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Abstract Plasmodium vivax is the most dominating

species in the Indian subcontinent among the five Plas-

modium species causing malarial infection in humans. This

species is generally believed to be benign and classically

thought to cause uncomplicated clinical infection that

rarely leads to death or other complication. However, re-

cent studies have shown incidences of P. vivax infection

leading to severe complications and even death. To un-

derstand the biochemical changes at the pathway level and

the modality through which the host recovers from the

infection, we monitored the small molecular weight

metabolites of urine samples of hospital in-patients un-

dergoing treatment for vivax malaria. Metabolomics, in-

volving 1H NMR spectra of urine samples subjected to

multivariate statistical analyses, was employed for this

purpose. Urine metabolic profiles were used to identify

putative biomarkers and establishing correlation with

parasite count in the peripheral blood. The untreated

malaria patients (day1) exhibited altered excretion of

taurine, hippurate, citrate, glycine, 3-methylhistidine and

alanine in comparison to the self-control profile on day30.

The day1–4 urine metabolite profiles are distinct from day5

and day30 profiles. The latter two profiles are indistin-

guishable. Temporal trajectories of urinary metabolites

indicated an inflection point on day3. The day1 1H NMR

profiles, distinct from the profiles of viral fever patients,

correlated with the parasitemia levels in the patients and

could in fact be used to gauge the anemia status of the

patients. This study demonstrates the potential of urine

metabolic profiling in understanding the pathophysiology

of P. vivax infection and in non-invasive disease diagnosis.

Keywords Metabolomics � NMR � Malaria � Recovery �
Plasmodium vivax � Metabolism

1 Introduction

Five species of Plasmodium are known to cause malaria in

humans—P. falciparum, P. vivax, P. malariae, P. ovale,

and recently, P. knowlesi. Most attempts to understand

malarial disease biology are centered over the more severe

infections caused by Plasmodium falciparum. However, P.

vivax malaria requires more attention for a number of

reasons. First, in the Indian subcontinent P. vivax dom-

inates in terms of infections/year (Joshi et al. 2008). Se-

cond, believed to be benign in the past, recent reports

suggest that it too can result in cerebral complications,

severe disease manifestations, and chloroquine resistance

(Kochar et al. 2009; Mendis et al. 2001; Teka et al. 2008).

This is possibly because of the continuous evolution of the

parasite and its changing dynamic interactions with the

environment.
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Themisdiagnosis of the infection remains another caveat.

Malarial infections are frequently misdiagnosed or over-di-

agnosed in endemic regions of the world, leading to con-

siderable over diagnosis of the infection and consequent

misdiagnosis of other fevers (Nankabirwa et al. 2009). One

important factor, contributing to this is the unfamiliaritywith

the microscopic diagnosis technique and the inherent lower

sensitivity of the technique (Hanscheid 2003). Small scale

studies report misdiagnosis of*10 %, a figure that is likely

to be increased during large scale field studies (Hanscheid

2003). Therefore, it is important to identify new diagnostic

techniques, in particular those that are non-invasive and

comparatively rapid. In this paper we show that the urine

metabolic profile ofP. vivax infected patients is distinct from

viral fever cases, which are often misdiagnosed for each

other. We also identify malaria specific metabolites in the

urine of patients suffering from P. vivax infection using the

metabolomic approach. This technique, involving NMR in

conjunction with multivariate data analyses, has been used

for over a decade and is specifically termed metabolomics/

metabonomics (Nicholson and Lindon 2008).

Several factors, such as genomic make-up and dietary

habits, will contribute towards differences in urine metabo-

lites even in a basal healthy state, and a comparison across

different patients will have inherent differences. In order to

minimize such variations, the urine of each hospital P. vivax

in-patient was monitored over a period of five days starting

from their admission, using 1H NMR spectroscopy and

multivariate data analysis. Each of the patients was parasite-

free and discharged by day5 as judged from peripheral blood

smear analysis and their clinical features. A 30th day sample

of the patients served as a healthy control sample for each

patient. Urine samples from viral fever patients were in-

cluded to ensure that the biomarkers and metabolic profile

identified were malaria-specific and not a feature of the

febrile condition of the patient.

We find that malarial infection causes discrete changes in

the patient’s urine profile and such changes are distinct from

those observed in patients with viral fever. Monitoring these

changes may allow us to understand the underlying mole-

cular mechanism of malarial disease progression. In addi-

tion, we also show that the multivariate analysis of urine

profile from the patients may be used as a correlate for

disease diagnosis and also for evaluating parameters such as

the parasitemia associated with malaria.

2 Materials and methods

2.1 Study design and recruitment of the patients

This study was approved by the local Institutional Ethics

Committee and written informed consent was obtained

from each patient prior to his/her enrolment in the study.

