturbations occurred in these pathways in HCC

patients. In summary, our study revealed the systematic

landscape for metabolic alterations in the serum of HCC

patients and provides useful information to clinicians and

biologists.
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Abbreviations

UPLC Ultra-performance liquid chromatography

MS Mass spectrometry

TOF Time-of-flight

NMR Nuclear magnetic resonance spectroscopy

HCC Hepatocellular carcinoma

HBV Hepatitis B virus

AFP a-Fetoprotein
ROC Receiver operating characteristic

AUC Area under the curve

PCA Principle component analysis

HCA Hierarchical cluster analysis

PLS-DA Partial least square discriminant analysis
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OPLS-DA Orthogonal projection to latent structures

discriminant analysis

RF Random forest

VIM Variable importance

QC Quality control

RT Retention time

m/z Mass-to-charge ratio

ALT Alanine aminotransferase

AST Asparate aminotransferase

BPC Basic peak chromatogram

TNM Tumor node metastasis

GLS Glutaminase

ROS Reactive oxygen species

PC Phosphatidylcholine

PE Phosphatidylethanolamine

LPC Lysophosphatidylcholine

LPE Lysophosphatidylethanolamine

FA Fatty acid

DP Dipeptide

ST Sterol lipid

AA Amino acid

Se Sensitivity

Sp Specificity

1 Introduction

The liver is active in cellular metabolism and plays im-

portant roles in metabolic processes involving amino acids,

carbohydrates, lipids and energy metabolism for main-

taining vital activities (Anis and Irshad 2011). The liver is

the largest exocrine gland; therefore, liver related diseases

frequently trigger various alterations in bio-fluids, notably

in the serum. Compared with other cancers, hepatocellular

carcinoma (HCC) will therefore induce a series of more

complicated metabolic changes, which could be partially

reflected in the serum metabolome (Marquardt et al. 2012).

Emerging omics technologies have been rapidly developed

during over the last few decades spanning from gene to

metabolite levels. These technologies allow for the search of

differential biomolecules for the diagnosis of and the expla-

nation of diseases (Slany et al. 2013; Uto et al. 2010). Newly

developed metabolomics could provide a tool for the

monitoring of the progression of a disease and a language for

interpreting the variation of upstream molecules (Nicholson

et al. 1999). In recent years, several metabolomic studies have

been performed to profile diseases, and these studies con-

tributed to biomarker discovery and mechanism exploration.

Montuschi et al. successfully discriminated between patients

with unstable cystic fibrosis (CF), stable CF and healthy

subjects by charactering the metabolic profiles of exhaled

breath condensate using high-resolution nuclear magnetic

resonance spectroscopy (NMR). (Montuschi et al. 2012;

Motta et al. 2012). For metabolomics-based HCC profiling,

Xu and colleagues established an integrated platform for both

serum and tissue analysis and further investigated the feasi-

bility of potential metabolite biomarkers by using multi-

chromatography coupled high-resolution mass spectrometry,

(Huang et al. 2013a; Zeng et al. 2014; Chen et al. 2013a).

Diren et al. presented a combined metabolomics and tran-

scriptomics study to profile a dynamic description of the

aberrant energy metabolism in HCC (Beyoglu et al. 2013).

However, because of the lack of a systematic evaluation of the

clinical covariate factors and in-depth understanding of the

associated mechanism, applications of these methods in

clinical diagnosis and theoretical recognition are limited.

Thus, a comprehensive characterization and evaluation of

HCC will assist in the understanding of pathophysiologic

processes and in the discovery of discriminative biomolecules

for HCC diagnosis and individual-based treatment.

In this study, we obtained the metabolomic data based on

the high-throughput UPLC/Q-TOF MS for 587 serum sam-

ples from HCC patients, HBV subjects and normal controls

(NCs). Both an unsupervised method (principal component

analysis, PCA) and a supervised method (partial least square

discriminant analysis, PLS-DA)were employed to reveal the

global metabolic changes in HCC, HBV and NC. Univariate

and multivariate analyses were used to select the differential

metabolites. To eliminate the potential effect of covariate

factors, a multivariate logistic regression was performed

with a covariate adjustment for gender, age and liver function

status. The differential metabolites, which had independent

predictive capacities for HCC discrimination alone or com-

bined with AFP, could be determined as potentially dis-

criminative metabolites. Therefore, three discriminative

metabolites [D-galactose (Sac_1), undecanoyl-L-carnitine

(C11) and PE(P-18:0/0:0)] were determined to be indepen-

dent predictors for HCC diagnosis. To illustrate the rela-

tionship between the differential metabolites in HCC,

correlation network and pathway analysis were both per-

formed. Abnormal changes in the metabolites mapped in the

acylcarnitine network and to the pathway for the primary bile

acid biosynthesis displayed particular perturbations in ma-

terial and energy metabolism in HCC patients.

2 Materials and methods

2.1 Chemicals and reagents

HPLC grade acetonitrile, methanol and formic acid were

purchased from Sigma-Aldrich and Fluka (St. Louis, MO,

USA); deionized water was produced by a Milli-Q ultra-

pure water system (Millipore, Billerica, USA). D-Galac-

tose, succinic acid, taurine, DL-kynurenine, 3-indolelactic
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acid and LysoPC(16:0) were also purchased from Sigma-

Aldrich. All other standard compounds were supplied by

AMRESCO (Rd. Cochran Solon, OH, USA).

2.2 Clinical samples

A total of 587 serum samples were collected from 267 HCC

patients, 48 HBV subjects and 272 normal controls (NC).

HCC patient samples were collected and pathologically

confirmed in the Affiliated Tumor Hospital at the Harbin

Medical University; other non-HCC samples originated

from individuals receiving regular physical examinations at

theAffiliatedHospital of Harbin Institute of Technology. All

enrolled samples received a liver function test and were

collected between December 2008 and July 2010. Alanine

aminotransferase (ALT) and aspartate aminotransferase

(AST) simultaneously served as criteria to estimate the liver

function status. A serum concentration of[200 ng/mL was

considered as the cut-off for discriminating HCC patients

(AFP-positive) (Bruix et al. 2005). All samples were divided

into a training set and validation set according to the time

sequence. The training set consisted of 47 HCC patients, 48

HBVpatients and 48 normal controls, whereas the remaining

444 samples and additional 32 pairs of postoperative samples

were assigned to the validation set. This study was approved

by the ethical committees at the Affiliated Tumor Hospital in

the HarbinMedical University and the Affiliated Hospital of

Harbin Institute of Technology, respectively. The demo-

graphic and clinical characteristics of the subjects are pre-

sented in Table 1.

