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Abstract Univariate hypotheses tests such as Student’s

t test or variance analysis (ANOVA) can help to answer a

variety of questions in metabolomics data analysis. The

statistical power of these tests depends on the setup of the

experiment, the experimental design and the analytical var-

iance of the actual observations. In this paper, we demon-

strate how a well-designed pilot study prior to an experiment

with the aim to find differences between e.g. several geno-

types, can help to determine the variance at multiple levels

ranging from biological variance, sample preparation to

instrumental variances. Next, we illustrate how these vari-

ances can be used to obtain several parameters (e.g. mini-

mum statistically significant effect, number of required

replicates and error probabilities) which influence the design

of the actual study. In particular, we are going to sketch how

technical replicates can improve the performance of a test,

when they are correctly used in the statistical analysis, e.g.

with a hierarchical model. Finally, we demonstrate the pro-

cess of evaluating the trade-off between different experi-

mental designs with different replication strategies. The

choice of an experimental design beyond the gut feeling can

be influenced by factors such as costs, sample availability

and the accuracy of of the tests. We use metabolite profiles of

the model plantArabidopsis thalianameasured on an UPLC-

ESI/QqTOF-MS as real-world dataset, but the approach is

equally applicable to other sample types and measurement

methods like NMR based metabolomics.

Keywords Metabolomics � Statistics � Variances �
Hierarchical experiment design

1 Introduction

The aim of metabolomics is to obtain a snapshot of

metabolite levels in biological samples. Identification and

quantification of metabolites help to understand the meta-

bolic state and metabolic changes e.g. in response to

environmental stimuli. Mass spectrometry (MS) is an

important analytical method in metabolomics experiments

(Dunn 2008), which provides high level of sensitivity for

quantification as well as structural hints towards identifi-

cation (Dunn et al. 2013).

One aim of metabolomics is to detect differences

between sample classes, e.g. the comparison of different

genotypes (Broadhurst and Kell 2006). Commonly, Stu-

dent’s t test (Student 1908) is used as univariate hypothesis

test in order to detect significant changes in measured data

and to check whether different sample classes have the
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same mean of feature intensities l1 ¼ l2 or whether they

differ significantly. ANOVA (Tutz et al. 1996) is used to

compare the intensities among more than two sample

classes. Another level of generalisation are multilevel

mixed models, where observed data is approximated by

linear regression models and thus both fixed and random

effects can be modelled (Pinheiro and Bates 2014).

Recent papers have described the appropriate design of

experiments in order to optimize the sample processing

steps and metabolomics protocols (Danielsson et al. 2012;

Eliasson et al. 2012). However, they did not reflect on the

design of experiment in relation to biological questions.

The Metabolomics Standards Initiative (MSI) has pub-

lished recommendations for reporting statistical analyses of

metabolite data (Goodacre et al. 2007) because the fact has

been criticized that ‘‘only a small percentage of papers in

metabolomics make much of importance of statistics’’

(Broadhurst and Kell 2006), especially concerning the

appropriate experimental design for addressing biological

questions. The main differences between univariate and

multivariate statistical methods are discussed in Saccenti

et al. (2013). The tools and challenges in metabolomics

data analysis are reviewed in Hendriks et al. (2011),

while Vinaixa et al. (2012) is focused on a workflow to

apply univariate statistical methods. Here, we highlight the

use of univariate methods in metabolomics experiments

with a focus on replication types, to design a multi-level

study as suggested in Hendriks et al. (2011). For both the

Student’s t test and ANOVA it is important to accurately

estimate the mean and variance of the intensities. The

uncertainty when determining these values directly influ-

ences experimental design decisions for a study, such as the

number of samples, whether or not and how many technical

replicates are required to assure the study‘s statistical

validity. The choice of an experimental setup is also

influenced by considering costs and experimental

constraints.

In microarray analysis, suggestions for specific tests to

cope with small sample sizes have been published for a

long time, see e.g. (Baldi and Long 2001; Lönnstedt and

Speed 2001). Moreover, the use of different replication

types as well as the amount of samples in relation to sta-

tistical validity has been discussed for epidemiology stud-

ies (Donner and Klar 1996; Dreyhaupt et al. 2013).

However, little attention has been paid to these issues in the

field of metabolomics.

Depending on the experimental design, several sources

of variance are present in metabolomics data that influence

type and result of the hypothesis tests. Previous studies

have analysed the total of variances observed for technical,

preparation and biological replicates (Roepenack-Lahaye

et al. 2004).

Here we present a detailed analysis of all variance lev-

els. We suggest a pilot study with a hierarchical experiment

design, which allows the usage of a nested linear regression

model to obtain exact and unbiased estimates of individual

variances at different levels using random effects on dif-

ferent levels. The metabolite intensities include the fixed

effect we are interested in for the detection of biomarkers,

and random effects that occur at different steps or levels

during the experiment. Multilevel mixed models can cap-

ture both types of effects and their hierarchical structure

(Davis 2002). In addition, mixed models can cope with

uneven sample numbers, inhomogeneous variances, miss-

ing values and the structure of dependent observations.