The study was designed in the following way. P. vivax

infected patients admitted in KEM hospital in Mumbai

were recruited for the study after medical screening for

malarial infection by examination of thick and thin blood

smear. Informed consent was obtained. The day of ad-

mission was considered day1. The first midstream urine

samples were collected once daily from the patients for a

maximum of five days. During this period the patients

underwent standard treatment and care for uncomplicated

malaria and were usually discharged on day5, although

some patients (20) were discharged earlier. Specifically,

the patients were treated with 25 mg/kg of chloroquine

base for three days followed by 15 mg/day of primaquine

phosphate for 14 days. As a follow-up they were called

back after a month and day30 urine samples were collected

on that day. Absence of infection was confirmed by ex-

amining their peripheral blood smear. The day30 sample

served as control and was used for comparative analysis

with day1–5 samples. 106 P. vivax patients and 20 viral

fever patients were enrolled in this study. Complete

pathological reports were available for 67 of the 106 pa-

tients. The pathological tests included CBC, liver function

tests (SGOT, SGPT, bilirubin and alkaline phosphatase)

and kidney function (blood urea nitrogen and serum crea-

tinine). The day30 sample could be obtained for only 44

patients, and these patients were found to have recovered

completely from malaria and were negative by peripheral

blood smear test. Comparisons between the infected and

self-control urine samples were possible only for these 44

patients. Samples from a subset of the population (61 pa-

tients) were used for the prediction of presence of infection

for the model we constructed. 0.02 % sodium-azide was

added to all the urine samples before storing at -86 �C
until NMR analysis.

2.2 Preparation of urine samples and NMR

experiments

800 ll of urine sample was added to 400 ll of 0.02 M

phosphate buffer (an 81:19 (v/v) mixture of 0.2 M Na2
HPO4 and 0.2 M NaH2PO4; pH 7.4, made in deionized

water passed through a 0.22 lm filter). This was allowed to

equilibrate at ambient temperature for 5 min and then

centrifuged at 60009g for 10 min. The supernatant sam-

ples were stored at -86 �C until further use for the NMR

experiments. For acquiring 1H NMR spectra, the samples

were thawed at room temperature and 600 ll of each

sample was transferred to 5 mm NMR tube (Norrell Inc).

100 ll of 0.01 % DSS in D2O was added to it for the

purpose of internal referencing and field frequency lock

and the samples were used for the NMR experiments. The

NMR spectra of the samples were acquired in an AVANCE

1352 A. Sengupta et al.

123



700 MHz spectrometer (Bruker Biospin) equipped with a

broad band inverse probe and BACS automation system.

The one dimensional 1H NMR spectra were acquired by

means of a pulse program which takes the form of first

transient of the NOESY NMR spectroscopy. The spectra

were acquired with 32 transients, each recorded with 64 k

data points on a spectral width of 20 ppm. This resulted in

acquisition time of 2.28 s; the inter-scan delay applied was

4 s.

The spectra were processed (TOPSPIN 2.1, Bruker)

using an additional line broadening factor of 0.1 Hz,

Fourier transformed and phase and baseline corrected using

an automated program provided by Dr. Eberherd Humpfer

(Bruker Biospin, Germany).

In order to assign the metabolites, several 2-dimensional

NMR experiments were carried out. These included the

J-resolved, COSY, TOCSY and HMQC NMR techniques.

Details of these experiments can be found elsewhere (8).

While acquiring the 1-dimensional spectra, the water signal

was suppressed using continuous irradiation on the wa-

ter signal during the relaxation delay and the mixing

time. Similar strategy was adopted while acquiring the

J-resolved, COSY and HMQC spectra where continuous

irradiation on the water signal took place during the

relaxation delay. During the TOCSY experiments, the

water suppression routine involved excitation sculpting and

gradient pulses.

2.3 Statistical analysis of data

2.3.1 Multivariate data analyses

PCA and OPLSDA For the purpose of multivariate data

analysis, the 1H NMR spectra were binned into 0.04 ppm

window and each bin was integrated and normalized to the

total intensity in order to take care of the dilution effects.