2.3 Sample preparation

After a 12-h fast, whole blood samples were collected with

non-anticoagulant vacuum tubes; these samples were then

centrifuged at 40009g to separate the serum. The isolated

sera were then stored at -80 �C until preparation. Prior to

preparation, quality control samples (QCs) were prepared

by mixing equal aliquots of supernatant from all of the

samples in the identical corresponding dataset (i.e., training

set or validation set).

The sample preparation followed a modified protocol as

previously described (Bruce et al. 2009). In brief, a volume

of 300 ll pre-cooled mixture of methanol/acetonitrile (1:1)

was added to 100 ll serum for protein precipitation. Fi-

nally, the dried residue obtained after rotating-vacuuming

was stored at -80 �C until analysis.

2.4 UPLC-Q/TOF MS analysis

In total, 100 ll of 50 % methanol was used for re-dis-

solving, and 5 ll of the supernatant was injected into a

BEH C18 2.1 mm 9 100 mm, 1.7 lm column (Waters,

Milford, USA) on a ultra-performance liquid chromatog-

raphy (UPLC) system (Waters, Milford, USA). The mobile

phase consisted of acetonitrile containing 0.1 % formic

acid for canal A and deionized water containing 0.1 %

formic acid for canal B. To avoid insufficient nebulization,

the flow rate was set at 0.35 mL/min with a column tem-

perature of 40 �C. A linear gradient for elution was set as

follows: 1 % A for 0–0.5 min, 1–53 % A for 0.5–3.5 min,

53–70 % A for 3.5–7.5 min, 70–90 % A for 7.5–9 min,

and then maintained at 90 % A for 9–13 min followed by

alternating the gradient back to 1 % A from 13.1 to 15 min.

To ensure stability during analysis, samples for quality

control were analyzed at the beginning and the end of each

running batch.

The MS acquisition and MS/MS identification were both

performed in the positive and negative mode with a 6520

series accurate quadrupole time-of-flight mass spec-

trometer (Q-TOF MS) equipped with a dual electrospray

ion source (Agilent, Santa Clara, CA, USA). The pa-

rameters for the acquisition were set as follows: the cap-

illary voltage was set at 4 and 3.5 kV in the positive and

negative mode, respectively; the gas temperature was

330 �C with a flow rate of 10 L/min; and the fragmentor

and skimmer were maintained at 100 and 65 V, respec-

tively. The mass range was from 70 to 1100 m/z with a

scan rate of 1.5 spectra/s.

2.5 Data preprocessing

The data preprocessing, including the peak filtering, re-

tention time (RT) correction, feature alignment and nor-

malization, were performed in the R-project platform using

the xcms package. The bandwidth was set at 15 s

(bw = 15), and the peak width ranged from 5 to 30 s. The

defaults were adopted for the other parameters.

2.6 Statistical analysis

Both a PCA and PLS-DA were conducted to reveal the

global metabolic profiles of HCC patients, HBV subjects

and NCs. To avoid overfitting, cross-validation was used to

certify the stability and credibility of the PLS-DA models

(Wiklund et al. 2007). Furthermore, we performed a uni-

variate nonparametric Kruskal–Wallis rank sum test and

designed a multivariate random forest (RF) model to select

the potential differential metabolites according to the cri-

teria of p\ 0.05 and VIM[ 1 (Huang et al. 2013b). An

hierarchical cluster analysis (HCA) was applied to visual-

ize the changes in the concentration levels of these

metabolites in a heatmap. Multivariate logistic regression

was used to evaluate whether the differential metabolites

were the independent factors of the HCC diagnosis. The

area under the receiver operating characteristics curve
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(AUC) was determined to evaluate the predictive power of

the discriminative metabolites alone and together with AFP

for HCC diagnosis. To further illustrate the latent rela-

tionship between the differential metabolites in HCC, a

correlation network was designed and a pathway analysis

was performed.

The PCA, PLS-DA and cross-validation were performed

using SIMCA-p v.11.5 (Umetrics AB, Umea, Sweden).

HCA and pathway analysis were conducted in MetaboA-

nalyst (http://www.metaboanalyst.ca/MetaboAnalyst/). The

correlation network was constructed with Cytoscape

v.3.1.0 (www.cytoscape.org) (Herrgard et al. 2008; Klamt

et al. 2007). All other analyses and visualizations were

performed using the R platform (Zhang et al. 2013).

2.7 Metabolite identification

The structural information of differential metabolites, in-

cluding the RT, m/z and MS/MS spectrum, were well mat-

ched with those of authentic standards or confirmed

spectrums in the Human Metabolome Database (HMDB,

http://www.hmdb.ca/), Metabolite and Tandem MS Data-

base (METLIN, http://metlin.scripps.edu/index.php) or

Mass Bank Database (http://www.massbank.jp/).

3 Results

3.1 Metabolic profiling of HCC, HBV and NC

In the present study, all 587 serum samples attributed to the

training set and validation set were analyzed using UPLC/

Q-TOF MS. The workflow for the metabolomic data ana-

lysis is presented in Fig. 1. Because of a large proportion of

HBV infections in the recruited HCC patients, we com-

bined the HBV subjects and normal controls together as the

non-HCC controls in the training set to eliminate the latent

influence of HBV infection. The typical basic peak chro-

matograms (BPC) of the HCC, HBV and NC group in both

the positive and negative mode are shown in Fig. S1.

The three-dimensional PCA score plot for subjects in the

training set is shown in Fig. 2a, displaying no obvious

outliers in these subjects. The PLS-DA score plot (Fig. 2b)

indicated that HCC patients, HBVs and NCs could be

separated from each other. Notably, HCC patients were far

away from the two non-HCC controls (HBV and NC),

whereas HBVs were located close to NCs. No obvious

over-fitting was observed in the permutation test (Fig. 2c).