However, in this paper we restrict the discussion to the case

of equal sample numbers and homogeneous variances, and

focus on the effect from not-independent measurements

resulting from the experimental design. We describe how

these dependencies can be handled using the commonly

used t test statistics. We are going to illustrate that a

hierarchical t test correctly includes both biological and

technical replicates without distorting the results. We also

provide the information of the implementation for the

general case, a hierarchical ANOVA, which is a restricted

mixed model, to analyse such datasets from hierarchical

experiments.

Additionally, we consider the impact of the respective

number of replicates on the statistical power of the tests,

which indicates statistical validity. Moreover, we provide

functions to calculate quantities like the resulting power,

required number of replicates or the minimal statistically

significant effect for different combinations of replicates.

We can associate costs related to different levels of repli-

cation which are not limited to actual expenses, but also

human efforts, availability of samples or time constraints.

The overall aim is to find a compromise between expenses

and the quality of inference possible in a particular

experiment. In addition to general information, we present

an example with real-world data from metabolite profiles

of Arabidopsis thaliana.

2 Materials and methods

In this section, we explain the hierarchical experiment

design for our pilot study. Furthermore, we mention

methods for calculating statistical power and confidence

interval of means as indicators of expected quality of

hypothesis testing.

The measured MS data are first preprocessed with fea-

ture detection algorithms to reduce the raw data to feature

lists resembling metabolite abundances, and then with

alignment algorithms to produce a single M � S matrix of
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mass features observed across the samples. This matrix is

the basis of the subsequent statistical analysis.

2.1 Pilot study to identify sources of variation in MS

experiments

The hierarchical experiment design is the precondition to

quantify sources of variation separately using a linear

hierarchical regression model, which is a special case of a

linear mixed model. We then perform a simulation to

determine the number of observations in each level of the

hierarchical experiment.

2.1.1 Hierarchical experimental design

A hierarchical experiment design, shown in Fig. 1, was

used to quantify variation at different levels of the exper-

iment. Three sources of variation in MS experiments have

been considered: (i) instrumental variation, (ii) preparation

variation (both will later be combined into technical vari-

ation) and (iii) biological variation, which in this case is

variation between plants. On top of these, other levels like

e.g. experimental design factors or environmental variation

could be introduced, but this was not examined in this

paper. For the quantification we prepared a hierarchical set

of samples at different levels of variation. The total vari-

ation is the sum of all three variations.

2.1.2 Sample preparation

Arabidopsis thaliana Col-0 was used as plant material. The

plants were grown on soil in a growth chamber under

controlled conditions. In the following, we refer to indi-

vidual plants (grown at the same time and under the same

conditions) as biological replicates. The frozen leaf mate-

rial of each plant was ground and weighed into two sam-

ples (preparation replicates) using a cryogenics robot1 with

a weighing error � 5 %. Each extract was measured twice

(instrument replicates) under identical conditions. Overall

N ¼ 27 plants, E ¼ 2 preparations, and I ¼ 2 LC-MS runs

resulted in N � E � I = 108 LC/MS runs. Full details are

available in supplemental material S1.

2.1.3 Mass spectrometry analysis and data processing

Metabolite intensities were recorded according to Böttcher

et al. (2009). In brief, the chromatographic separation was

performed on a Waters Acquity UPLC system coupled to a

Bruker micrOTOF-Q mass spectrometer. Mass spectra

were recorded in positive ion centroid mode with a scan

rate of 3 Hz and a mass range of 100–1000 m/z. Full

details are available in supplemental material S1. This

experimental setup can routinely detect semi-polar plant

metabolites from major biosynthetic classes including

glucosinolates, indolic compounds, phenylpropanoids,

benzenoids, flavonoids, terpenes and fatty acid derivatives

(Böttcher et al. 2011). Processing of MS raw data,

including peak picking and retention time correction, was

performed with XCMS (Smith et al. 2006). All statistical

calculations were performed in R (http://www.r-project.

org/). An underlying assumption of the original Student’s

t test (and also ANOVA) is that the mean intensities are

normally distributed. To transform the data towards more

normally distributed values, all gathered metabolite inten-

sities were logarithmized. The raw data files, the prepro-

cessed peak matrix and the protocol descriptions have been

submitted to the Metabolights repository (Haug et al.

2013), and are available under the accession number

MTBLS742.