This procedure was achieved using Amix 3.8.4 (Bruker

Biospin, Switzerland). The region comprising of reso-

nances from urea and water (4.5–5.5 ppm) were excluded

from this procedure. In addition, several patients

were found to be under medication of paracetamol. The

NMR spectra of day1 urine samples of these patients

had significant resonances from the paracetamol metabo-

lites. The spectral regions (7.54–7.14 ppm, 3.86–3.82 ppm,

3.66–3.58 ppm, 2.94–2.9 ppm, 1.90–1.86 ppm, 1.78–

1.74 ppm) corresponding to these were also excluded from

the binning process. The data matrix so generated was

imported into SIMCA-P?12.0 for further multivariate data

analysis. Prior to the modeling, the data matrix was mean

centered and Pareto scaled. Initially the day1–5 urine

profiles of the patients were compared with the day 30

urine profiles using PCA to check for the pattern in the data

and to find out any outliers. PCA is an unsupervised data

analysis technique that is based on the reduction of di-

mensionality. Briefly, the highly correlated multivariate

data structure, such as the urine NMR profiles, are broken

down to fewer (usually 2–4) mutually orthogonal variables

called the Principal Components (PCs). Each PC is a linear

combination of the original variables. This procedure is

able to achieve the visualization of the latent pattern in the

complex multivariate data structure by means of the scores

variables that are generated in the PC space. The variables

responsible for the scores pattern can be identified from the

loadings, which are the weightage by which the original

variables combine to form the PCs. However, one disad-

vantage of PCA is that it provides information about the

most dominating variations present in the data, which may

not be the one that is sought. This can be handled by using

supervised data analysis techniques such as OPLS. This

technique models the variation of a defined Y variable with

that of the data matrix. In case of a class entity of the Y

variable, this takes the shape of a discriminant analysis and

is known as the OPLSDA. This sort of modeling splits the

data matrix into two variations, one that is related to Y and

the other that is orthogonal. Therefore, two components are

generated. The predictive component and the correspond-

ing scores imply the variation in X that is related to Y and

the orthogonal component describes the variation in X that

is orthogonal to Y. Like for PCA, the variables that are

responsible for the variations are found using the loadings

on the predictive component. Two parameters, namely, the

R2Y and the Q2(cum) can be used to judge the model. The

former implies the explained variation in Y while the latter

is a cross validation parameter and judges the predictive

ability of the model. For a discriminant analysis Q2(cum)

simply indicates the goodness of separation of the two

classes. In the present case, the day1–5 urine profiles were

compared with the day30 profiles using OPLSDA model-

ing. In addition, several clinical variables were correlated

with the urine profiles using the OPLS models. Further, in

order to check the malaria specificity of the features found

by OPLSDA, the day1 urine samples were also compared

with the urine samples from the viral fever patients using

PCA and OPLSDA. After building up the models from the

known samples, a set of 40 samples (20 day1 and 20 day5)

were also used in order to test the predictive ability of the

models.

2.3.2 Univariate data analysis

After extracting the spectral variables responsible for the

variation between infection stage (day1–5) urine samples

from that of day30 and viral fever samples, the corre-

sponding metabolites were identified using a variety of

2-dimensional NMR techniques. In order to identify their

(a) temporal variation across the days and (b) correlation
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with the clinical variables, the NMR peak(s) belonging to

specific metabolites were integrated and normalized to the

total spectral intensity using AMIX 3.8.4. For metabolites

showing peak shift, a region was integrated and normal-

ized. These data were further compared using the Mann–

Whitney rank-sum test. In order to correlate the data with

the clinical variables Pearson correlation was used. Specific

metabolites, which showed significant variation in the

multivariate modeling of day1–day30 and day1–viral fever

samples, were used to generate the Receiver Operator

Characteristic (ROC) curve to check the feasibility of

candidature as a biomarker.

3 Results

3.1 Recruitment of the patients, clinical assays and 1H

NMR spectroscopy

In total, 126 patients were recruited in the study. Of

these, 106 were P. vivax infected patients and 20 were

patients with viral fever. The details of the patient re-

cruitment are described in the methods section. For 67 P.

vivax infected patients, various tests were performed at

the hospital as per the normal clinical protocol for

malaria in-patients. This included Giemsa stained pe-

ripheral blood smear count for parasitemia, hematological

tests including total and differential count of blood cells

and tests for liver and kidney functions (Table 1). 47

male and 20 female patients underwent several diagnostic

tests. The age range was 5 to 55 years (median =

30 years). As expected several patients showed abnor-

malities in their clinical tests. For example, 59 patients

were found to be anemic, 29 showed renal dysfunction

(blood urea nitrogen (BUN): serum creatinine ratio[20 or

\10) while 26 patients had liver dysfunction (alkaline

phosphatase [112 U/l). 20 viral fever patients (10 male

and 10 female) with age 19–52 years were also recruited.

1-dimensional 1H NMR spectra of all the samples were

acquired for multivariate data analysis. Comparative 1H

NMR spectral profiles from day1 and day30 from one

patient are shown in the Supplementary information S1.

Obvious discrimination was noted due to the paracetamol

metabolites. Therefore, spectral region corresponding to

these metabolites were excluded for all the multivariate

data analyses as described in the Methods section.

Chloroquine/primaquine and their metabolites are largely

sequestered in liver, spleen, kidneys and lungs (Grund-

mann et al. 1971). Their circulating and excretory levels

are too low-submicromolar range (McChesney et al.

1967; Augustjins et al. 1992) and hence do not show up

in the NMR spectra.