Thus, this analysis suggested no obvious differences in the

serum metabolic profiles between the HCC and two control

Table 1 Demographic and clinical characteristics of the subjects in the training set and validation set

Charactertics Training dataset Validation samples Post-operative (n = 32)

HCC (n = 47) HBV (n = 48) NC (n = 48) HCC (n = 220) NC (n = 224)

Age

B40 7 9 14 24 28 1

41–50 13 18 19 60 63 9

51–60 17 14 12 79 78 15

C61 10 7 1 57 55 7

Gender

Male 38 37 28 166 170 26

Female 10 11 20 54 54 6

Stage

I 37 – – 58 – 19

II 2 – – 11 – 3

III 1 – – 17 – 3

Unknown 7 – – 134 – 7

Differentiation

1 11 – – 25 – 6

2 7 – – 32 – 13

3 4 – – 26 – 12

Unknown 25 – – 137 – 1

AFP

B200 30 – – 76 – 18

[200 9 – – 122 – 6

Unknown 8 – – 22 – 8
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groups were noted, and the metabolic profiles of the two

control groups were similar to each other.

3.2 Selection and identification of differential

metabolites

To further explore the differential metabolites responsible

for the differences in the metabolic profile between HCC

and non-HCC controls, a univariate Kruskal–Wallis rank

sum test and multivariate random forest were used to

obtain the differential metabolites with the criteria of

p\ 0.05 and VIM[ 1. In total, 35 differential metabolites

in the positive ion mode (ESI?) and 54 in negative ion

mode (ESI-) were selected as differential metabolites and

are listed in Table S1.

The HCA-heatmap for all the differential metabolites

and box plots of the 16 most significant metabolites (8 up-

regulated in HCC and 8 down-regulated) are presented in

Fig. 3. To be specific, D-galactose (Sac_1), taurocholate

(ST_1), taurochenodeoxycholate (ST_2), glycocholate

Fig. 1 The workflow of the

metabolomic data analysis

Fig. 2 Three-dimensional score

plots for the PCA (a) and PLS-

DA model (b) to discriminate

HCC (n = 47) from HBV

(n = 48) and NC (n = 48) in

the training set; and the cross-

validation plot obtained from

100 permutation tests (c)
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(ST_3), taurine (OA_3), L-glutamate (AA_15), hexade-

cenoyl-L-carnitine (C16:1), and (R)-3-hydroxy-hexade-

canoic acid (FA_11) increased in HCC patients whereas

undecanoyl-L-carnitine (C11), PE(P-18:0/0:0) (PE_2), b-
aspartyl-phenylalanine (DP_5), phenylalanyl-phenylala-

nine (DP_6), chenodeoxycholate (ST_8), LTB4 (FA_7),

L-glutamine (AA_2), and PC(16:1(9Z)/2:0) (PC_7) de-

creased. In the HCA-heatmap diagram, the HCC observa-

tions were completely separated from the non-HCC control

groups. Additionally, the HBV subjects were found to be

generally scattered next to NCs. This organization was

similar to the grouping patterns shown in the PLS-DA

score plot. The Euclidean distances among the three groups

also displayed substantial differences in the metabolic

profiles between the HCC and non-HCC controls and a

similarity between HBVs and NCs. The details of the

structural information of the identified differential

metabolites are given in Fig. S2.

3.3 Verification of discriminative metabolites

To obtain the discriminative metabolites with satisfactory

predictive performances alone or combined with AFP (a

biomarker commonly used in the clinical diagnosis of

HCC), we followed the criteria for discriminative

metabolite determination from differential metabolites: (1)

employing a multivariate logistic regression adjusting for

gender, age and liver function; (2) displaying a p value of

the correlation coefficient with AFP smaller than 0.15

based on a Pearson correlation analysis (Huang et al.

2013a); (3) displaying a univariate AUC larger than 0.8 in

the discrimination between HCC and NC (El Khouli et al.

2009; Wang et al. 2014). Three metabolites, i.e., D-galac-

tose (Sac_1), undecanoyl-L-carnitine (C11) and PE(P-18:0/

0:0) (PE_2), were determined to be potential discriminative

metabolites for HCC prediction.

Moreover, we investigated the dynamic changes in the

normal controls and HCC patients in different pathological

stages (TNM staging system), and the call-back postop-

erative tendencies for the three discriminative metabolites

are shown in Fig. S3. The two panels of Fig. S3 revealed

that D-galactose and PE(P-18:0/0:0) demonstrated more

significant changes in stage I and II than that in stage III

(Fig. S3a), whereas D-galactose and undecanoyl-L-carnitine

showed clear call-back tendencies after surgery (Fig. S3b).

These findings suggested that the discriminative metabo-

lites might be useful for HCC early diagnosis and

prognosis.

3.4 Diagnostic performance of the three metabolites

in the external validation set

For the diagnostic performance of the discriminative

metabolites, the predictive accuracy was assessed using the

sensitivity (Se), specificity (Sp) and AUC in the external

validation set. The Se, Sp and AUC were 0.62, 0.98 and

0.81 for AFP, whereas 0.94, 0.85 and 0.95 for the combi-

nation of D-galactose, undecanoyl-L-carnitine and PE(P-

18:0/0:0). The combination of the three metabolites to-

gether with AFP in the prediction of HCC displayed a Se,

Sp and AUC of 0.96, 0.92 and 0.98, respectively. For the

AFP-negative patients, the combination of the three

metabolites had an accuracy of 0.78.

These results indicated that the discriminative metabolites

could provide a comparable diagnostic performance toAFP in

the diagnosis of HCC and the prediction of AFP-negative

Fig. 3 HCA-heatmap plot and box plots indicating relative levels of

differential metabolites in samples of the training set. a HCA-heatmap

plot of 89 differential metabolites. b Box plots for the 8 most

significant HCC-down-regulated metabolites. c Box plots for the 8

most significant HCC-up-regulated metabolites
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patients, which allows these metabolites to potentially con-

tribute to HCC diagnosis in clinical practice.

3.5 Correlation network analysis

To exploit the latent relationships between the differential

metabolites in HCC, a correlation network was built based

on the criteria of a correlation coefficient C0.7, which

ensured the robustness and reliability of the network con-

struction. A total of 59 nodes and 129 edges were recruited

in the network diagram in a circular layout (Fig. 4). The

diagram showed that metabolites of diversified categories

gathered in this diagram. Amino acids (AA), dipeptides

(DP), glycerophospholipids (PC, LPC, PE, LPE), the ma-

jority of fatty acids (FA) and medium-chain acylcarnitines

(Cn) showed down-regulated concentration levels (blue

nodes) in HCC patients whereas steroids (ST), a minority

of fatty acids and long-chain acylcarnitines were up-

regulated (red nodes). In accordance with the molecular

composition and transforming relationship of metabolites

of different classes, the entire network could be generally

divided into four subnetworks: amino acids/dipeptides

(Fig. 4a), glycerophospholipids/fatty acids (Fig. 4b), ster-

oids (Fig. 4c) and acylcarnitines (Fig. 4d).