3.2 Treatment related alteration of the 1H NMR urinary

profile of the P. vivax patients

The 1H NMR spectra of urine samples of 44 patients,

whose day1 and day30 samples were available were sub-

jected to multivariate analyses. Initially a PCA model of all

the spectra was built. The resulting scores of the first six

significant PCs are shown in the supplementary informa-

tion S2. A continuous change of the scores was observed in

the PC1 and 2. Next, pair-wise OPLSDA was performed to

compare the day30 profiles with the day1-5 profiles. This

operation generated 5 OPLSDA models (Fig. 1). The de-

scriptive statistical parameters (R2Y and Q2(cum)) are

provided in the Supplementary information S3. From

Figs. 1 and S3, it is noted that the day5 and day30 urine

profiles were indistinguishable. The day1–3 samples were

clearly distinct from day30 samples, and this distinction

decreased for day4 and 5 samples. The spectral variables/

bins contributing towards the class distinction were ana-

lyzed in conjunction with the Variable Importance on

Projection (VIP) plots of the relevant model. Further, the

2D NMR spectra (J-resolved, COSY, TOCSY and HMQC)

recorded on selected samples were analyzed to confirm the

identity of the metabolites. Briefly, the multiplicities of the

NMR peaks were ascertained from the 1-dimensional and

J-resolved NMR spectra. For multiplets, COSY and

TOCSY were analyzed to ascertain the metabolites. In case

of singlet peaks, the HMQC spectra were analyzed to

confirm the identity of the metabolites. The significant

spectral variables/bins along with the loadings and VIP

values and assigned metabolites are shown in Table 2.

Supplementary information S4 shows the assigned peaks

from the TOCSY and HMQC spectra. Day1 samples

showed markedly enhanced excretion of taurine along with

decreased excretion of hippuric acid, citric acid, glycine,

3-methylhistidine and alanine. Day2 samples, in addition,

showed elevated level of tyrosine and creatinine and low-

ered level of guanidinoacetate. Day3 onwards, the excre-

tory levels of creatinine and taurine started to recover while

day4 profile was distinct from that of day30 only in the

elevated excretion of glycine and 3-methylhistidine.

3.3 Temporal trajectories of the significantly altered

metabolites

In order to investigate the longitudinal trajectory of the

significantly altered metabolites, NMR spectral peaks from

each metabolite obtained from the OPLSDA modeling

were integrated and normalized. These were further com-

pared across the days and also compared to the day30

profiles using Mann–Whitney rank sum test. The trajecto-

ries so obtained are presented in Supplementary informa-

tion S5. Certain features were uniquely evident by
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univariate analysis. Interestingly, although the overall

profiles of day5 and day30 were similar, levels of certain

metabolites were continued to be significantly different.

For example, hippurate and guanidinoacetate levels were

lower in the day5 urine samples compared to day30

(p\ 0.05). In addition, most of the metabolites showed

significant alteration as indicated by the OPLSDA model-

ing. However, univariate analysis did not show changes in

creatinine level. This discrepancy may be attributed to the

variable peak position of creatinine across the samples.

3.4 Correlation of parasitemia with the 1H NMR urine

profile

All the day1 urine NMR profiles (except those used for the

prediction set) were used for the OPLS modeling. In these

models, parasitemia (no. of parasites per ll of blood) was
used as the response variable in an attempt to check the

correlation of this variable with the urine profiles and to

explore the possibility of extracting this information non-

invasively from the urine profile. Parasitemia showed

certain correlation with urine profiles (R2Y = 0.31,

Q2(cum) = 0.21), this model resulted after exclusion of the

pediatric samples from the data set and excluding the noise

region from the NMR spectra. 56 samples were used as the

test set to predict the parasitemia. A linear relationship

(Supplementary information S6A) was obtained between

the actual and predicted parasite count of the test set

population (r = 0.57, p\ 0.0001). Further, the OPLS

model loading was investigated to check for the bins cor-

relating maximally to the parasite count. These bins were

further analyzed using 2-dimensional NMR spectra avail-

able to identify the metabolites. 4 such metabolites,

namely, betaine (3.90 ppm, s), creatine (3.94 ppm, s), tri-

gonelline (4.42 ppm, m) and threonine (4.28 ppm, m) have

significant correlation to the parasite count. All of the

correlations were found to be positive (data not shown).

However, only betaine showed significant elevation during

day1 with respect to the viral fever samples. Betaine also

showed an increasing trend compared to the day30 sam-

ples, but this was not statistically significant. The training

set and the test set samples were then pooled and the levels

of betaine so obtained were used for modeling. The cor-

relation improved upon pooling (S5C).

3.5 Prediction of unknown urinary samples based

on 1H NMR profiles

In order to test the predictability of the models a training

set was made from the day1 urine and day5 urine NMR

profiles. The day5 urine samples were chosen for this

purpose because of little distinction of day5 global profiles

with that of day30 (Fig. 1e). A total of 88 samples were

used for making the training set (45 day1 samples and 43

day5 samples). The model resulted in very well clustered

segregation of the day1 and day5 training set. The Q2(cum)

of the resulting model was found to be 0.64 (Fig. 2a).

Further, this model was tested on a test set comprising of

104 samples (61 day1 and 43 day5 samples; 18 day5

samples could not be included as the respective individuals

were discharged before the 5th day on 5th day) from day1

and day5 urine profiles. The model identified most of the

day1 and day5 samples correctly. This is evident from the

predicted scores of the same model (Fig. 2b). Manually,

the correct predictions could be calculated and we found

that 14 day1 samples and 2 day5 samples were wrongly

Table 1 Clinical and phenotypic details of the P. vivax infected patients

Number of patients 67

Males 47

Females 20

Age 29.97 ± 11.9 Range 5–55 years (median 30 years)

Hb (g/dl) 10.85 ± 1.76 59 anemic patients

AlkP (U/l) [liver dysfunction[112] 107.53 ± 45 26 patients with high activity

BUN/SCr [renal dysfunction[20 or\10] 16.6 ± 9 16 patients with values[20 and 13 patients with values\10

%PRBC [parasite count] 0.07 ± 0.04 Range 0.01–0.2 % (median 0.07 %)

RBC (E ? 6, ml-1; ref: 4–6 9 106 ll-1) 4.28 ± 0.56 21 patients with RBC values lower than the reference

WBC (E ? 3, ml-1; ref: 4.5–10.5 9 103 ll-1) 6.55 ± 2.46 12 patients with WBC values lower than the reference

Platelet (E ? 3, ml-1; ref: 150–450 9 103 ll-1) 118.6 ± 51.7 53 patients with platelet values lower than the reference

The clinical parameters were available for a subset of the population under study (67 patients). All the data reported are in form of mean and

standard deviation

Hb hemoglobin, AlkP alkaline phosphate, BUN/SCr blood urea nitrogen to serum creatinine ratio, %PRBC percent of parasitized

RBCs/parasitemia
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predicted. Therefore, out of 104 samples, 16 were mis-

classified, resulting in a success rate of *85 % of correct

identification. The rate of wrong prediction was calculated

to be *15 %.

3.6 Urinary profiles of P. vivax malaria patients are

distinct from viral fever patients

Urine samples from patients with viral fever were included

in the study as non-malaria febrile controls. 1H NMR

spectra of these samples were compared with the day1 and

day30 urine profiles of the P. vivax infected patients using

OPLSDA analysis. Two OPLSDA models were generated.

One compared the urine NMR profiles of viral fever pa-

tients with that of day1 P. vivax malaria patients and the

other with the day30. Both the models resulted in discrete

clustering of day1 and day30 in comparison to the viral

fever profiles with the Q2(cum) of 0.35 (Fig. 3a) and 0.29

(Fig. 3b), respectively. The metabolites that contribute to-

wards the segregation are listed in Table 3. The viral fever

patients showed significantly decreased creatinine, taurine,

hippurate, citrulline, DMG and taurine and increased

suberic acid compared to the day1 profiles of P. vivax in-

fected patients. The day30 profiles of the malaria patients,

exhibited increased levels of creatinine, hippurate, ery-

thritol, histidine, creatine, DMG, citrulline, glycine and

guanidinoacetate (Table 3).

The 1H NMR resonances of the significantly altered

metabolites of day1 and day30 of P. vivax infected patients

(Table 2) were integrated, normalized with respect to the

whole spectrum and compared separately with the corre-

sponding profiles of viral fever patients, using Mann–

Fig. 1 The cross-validated scores plot from the modeling of urine

NMR profiles of P. vivax infected patients. Day30 urine NMR profiles

of the patients were compared with the day1–5 urine NMR profiles

respectively. In each of the figures, the red boxes are the day30 urine

NMR profile and the black dots represent day1–5 urine NMR samples

in the figures a–e respectively. In each of the plots, the x-axis

represents the predictive component that explains the class specific

variation in the spectral variables and the y-axis represents the

orthogonal component that explains the variation orthogonal to the

class specific variation
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Whitney test (Supplementary information S7). In addition

to taurine, citric acid also showed significant alteration

between day1 and day30 as well as day1 and viral fever

patients. Therefore, these two metabolites could be con-

sidered as putative metabolic markers specific to P. vivax

infection. In order to check the diagnostic capability,

Fig. 2 Representative scores plots from the OPLSDA models of day1

and day5 urine NMR profiles. a Scores plot from day1 (black) and

day5 (red) test set and b scores plot from day1 (black) and day5 (red)

prediction set. Model Q2(cum) = 0.72. In a, the x-axis represents the
predictive component that explains the class specific variation in the

spectral variables and the y-axis represents the orthogonal component

that explains the variation orthogonal to the class specific variation. In

b the axes represent the same scores predicted on the basis of the test

set (Color figure online)