Although the enrollment of amino acids in the HCC

related network analysis has been uncovered in a previous

study (Huang et al. 2013a), we further extended this inter-

category relationship with the recruitment of dipeptides in

the present study. Notably, the five dipeptides enrolled

were all structural with phenylalanine residuals; two of the

dipeptides, i.e., L-beta-aspartyl-L-phenylalanine (DP_5) and

phenylalanyl-phenylalanine (DP_6), both revealed a close

Fig. 4 Correlation network

constructed with 59 differential

metabolites (Pearson correlation

analysis, |r| C 0.7). a Sub-

network constructed with

dipeptides (DP) and amino acids

(AA). b Sub-network

constructed with

glycerophospholipids (LyPC/

LyPE and PC/PE) and fatty

acids (FA). c Sub-network

constructed with steroids (ST).

d Sub-network constructed with

saturated acylcarnitines (Cn)

and unsaturated acylcarnitines

(Cn:1/n:2). e Line-plot

indicating the concentration

changes of the saturated

medium- and long-chain

acylcarnitines between HCC

and NC. f Line-plot indicating
the concentration changes of

unsaturated medium- and long-

chain acylcarnitines between

HCC and NC. Nodes in red and

blue represent the metabolites

down-regulated and up-

regulated in HCC, respectively.

Nodes with different color

labels represent metabolites

from different categories,

including DP, AA, FA, LyPC/

LyPE, PC/PE, ST, Cn and Cn:1/

n:2 *p\ 0.05; **p\ 0.0001

(Color figure online)
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correlation with phenylalanine (AA_3) as shown in Fig. 4a,

implying the potential key role of phenylalanine in the

transformation between dipeptides and amino acids in

HCC.

Glycerophospholipids, including LPC, LPE, PC and PE,

were found in the largest subnetwork (Fig. 4b) with no

further clustering between subclasses. The fatty acids were

observed adhering to glycerophospholipids, and a clear

intra-category gathering pattern was demonstrated between

these categories as shown in the diagram. Such cross-

linkages between glycerophospholipids and fatty acids also

might reflect the disordered aliphatic transition for fulfill-

ing the aberrant energy requirement during tumor prolif-

eration (Morita et al. 2013; Huang et al. 2013a).

Steroids and acylcarnitines were both found to gather

independently in their own subnetworks, suggesting their

specificities to metabolic alterations in HCC. Notably, 12

acylcarnitines were found scattered in sequential arrange-

ment according to the acyl-chain length and unsaturated

degree, in which short and medium-chain acylcarnitines

(C6-C12) decreased in HCC patients, whereas long-chain

acylcarnitines (C14-C18) increased with the elongation of

the acyl-chain in both the saturated (Cn) and unsaturated

acylcarnitines (Cn:1), as presented in Fig. 4e, f.

In brief, the intra-category gathering landscapes could

be clearly observed in metabolites of different classes in

the network diagram, suggesting the underlying transfor-

mation of substances and energy in HCC.

3.6 Pathway analysis

To further investigate the biochemical perturbation corre-

lated with HCC, a pathway analysis was also performed

based on all of the differential metabolites identified in the

multivariate analysis which revealed significant differences

between HCC patients and controls. A total of 42

metabolic pathways were mapped in this study, and two

pathways, i.e., primary bile acid biosynthesis and alanine,

aspartate and glutamate metabolism, were demonstrated as

notable pathways because of the topological centralities

between the metabolites mapped in them.

In particular, 7 differential metabolites were mapped in

the primary bile acid biosynthesis pathway (7/47). Figure 5

revealed a significant accumulation of 4 conjugated bile

acids (ST_1–4) and a reduction in free bile acid (ST_8) in

HCC patients. The elevated fold-changes (medians) in

HCC patients were 6.07, 3.19, 2.55, 1.28 and 0.02 for ST_1

(Taurocholate), ST_2 (Taurochenodeoxycholate), ST_3

(Glycocholate), ST_4 (Glycochenodeoxycholate) and ST_8

(Chenodeoxycholate), respectively.

Therefore, ST_1 revealed a more significant up-regula-

tion than ST_3, whereas ST_2 showed a more significant

up-regulation than ST4. ST_1 and ST_2 were both

conjugated with taurine, whereas ST_3 and ST_4 were

both conjugated with glycine. Similarly, ST_1 also re-

vealed a more significant up-regulation than ST_2, whereas

ST_3 showed a more significant up-regulation than ST_4.

Additionally, ST_1 and ST_3 both belonged to cholates,

whereas ST_2 and ST_4 were chenodeoxycholates. The

two taurine conjugated bile acids (ST_1 and ST_2) both

showed more significant up-regulations than their glycine

conjugated counterparts (ST_3 and ST_4). The two cho-

lates (ST_1 and ST_3) both showed more significant up-

regulations than their chenodeoxycholic counterparts

(ST_2 and ST_4).

For the alanine, aspartate and glutamate metabolism

pathway (http://www.kegg.jp/), HCC patients displayed

lower levels of L-glutamine and L-aspartic acid and higher

levels of L-glutamate and succinate. The probable trans-

formation from L-glutamine to L-glutamate catalyzed by a

phosphate-dependent glutaminase (GLS) suggests the ac-

celerated material conversation of nitrogen in HCC.

4 Discussion

HCC has a high mortality and morbidity rate, remaining

the fifth most common and the third leading cause of

cancer-related death worldwide (Beyoglu et al. 2013; Chen

and Haas-Kogan 2010). Therefore, HCC remains a chal-

lenge in mechanism explanation and clinical diagnosis.

Over the past 5 years, metabolomic studies aimed at at-

taining biomarkers for HCC diagnosis have widely inves-

tigated the serum, urine and even tissue samples (Chen

et al. 2011, 2013b; Ressom et al. 2012; Wu et al. 2009;

Huang et al. 2013a; Beyoglu et al. 2013). In majority of

these studies, multivariate analysis methods (i.e., PCA,

PLS-DA and OPLS-DA) were commonly conducted to

directly select potential biomarkers that showed the best

diagnostic performance. Our study employed this conven-

tional route, benefiting from a large cohort population

(nearly 600 subjects) with comprehensive demographic and

clinical characteristics. The strategy we adopted for se-

lecting discriminative metabolites was believed to provide

a reasonable process for enhancing the clinical reliability of

discriminative predictors because the influence from co-

variate factors (gender, age and abnormal liver function)

was considered from a clinical point of view and from

epidemiological studies (Fairweather and Rose 2004;

Mostertz et al. 2010; Chen et al. 2011; Fitian et al. 2014).

For the discriminative metabolites, an aldohexose,

d-galactose was found up-regulated in HCC patients. Un-

der the phosphorylation catalyzed by a galactokinase,

D-galactose could be transformed into D-galactose-1-phos-

phate, which plays a key role in an exchange with glucose-

1-phosphate for energy production in glycolysis (Liu et al.
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2000; Lai and Klapa 2004). Undercanoyl-L-carnitine (C11)

belongs to an acylcarnitine with an acyl-chain of odd car-

bons; this molecule could be viewed as an indicator of

phytanic acid metabolism in peroxisomal b-oxidation (van

Vlies et al. 2005). PE(P-18:0/0:0) is subject to glyc-

erophosphoethanolamines (PEs) that have been found

correlated with increased fatty acid b-oxidation during

HCC development (Beyoglu and Idle 2013). The diag-

nostic performance Se, Sp and AUC of AFP was greatly

enhanced to 0.96, 0.92 and 0.98 after the combination with

the three metabolites (from 0.62, 0.98 and 0.81 for AFP

alone). For the AFP-negative patients, an accuracy of 0.78

was obtained with the combination of these molecules. The

core function of the discriminative metabolites is to pro-

vide a complement to the analysis for when AFP performed

unsatisfactorily.

Network analyses have been widely applied in meta-

bolomic studies to capture the relationships in global

changes. Notably, all five dipeptides enrolled in our net-

work carried a phenylalanine residue and were correlated

with a reduction in HCC patients. Although dipeptides

were generally considered as incomplete breakdown

products of protein digestion or protein catabolism, the

specific metabolic mechanism of dipeptides in HCC pa-

tients remains rarely reported. Previous studies have

demonstrated that phenylalanine dipeptides and derivatives

revealed better activities for antioxidation and inhibition on

the replication of HBV DNA than positive control reagents

(Qiu et al. 2011; Xu et al. 2009). Soga et al. found sig-

nificantly altered serum levels of c-glutamyl dipeptides in

different liver diseases involving HCC (Soga et al. 2011).

The results suggest that the alterations of dipeptides might

be induced by the depletion of GSH to neutralize the ex-

cessively generated reactive oxygen species (ROS).

Therefore, in oxidative stress environments in HCC pa-

tients (Beyoglu and Idle 2013), the reduction of pheny-

lalanine dipeptides might be caused by the interaction

between phenylalanine dipeptides and overly generated

ROS.

As an essential intermediate for transporting long chain

fatty acids into mitochondrial matrix for b-oxidation, car-
nitine plays a key role in maintaining energy supplements

Fig. 5 Metabolic changes between HCC and NC of differential metabolites in the primary bile acid pathway. Bile acid conjugates in orange

boxes indicate glycine and taurine conjugates, whereas those in blue boxes indicate the chenodeoxycholates and cholates (Color figure online)
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for the activities of the human body. Thus, carnitine could

also be viewed as an indicator of acetyl-CoA metabolism.

In the present network, medium- and long-chain acylcar-

nitines were found to scatter correlatively in an acyl-chain

length related arrangement for both saturated (Cn) and

unsaturated acylcarnitines (Cn:1). Medium-chain acylcar-

nitines displayed decreased levels in HCC patients and

long-chain acylcarnitines increased with the elongation of

the acyl-chain. Notably, several reports showed that long-

chain acylcarnitines were linked to a poor clinical status

whereas short-chain and medium-chain acylcarnitines were

associated with positive effects (Redman et al. 2011; Lum

et al. 2011). Simultaneous behaviors of medium and long-

chain acylcarnitines have been found in select pathological

statuses, including long-term hemodialysis and insulin

sensitivity in healthy but over-weight adults (Reuter et al.

2005; Redman et al. 2011). These results were also con-

sistent with the stepped gradient from the down-regulated

medium-chain acylcarnitines to the up-regulated long-

chain acylcarnitines. Particularly, changes in the medium

and long-chain acylcarnitines were observed in knockout

mice and were found to be related with mitochondrial

dysfunction and incomplete b-oxidation (Koves et al. 2008;
Noland et al. 2009). The accumulations of long-chain

acylcarnitines will likely inhibit the activity of citrate

lysase and increase the activity of citrate synthase, further

resulting in an elevation of cytosolic citrate. This elevation

might additionally contribute to the energy supplement for

the cell proliferation of HCC.

A metabolic pathway analysis can be used to charac-

terize the disturbed metabolic states in a category-inte-

grated perspective and further elucidate the associated

fluctuation of cellular functions. In our study, the majority

of perturbed metabolic pathways are the primary bile acid

biosynthesis and the lesser studied alanine, aspartate and

glutamate metabolism pathway. The metabolites mapped

in the primary bile acid biosynthesis pathway showed a

well-formed centrality in the pathway topology analysis,

and the accumulation of conjugated bile acids and a re-

duction of free bile acid were both observed in HCC

patients.

Primary bile acid, which refers to the bile acid directly

transformed from cholesterol in hepatocytes, could be di-

vided into cholic acid, chenodeoxycholic acid and their

conjugated forms of glycine and taurine. These forms of

primary bile acid are generally believed to play important

roles in both the absorption of lipids and the regulation of

energy homeostasis by maintaining the activity of the

thyroid hormone (Nagana Gowda et al. 2009). Previous

reports also revealed the potential activities of primary bile

acids as signaling molecules with systematic endocrine

functions (Brendel et al. 2002; Claudel et al. 2005; Cui

et al. 2003; De Fabiani et al. 2003). Therefore, these

molecules could be viewed as a barometer of the hepatic

status. Abnormal concentration levels of bile acids and its

conjugates have been observed in several studies of hepatic

diseases, such as HBV infection, liver injury, cirrhosis and

HCC (Yang et al. 2006; Yin et al. 2009; Ressom et al.