Table 2 Spectral variables/bins, loadings, Variable Importance on Projection (VIP) values and the corresponding metabolites assigned using

2-dimensional NMR spectra those were varying significantly across day1–4 and day30

Day compared

to day30

Spectral variable

elevated in day30

Loadings VIP Assigned

metabolite

Spectral variable

decreased in day30

Loadings VIP Assigned

metabolite

1 3.94 -0.57 3.45 Hippuric acid 3.42 0.61 4.39 Taurine

2.54 -0.44 3.31 Citric acid

3.54 -0.52 3.30 Glycine

7.82 -0.40 2.59 Hippuric acid

3.34 -0.38 2.53 3-Methylhistidine

7.54 -0.40 2.44 Hippuric acid

1.46 -0.37 2.05 Alanine

2 2.54 0.46 2.92 Citric acid 3.42 -0.45 2.53 Taurine

3.94 0.55 2.84 Hippuric acid 4.02 -0.34 2.31 Creatinine

3.54 0.53 2.83 Glycine 6.94 -0.71 2.10 Tyrosine

7.54 0.46 2.66 Hippuric acid

7.82 0.44 2.49 Hippuric acid

3.34 0.44 2.26 3-Methylhistidine

1.46 0.45 2.21 Alanine

3.78 0.37 2.17 Guanidinoacetate

3 7.54 0.41 2.72 Hippuric acid 6.94 -0.60 1.99 Tyrosine

3.54 0.50 2.72 Glycine

2.54 0.42 2.70 Citric acid

7.82 0.38 2.48 Hippuric acid

3.78 0.38 2.46 Guanidinoacetate

3.34 0.42 2.3 3-Methylhistidine

1.46 0.40 2.03 Alanine

4 3.54 0.37 2.87 Glycine – – – –

3.34 0.44 2.49 3-Methylhistidine

These bins were selected from the OPLSDA models constructed from the urine profiles of day1–4 and day30. Day5 was not compared to day30

because of negligible distinction shown in the relevant OPLSDA model
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receiver-operator-characteristic curves were generated

from these two metabolites’ levels of the three sets of

profiles (Fig. 4).

3.7 Diagnostic efficiency of excretory level of taurine

and citrate

Taurine and citrate were identified as the putative

biomarkers for the malarial infection as shown above.

Therefore, the levels of these two metabolites were also

used for the prediction. For this purpose, the average levels

of taurine and citrate, in terms of normalized peak intensity

of the NMR spectra, were obtained from the training set.

Then the taurine and citrate levels from the test set samples

were also obtained. The levels from the test set were

blindly used to assign the identity (day1/day5) of the test

set samples. To this end, two different approaches were

tried—either of the two metabolites was individually used

Fig. 3 Representative scores plots from the OPLSDA models of viral

fever patients (blue) malaria day1 (black) and day30 (red) urine NMR

profiles. a Scores plot from malaria day1 (black) and viral fever (blue)

patients’ urine sample NMR profiles, Model Q2(cum) = 0.35 and

b scores plot from malaria day30 (red) and viral fever patients’ (blue)

urine sample NMR profiles. In each of the plots, the x-axis represents

the predictive component that explains the class specific variation in

the spectral variables and the y-axis represents the orthogonal

component that explains the variation orthogonal to the class specific

variation (Color figure online)

Table 3 Spectral variables/bins, loadings, Variable Importance on Projection (VIP) values and the corresponding metabolites assigned using

2-dimensional NMR spectra those were varying significantly across malaria day1 and viral fever patients/malaria day30 and viral fever patients

Malaria day

compared to day

viral fever profiles

Spectral variable

elevated in viral

fever

Loadings VIP Assigned

metabolite

Spectral variable

decreased in viral

fever

Loadings VIP Assigned

metabolite

1 1.26 -0.51 2.02 Suberic/sebacic acid 4.06 0.56 6.46 Creatinine

3.90 0.45 2.70 Paracetamol

3.42 0.57 2.67 Taurine

3.94 0.52 2.38 Hippuric acid

3.74 0.43 2.19 Erythritol

4.26 0.62 2.15 Unconfirmed

3.70 0.41 2.13 Citrulline/DMG

30 4.06 0.65 6.57 Creatinine

3.94 0.75 3.71 Hippurate

3.74 0.64 2.83 Erythritol

3.98 0.69 2.73 Histidine

3.90 0.49 2.48 Creatine

3.70 0.49 2.42 DMG/citrulline

3.54 0.58 2.23 Glycine

1.78 0.58 2.20 Unconfirmed

3.78 0.43 2.02 Guanidinoacetate

These bins were selected from the OPLSDA models constructed from the urine profiles of day1-viral fever and day30-viral fever OPLSDA

models
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for prediction or they were used together. While using both

metabolites for prediction the following criterions were

used: (a) If prediction by at least one metabolite is correct,

it is taken as correct prediction, (b) If one metabolite pre-

dicts wrong and other one could not decide or both predict

wrong—it is taken as wrong prediction, and (c) If both

metabolites could not decide—it is taken as no decision.