2012). One potential mechanism responsible for the accu-

mulation of conjugated bile acids in HCC patients was the

abnormally promoted activity of the rate-limiting enzyme

CYP7A1, which could modulate the transformation from

cholesterol to 7a-hydroxycholesterol. This enzyme there-

fore could play a key role in the catalysis of primary bile

acids biosynthesis (Garcia-Canaveras et al. 2011). We also

hypothesized that the increase in conjugated bile acids

might be related with their stabilities in HCC patients be-

cause of their dissociation properties. Because of the higher

pKa values of the conjugates (0.28, 0.18, -0.04 and -0.29

for ST_1, ST_2, ST_3 and ST_4, respectively, http://www.

hmdb.ca/) compared with the free bile acid (-0.54 for

ST_8, http://www.hmdb.ca/), the acidic environment

caused by activated glycolysis in HCC (Harjes et al. 2012)

tended to enhance the stabilities of the conjugated bile

acids rather than those of thee free acids, further altering

the metabolic balance between the conjugates and free bile

acids. This imbalance would finally induce the excessive

generation of bile acid conjugates and reduction of free bile

acids.

Additionally, two taurine conjugated bile acids revealed

a more significant up-regulation than their glycine conju-

gated counterparts, potentially because of the higher pKa

values of taurine conjugates than the glycine counterparts.

By contrast, the two cholates displayed more significant up-

regulation than their chenodeoxycholic counterparts, po-

tentially caused by the differences in the water solubility

between the cholates (0.077 g/L for ST_1 and 0.025 g/L for

ST_3) and chendeoxycholates (0.0075 g/L for ST_2 and

0.0079 g/L for ST_4, http://www.hmdb.ca/) in the acidic

environment (Harjes et al. 2012). Therefore, we presented

an explanation to the alterations in the bile acids from the

perspective of the relationship between the chemical prop-

erties of the metabolites and internal microenvironment in

HCC patients. This analysis provides a potential route to

alleviate the toxicity of over-secreted bile acids.

Glutamine was widely recognized as a substrate that

provides nitrogen for the biosynthesis of various biomole-

cules. The reaction from glutamine to glutamate was found

to be activated because of the highly expressed glutaminase

(GLS) in tumor cells (Gao et al. 2009). With the generation

of glutamate in tumor cells resulting from the enhanced

GLS, a large amount of a-nitrogen was obtained via the

transformation from glutamine to glutamate. This process

resulted in a substantial storage of a-nitrogen in the gluta-

mate pool. Furthermore, under the activities of amino-

transferases, the over-generated nitrogen tended to be

1390 X. Lu et al.

123

http://www.hmdb.ca/
http://www.hmdb.ca/
http://www.hmdb.ca/
http://www.hmdb.ca/


distributed into other pools of nonessential amino acids for

protein synthesis (DeBerardinis and Cheng 2010). There-

fore, the vast amount of glutamine and the accelerated GLS

in tumor cells will unavoidably contribute to fulfill the large

gaps in the building blocks for cell replication.

Notably, due to the non-targeted metabolic profiling of

this study, potential metabolites in the pathways in which

the three discriminative metabolites reside may not be

detected. Therefore, a subsequent study of targeted HCC

metabolomics upon metabolites in these pathways might be

necessary in the future.

5 Concluding remarks

The discriminative metabolite selection strategy in our

study was reliable because the assessment was conducted

based on a multivariate analysis that adjusted for clinical

covariate factors and on a correlation with AFP. Moreover,

the correlation network and pathway analysis provided

additional information about the relationships between

differential metabolites and the possible biological

mechanism for metabolites in HCC development. These

results will assist biologists and clinicians in exploring

mechanisms and inferring clinical diagnoses.

Acknowledgments We express our appreciation to all the par-

ticipants for donating their blood and clinical characteristic infor-

mation to this study. We thank the stuff from the Department of

Epidemiology and Biostatistics, Harbin Medical University, who

helped in the data statistics and multivariate modeling. This work was

supported by grant from Open Project of State Key Laboratory of

Urban Water Resource and Environment of Harbin Institute of

Technology (No. ES201115).

Conflict of interest The authors declare that they have no conflict

of interest.

Ethical approval All procedures performed in studies involving

human participants were in accordance with the ethical standards of

the institutional committees and with the 1964 Helsinki declaration

and its later amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all indi-

vidual participants included in the study.

References

Anis, M., & Irshad, A. (2011). Imaging of hepatocellular carcinoma:

Practical guide to differential diagnosis. Clinics in Liver Disease,

15(2), 335–352.

Beyoglu, D., & Idle, J. R. (2013). The metabolomic window into

hepatobiliary disease. Journal of Hepatology, 59(4), 842–858.

Beyoglu, D., Imbeaud, S., Maurhofer, O., Bioulac-Sage, P., Zucman-

Rossi, J., Dufour, J. F., et al. (2013). Tissue metabolomics of

hepatocellular carcinoma: Tumor energy metabolism and the role

of transcriptomic classification. Hepatology, 58(1), 229–238.

Brendel, C., Schoonjans, K., Botrugno, O. A., Treuter, E., & Auwerx,

J. (2002). The small heterodimer partner interacts with the liver

X receptor alpha and represses its transcriptional activity.

Molecular Endocrinology, 16(9), 2065–2076.

Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S., Kochhar, S., & Guy, P.

A. (2009). Investigation of human blood plasma sample

preparation for performing metabolomics using ultrahigh per-

formance liquid chromatography/mass spectrometry. Analytical

Chemistry, 81(9), 3285–3296.

Bruix, J., Sherman, M., Practice Guidelines Committee, &

American Association for the Study of Liver Diseases.

(2005). Management of hepatocellular carcinoma. Hepatology,

42(5), 1208–1236.

Chen, C. P., & Haas-Kogan, D. (2010). Neoplasms of the hepatobil-

iary system: Clinical presentation, molecular pathways and

diagnostics. Expert Review of Molecular Diagnostics, 10(7),

883–895.

Chen, S., Hoene, M., Li, J., Li, Y., Zhao, X., Haring, H. U., et al.

(2013a). Simultaneous extraction of metabolome and lipidome

with methyl tert-butyl ether from a single small tissue sample for

ultra-high performance liquid chromatography/mass spec-

trometry. Journal of Chromatography A, 1298, 9–16.

Chen, S., Kong, H., Lu, X., Li, Y., Yin, P., Zeng, Z., et al. (2013b).