Following this procedure, 44.2 % correct and 28.8 %

wrong prediction was made using taurine. *27 % samples

could not be judged. Citrate level was able to predict

*52.9 % samples correctly and wrong prediction was

made for *16.4 % of the samples. For *6.7 % of the

samples, the identity could not be judged. While using both

the metabolites together, significant improvement was

achieved. *81 % correct prediction was achieved in this

case along with *16 % of wrong prediction. *3 % of the

sample could not be assigned any identity.

4 Discussion

4.1 Alteration in metabolism upon P. vivax infection

Age old diseases such as malaria pose newer global threats

that could only be resolved through understanding of the

underlying mechanism that modulates the changes in the

Fig. 4 a, b the relative levels of

excretion of taurine and citrate,

respectively, in the urine of

day1 (d1) and day30 (d30) of

malaria patients and viral fever

patients (VF). The normalized

spectral intensity (y-axis) of the

relevant peaks of the two

metabolites is compared here. In

both cases p\ 0.05 when d1–

VF are compared. c–f The

receiver operator characteristics

(ROC) curves generated from

the intensity values and the class

of population. c, d The ROC

curve generated from urinary

taurine levels of d1–d30 and

d1–VF population, respectively;

e, f the ROC curve generated

from urinary citrate levels of

d1–d30 and d1–VF population,

respectively. A = area under

the ROC curve in each case
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host during the infection. Our laboratory has shown that

profiling of metabolites in the biofluids and tissues of the

infected individuals may be the key in understanding the

underlying molecular mechanism of disease progression as

well as discovery of biomarkers (Basant et al. 2010; Sen-

gupta et al. 2011a, b; Ghosh et al. 2012). In this report, we

longitudinally monitored malaria patients infected by P.

vivax for a maximum of five days as in-patients in a normal

hospital setting. As a follow-up, samples were collected

from these patients 25 day after they were discharged from

the hospital on completion of treatment (day30). This latter

sampling thus provided us with a baseline data for each

person. We did NMR spectroscopic profiling of the urine

samples obtained from the patients at each day followed by

multivariate statistical analysis of those profiles to arrive at

our conclusions. In order to confirm the malaria specificity

of our results, we compared the urine NMR profiles of

malaria patients with urine NMR profiles of viral fever

patients.

We have earlier reported a distinct clustering of urine

NMR profiles of malaria infected patients from that of

uninfected healthy population (Sengupta et al. 2011a, b).

Our current analysis suggests significant clustering of the

day1 urine NMR profile of individual malaria patient from

that of the day30 urine NMR profile (Fig. 1a). In addition,

we observed that the distinction improves as the treatment

ensues up to the 3rd day and then declines (S3). Day5 urine

NMR profiles seem to have the least distinction from that

of day30 profiles (S3). In addition, the longitudinal tra-

jectories of hippuric acid, glycine, 3-methylhistidine, ala-

nine and tyrosine also showed similar behavior in terms of

inflexion points at day2/3 (Supplementary information S5).

Since, urine can be considered as a biofluid that reflects the

physiological homeostasis, it is tempting to speculate that

physiology started to return to its original state around

day3. This observation may be explored further. Specific

patterns of the metabolite recovery were observed. For

example, day1 urine samples showed significantly de-

creased excretion of hippuric acid, citric acid, glycine,

3-methylhistidine and alanine along with enhanced excre-

tion of taurine (Table 2). Day2 onwards, excretory level of

guanidinoacetate started to fall and that of tyrosine started

to rise. Day4 only showed decreased excretion of glycine

and 3-methylhistidine. However, investigation into the

malaria specificity of these metabolic features revealed that

some of them share commonality with the metabolic cor-

relates of viral fever patients. In fact, only hippurate, tau-

rine and citrate showed significant difference between the

excretory levels of day1 profiles of P. vivax infected pa-

tients and viral fever patients. Moreover, the hippurate and

taurine levels are also different across the day30 profiles as

well as viral fever patients. This suggests that the other

metabolic correlates could be the signature of the fever

related changes. Together, they probably indicated changes

in gut microfloral co-metabolism, fatty acid b-oxidation
and the detoxification process in general. We recognize,

however, that some of the responses could be manifesta-

tions of drug response. In fact, the responses we observe is

a collective of drug, parasite and other effects. It would be

difficult to single out the drug related response without an

untreated control group which, at this point, is beyond

ethical consideration. Together, these observations would

lead to a better understanding of the multimodal host re-

sponse to the P. vivax infection.