Pseudotargeted metabolomics method and its application in

serum biomarker discovery for hepatocellular carcinoma based

on ultra high-performance liquid chromatography/triple quadru-

pole mass spectrometry. Analytical Chemistry, 85(17),

8326–8333.

Chen, T., Xie, G., Wang, X., Fan, J., Qiu, Y., Zheng, X., et al.

(2011a). Serum and urine metabolite profiling reveals potential

biomarkers of human hepatocellular carcinoma. Molecular &

Cellular Proteomics, 10(7), M110.004945.

Chen, F., Xue, J., Zhou, L., Wu, S., & Chen, Z. (2011b). Identification

of serum biomarkers of hepatocarcinoma through liquid chro-

matography/mass spectrometry-based metabonomic method.

Analytical and Bioanalytical Chemistry, 401(6), 1899–1904.

Claudel, T., Staels, B., & Kuipers, F. (2005). The Farnesoid X

receptor: A molecular link between bile acid and lipid and

glucose metabolism. Arteriosclerosis, Thrombosis, and Vascular

Biology, 25(10), 2020–2030.

Cui, J., Huang, L., Zhao, A., Lew, J. L., Yu, J., Sahoo, S., et al.

(2003). Guggulsterone is a farnesoid X receptor antagonist in

coactivator association assays but acts to enhance transcription

of bile salt export pump. Journal of Biological Chemistry,

278(12), 10214–10220.

De Fabiani, E., Mitro, N., Gilardi, F., Caruso, D., Galli, G., &

Crestani, M. (2003). Coordinated control of cholesterol catabo-

lism to bile acids and of gluconeogenesis via a novel mechanism

of transcription regulation linked to the fasted-to-fed cycle.

Journal of Biological Chemistry, 278(40), 39124–39132.

DeBerardinis, R. J., & Cheng, T. (2010). Q’s next: The diverse

functions of glutamine in metabolism, cell biology and cancer.

Oncogene, 29(3), 313–324.

El Khouli, R. H., Macura, K. J., Barker, P. B., Habba, M. R., Jacobs,

M. A., & Bluemke, D. A. (2009). Relationship of temporal

resolution to diagnostic performance for dynamic contrast

enhanced MRI of the breast. Journal of Magnetic Resonance

Imaging, 30(5), 999–1004.

Fairweather, D., & Rose, N. R. (2004). Women and autoimmune

diseases. Emerging Infectious Diseases, 10(11), 2005–2011.

Fitian, A. I., Nelson, D. R., Liu, C., Xu, Y., Ararat, M., & Cabrera, R.

(2014). Integrated metabolomic profiling of hepatocellular

carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/

MS-MS. Liver Int, 34(9), 1428–1444.

Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T.,

et al. (2009). c-Myc suppression of miR-23a/b enhances

Characterization and evaluation of HCC… 1391

123



mitochondrial glutaminase expression and glutamine metabo-

lism. Nature, 458(7239), 762–765.

Garcia-Canaveras, J. C., Donato, M. T., Castell, J. V., & Lahoz, A.

(2011). A comprehensive untargeted metabonomic analysis of

human steatotic liver tissue by RP and HILIC chromatography

coupled to mass spectrometry reveals important metabolic

alterations. Journal of Proteome Research, 10(10), 4825–4834.

Harjes, U., Bensaad, K., & Harris, A. L. (2012). Endothelial cell

metabolism and implications for cancer therapy. British Journal

of Cancer, 107(8), 1207–1212.

Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y.,

Arvas, M., et al. (2008). A consensus yeast metabolic network

reconstruction obtained from a community approach to systems

biology. Nature Biotechnology, 26(10), 1155–1160.

Huang, Q., Tan, Y., Yin, P., Ye, G., Gao, P., Lu, X., et al. (2013a).

Metabolic characterization of hepatocellular carcinoma using

nontargeted tissue metabolomics. Cancer Research, 73(16),

4992–5002.

Huang, J. H., Yan, J., Wu, Q. H., Duarte Ferro, M., Yi, L. Z., Lu, H.

M., et al. (2013b). Selective of informative metabolites using

random forests based on model population analysis. Talanta,

117, 549–555.

Klamt, S., Saez-Rodriguez, J., & Gilles, E. D. (2007). Structural and

functional analysis of cellular networks with Cell NetAnalyzer.

BMC Systems Biology, 1, 2.

Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M.,

Ilkayeva, O., et al. (2008). Mitochondrial overload and incom-

plete fatty acid oxidation contribute to skeletal muscle insulin

resistance. Cell Metabolism, 7(1), 45–56.

Lai, K., & Klapa, M. I. (2004). Alternative pathways of galactose

assimilation: Could inverse metabolic engineering provide an

alternative to galactosemic patients? Metabolic Engineering,

6(3), 239–244.

Liu, G., Hale, G. E., & Hughes, C. L. (2000). Galactose metabolism

and ovarian toxicity. Reproductive Toxicology, 14(5), 377–384.

Lum, H., Sloane, R., Huffman, K. M., Kraus, V. B., Thompson, D. K.,

Kraus,W.E., et al. (2011). Plasma acylcarnitines are associatedwith

physical performance in elderly men. Journals of Gerontology.

SeriesA,Biological Sciences andMedical Sciences, 66(5), 548–553.

Marquardt, J. U., Galle, P. R., & Teufel, A. (2012). Molecular

diagnosis and therapy of hepatocellular carcinoma (HCC): An

emerging field for advanced technologies. Journal of Hepa-

tology, 56(1), 267–275.

Montuschi, P., Paris, D., Melck, D., Lucidi, V., Ciabattoni, G., Raia,

V., et al. (2012). NMR spectroscopy metabolomic profiling of

exhaled breath condensate in patients with stable and unstable

cystic fibrosis. Thorax, 67(3), 222–228.

Morita, Y., Sakaguchi, T., Ikegami, K., Goto-Inoue, N., Hayasaka, T.,

Hang, V. T., et al. (2013). Lysophosphatidylcholine acyltrans-

ferase 1 altered phospholipid composition and regulated hep-

atoma progression. Journal of Hepatology, 59(2), 292–299.

Mostertz, W., Stevenson, M., Acharya, C., Chan, I., Walters, K.,

Lamlertthon, W., et al. (2010). Age- and sex-specific genomic

profiles in non-small cell lung cancer. JAMA, 303(6), 535–543.