4.2 Towards non-invasive diagnosis of P. vivax

infection

It is evident that a simplified non-invasive diagnostic

technique for malaria is the key to prevent the misdiagnosis

of the infection. This paper reports such a technique by

using the 1H NMR profiling of urine samples obtained from

the P. vivax infected and recovered patients. Here, we show

the possibility to identify the infected and recovered pa-

tients by the multivariate profiling of the NMR spectra

obtained from the urine of the patients (Fig. 2b). This, to

the best of our knowledge, is the first report attempting the

non-invasive diagnosis of malarial infection. In addition to

this, we could demonstrate a fairly linear trend of the

parasitemia of the patients to the urine 1H NMR scores

obtained from the OPLS modeling (S6). This suggests the

possibility of a non invasive prediction of parasitemia.

Since the parasitemia of the population under study is fairly

low (0.07 ± 0.04 %, Table 1), this approach promises the

added advantage of detecting/predicting parasite load even

at low levels of parasitemia.

In order to address the issue of misdiagnosis of other

non-malarial febrile illnesses (NMFI) as malarial infection,

it is important to employ appropriate NMFI control

population. This was achieved by recruiting viral fever

patients and by comparing their urinary metabolic profiles

with that of day1 and day30 of the P. vivax infected pa-

tients. To this end, we could show that the urine profiles of

the viral fever patients are clearly distinct from the day1

and day30 urine NMR profiles of malaria patients (Fig. 3).

Alteration of certain metabolites in this case would be re-

sults of viral fever infection or inherent population differ-

ence. These are metabolites which were distinct across the

viral fever—day1 samples and viral fever—day30 sets,

such as creatinine, erythritol, citrulline and DMG. How-

ever, metabolites that are distinct across viral fever day1

and malaria day1–30 sets could be taken as features

specific to malarial infection. Taurine and citrate were the

metabolites that showed this feature. Of these two, analysis

of the ROC curve generated showed that taurine may be a

better candidate biomarker for the malarial infection (ROC
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curve area 0.81, Fig. 4a). Further, when the levels of tau-

rine and citrate were used together to predict the unknown

samples and *81 % of correct prediction was observed.

Compared to this, studies with malaria patients in UK

showed 29.4–77.1 % of correct diagnosis depending upon

the type of Plasmodium spp infection and/or single or

mixed infection (Milne et al. 1994). Speculations are that

this percentage may decrease with larger sample size

(Hanscheid 2003). The problem with blood smear mi-

croscopy, specifically with low level transmission, remains

to be linked to time taken and personnel expertise. On the

other hand, urinary biomarkers may be detected using

simple assay protocols. Rapid Diagnostic Tests based on

the parasite antigen generally show better sensitivity than

blood smear tests (Stauffer et al. 2009; Batwala et al.

2010). The higher costs and lack of quantization remain

two major concerns. However, it may be prudent to com-

pare the diagnostic efficacy of the proposed biomarker with

already existing techniques with respect to a third tech-

nique such as polymerase chain reaction.

Another option is to use the whole NMR profile as the

diagnostic parameter. To this end, our data shows very

good possibility. We could show *85 % of correct pre-

diction of infected samples from a cohort of urine profiles

belonging to same individuals during infection and after

treatment. While comparing this method with the predic-

tion by using taurine alone, we demonstrated that identi-

fication by the global profile acts better as the latter

resulted in 55 % prediction.

Therefore, we report the first approach to characterize

the recovery profile and it’s utility in the patient manage-

ment and non-invasive diagnosis of P. vivax infection. In

fact, this approach can further be extended to other Plas-

modium infections to validate the specificity of the

metabolites we observe to P. vivax. Nevertheless, the re-

sults presented are very encouraging and raise the possi-

bility of the non-invasive diagnosis of vivax malaria and its

severity. This approach may prove useful for rapid diag-

nosis of infection as well as elucidation of the parasitemia

in the infected population.

5 Conclusions

This paper reports the first ever non-invasive study of the

recovery profile of P. vivax infected patients using urine

samples. We delineated the multimodal metabolic response

during the malarial infection and recovery. In addition, we

could also demonstrate that specific pattern exists in the re-

covery of the patients that might be useful in optimum man-

agement of post-infection drug administration. Moreover, our

study also suggests thepossibility of non-invasivediagnosis of

malarial infection using the metabolic profiling of the urine

from the patients. We could also show that malarial para-

sitemia and associated disorders such as malarial anemia may

also be diagnosed using the urine metabolic profile.

Specifically, urinary excretion of metabolites such as taurine

and citrate may be of diagnostic interest.
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