Motta, A., Paris, D., Melck, D., de Laurentiis, G., Maniscalco, M.,

Sofia, M., et al. (2012). Nuclear magnetic resonance-based

metabolomics of exhaled breath condensate: Methodological

aspects. European Respiratory Journal, 39(2), 498–500.

Nagana Gowda, G. A., Shanaiah, N., Cooper, A., Maluccio, M., &

Raftery, D. (2009). Bile acids conjugation in human bile is not

random: New insights from (1)H-NMR spectroscopy at 800

MHz. Lipids, 44(6), 527–535.

Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabo-

nomics’: Understanding the metabolic responses of living

systems to pathophysiological stimuli via multivariate statistical

analysis of biological NMR spectroscopic data. Xenobiotica,

29(11), 1181–1189.

Noland, R. C., Koves, T. R., Seiler, S. E., Lum, H., Lust, R. M.,

Ilkayeva, O., et al. (2009). Carnitine insufficiency caused by
aging and overnutrition compromises mitochondrial perfor-

mance and metabolic control. Journal of Biological Chemistry,

284(34), 22840–22852.

Qiu, J., Xu, B., Huang, Z., Pan, W., Cao, P., Liu, C., et al. (2011).

Synthesis and biological evaluation of Matijing-Su derivatives as

potent anti-HBV agents. Bioorganic & Medicinal Chemistry,

19(18), 5352–5360.

Redman, L. M., Huffman, K. M., Landerman, L. R., Pieper, C. F.,

Bain, J. R., Muehlbauer, M. J., et al. (2011). Effect of caloric

restriction with and without exercise on metabolic intermediates

in nonobese men and women. Journal of Clinical Endocrinology

and Metabolism, 96(2), E312–E321.

Ressom, H. W., Xiao, J. F., Tuli, L., Varghese, R. S., Zhou, B., Tsai,

T. H., et al. (2012). Utilization of metabolomics to identify

serum biomarkers for hepatocellular carcinoma in patients with

liver cirrhosis. Analytica Chimica Acta, 743, 90–100.

Reuter, S. E., Evans, A. M., Faull, R. J., Chace, D. H., & Fornasini, G.

(2005). Impact of haemodialysis on individual endogenous

plasma acylcarnitine concentrations in end-stage renal disease.

Annals of Clinical Biochemistry, 42(Pt 5), 387–393.

Slany, A., Haudek-Prinz, V., Zwickl, H., Stattner, S., Grasl-Kraupp,

B., & Gerner, C. (2013). Myofibroblasts are important con-

tributors to human hepatocellular carcinoma: Evidence for tumor

promotion by proteome profiling. Electrophoresis, 34(24),

3315–3325.

Soga, T., Sugimoto, M., Honma, M., Mori, M., Igarashi, K.,

Kashikura, K., et al. (2011). Serum metabolomics reveals

gamma-glutamyl dipeptides as biomarkers for discrimination

among different forms of liver disease. Journal of Hepatology,

55(4), 896–905.

Uto, H., Kanmura, S., Takami, Y., & Tsubouchi, H. (2010). Clinical

proteomics for liver disease: a promising approach for discovery

of novel biomarkers. Proteome Science, 8, 70.

van Vlies, N., Tian, L., Overmars, H., Bootsma, A. H., Kulik, W.,

Wanders, R. J., et al. (2005). Characterization of carnitine and

fatty acid metabolism in the long-chain acyl-CoA dehydroge-

nase-deficient mouse. Biochemical Journal, 387(Pt 1), 185–193.

Wang, Q., Gao, P., Wang, X., & Duan, Y. (2014). The early diagnosis

and monitoring of squamous cell carcinoma via saliva

metabolomics. Scientific Reports, 4, 6802.

Wiklund, S., Nilsson, D., Eriksson, L., Sjostrom, M., Wold, S., &

Faber, K. (2007). A randomization test for PLS component

selection. Journal of Chemometrics, 21(10–11), 427–439.

Wu, H., Xue, R., Dong, L., Liu, T., Deng, C., Zeng, H., et al. (2009).

Metabolomic profiling of human urine in hepatocellular carci-

noma patients using gas chromatography/mass spectrometry.

Analytica Chimica Acta, 648(1), 98–104.

Xu, B., Huang, Z., Liu, C., Cai, Z., Pan, W., Cao, P., et al. (2009).

Synthesis and anti-hepatitis B virus activities of Matijing-Su

derivatives. Bioorganic & Medicinal Chemistry, 17(8),

3118–3125.

Yang, J., Zhao, X., Liu, X., Wang, C., Gao, P., Wang, J., et al. (2006).

High performance liquid chromatography-mass spectrometry for

metabonomics: Potential biomarkers for acute deterioration of

liver function in chronic hepatitis B. Journal of Proteome

Research, 5(3), 554–561.

Yin, P., Wan, D., Zhao, C., Chen, J., Zhao, X., Wang, W., et al.

(2009). A metabonomic study of hepatitis B-induced liver

cirrhosis and hepatocellular carcinoma by using RP-LC and

HILIC coupled with mass spectrometry. Molecular BioSystems,

5(8), 868–876.

1392 X. Lu et al.

123



Zeng, Z., Liu, X., Dai, W., Yin, P., Zhou, L., Huang, Q., et al. (2014).

Ion fusion of high-resolution LC-MS-based metabolomics data

to discover more reliable biomarkers. Analytical Chemistry,

86(8), 3793–3800.

Zhang, T., Wu, X., Ke, C., Yin, M., Li, Z., Fan, L., et al. (2013).

Identification of potential biomarkers for ovarian cancer by

urinary metabolomic profiling. Journal of Proteome Research,

12(1), 505–512.

Characterization and evaluation of HCC… 1393

123


	Comprehensive characterization and evaluation of hepatocellular carcinoma by LC--MS based serum metabolomics
	Abstract
	Introduction
	Materials and methods
	Chemicals and reagents
	Clinical samples
	Sample preparation
	UPLC-Q/TOF MS analysis
	Data preprocessing
	Statistical analysis
	Metabolite identification

	Results
	Metabolic profiling of HCC, HBV and NC
	Selection and identification of differential metabolites
	Verification of discriminative metabolites
	Diagnostic performance of the three metabolites in the external validation set
	Correlation network analysis
	Pathway analysis

	Discussion
	Concluding remarks
	Acknowledgments
	References