2.1.4 Variance estimation

Only the overall variance r2
tot, i.e. the sum of technical and

biological variances, can be estimated directly from the

dataset. To obtain an unbiased estimation at individual

hierarchical levels (Fig. 1), we model the instrumental

r2
instr , preparation r2

prep and biological variances r2
biol as

random effects with a three-level linear regression model

for each detected feature:

Ynei ¼ lþ bn þ cne þ dnei ð1Þ

where Ynei is the observed measurement of injection i of

extraction e of plant n; l the overall mean of population, bn

Fig. 1 Hierarchical experiment design. At all levels of variation

replicates were prepared: to extract biological variation several plants

were grown. From each plant, several extractions were performed, to

assess the preparation variation. To identify the instrumental variation

each extract was measured several times. The number of LC-MS

datasets is the product of the number of plants N, extracts E per plant

and injections I per extract

1 http://www.labman.co.uk/portfolio-type/ipb-cryogenic-grinder-and-fee

der-system.
2 http://www.ebi.ac.uk/metabolights/MTBLS74.
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the independent random biological effect on plant n; cne the

independent random preparation effect on preparation e in

plant n and dnei the independent random instrumental effect

on injection i in preparation e in plant n. The random

effects bn; cne; dnei are independent between each other.

The unbiased estimator is explained in supplemental

information S2. We used the data of the pilot study and the

preprocessing as described in 2.1.1 and 2.1.3. In general,

we report the average across all features, but in 3.1.1 we

also discuss the proportion of biological variance to total

variance
r2
biol

r2
tot

, also known as intra-class correlation (ICC).

2.1.5 Confidence of variance estimation

With the multilevel linear regression model and hierar-

chical experiment design we can estimate the variances of

different levels, but we also want to ensure estimation with

a sufficiently small error. Therefore, we need a certain

number of observations in each variance level. We per-

formed a repeated simulation of observations of hierar-

chical experiments to obtain the minimal number of

observations to estimate variances in Algorithm 1, more

details are provided in supplemental section S3. The better

the estimation of a parameter, the more closer the estimator

is to the true value. With this simulation we can calculate

the variation of the estimated variances. We determine the

95 % -quantile of estimated variances in each level. The

smaller the quantile, the better the estimation. Hence, the

number of plants N, the number of preparations E, and the

number of measurements I can be determined with Algo-

rithm 1 if the maximal size of the 95 % -quantile of esti-

mated variances in each level is given.

2.2 Hypotheses tests for differential metabolites

and biomarker detection

Biomarker detection and the analysis for differential

metabolites requires to detect intensity differences between

classes of samples. We give a short explanation of

hypothesis tests used here and the concept of power and the

impact of the degrees of freedom on test statistics to assess

their reliability.

2.2.1 Hierarchical and non-hierarchical hypotheses tests

If there are only two sample classes to compare, then the

Student’s t test can be used to find differences in means of

observed intensities. For more than two sample classes, the

ANalysis Of VAriances, short ANOVA, is used. This

method produces an F-statistic to test the class means for

equality using the ratio of the variance calculated among

the means to the variance within the samples, shown in

Table S1 in the supplemental section S6. Both tests are

non-hierarchical models, and can not be applied directly to

multilevel observations.

The hierarchical version of ANOVA, nested ANOVA,

implicitly averages the technical replicates and can thus be

applied to multiple levels with biological and technical

replicates. For just two sample classes, a hierarchical Stu-

dent’s t test can also be derived as shown in Table S1 in the

supplemental section S6. Both are special cases of multilevel

linear mixed models (Raudenbush and Bryk 2002). Note

that, if the technical replicates of each biological observation

are averaged beforehand, the level of technical replicates is

eliminated and the non-hierarchical test can be used.

2.2.2 Statistical power and confidence interval of means

The statistical power of a test is a measure of the expected

quality of an experimental design (Snijders 2001). The a
cut-off in hypotheses tests defines the maximum allowed

probability of Type I errors, i.e. false positives, where a

non-differential feature is incorrectly determined as dif-

ferential. The statistical power is defined as 1 � b, where b
is the probability of errors of type II, and hence 1 � b is the

minimum desired probability to detect the true positives

among all differential features.

The power can be visualised as the area under the curve

of the alternative hypothesis H1 in a range between ½ta;1Þ
using a right-tailed test and ta as the critical t value given

the threshold a. The graphical representation of the statis-

tical power calculation is shown in supplemental material

S4. The power can also be calculated if both the distribu-

tion under the null hypothesis and under the alternative

hypothesis are known.

In the case of the Student’s t test, the shape of the dis-

tribution of both the null and the alternative hypothesis

depends on the number of observations in the test, in our

example the number of plants N in each sample class. The

location of the distribution of the alternative hypothesis

depends on variance r2 and the effect size d, which is

denoted by the difference in means jl1 � l2j, and also on

the number of observations N in the sample classes.

Another way to assess the test quality is the standard error

of the difference in means (Holmes 2004). Under the

assumption that the effect size is normally distributed with

jl1 � l2j and standard deviation r, then the standard error

of difference in means is denoted as SE ¼ r
ffiffiffiffiffiffi

2�N
p . The

standard error, and thus the variance and the number of

observations, determine the size of the 95% confidence

interval soc ¼ 2 � ta¼0:5;DoF¼2�ðN�1Þ � SE within the true

value of difference in means is. The smaller the size of

confidence interval the more likely the more precise the

estimates accuracy.

854 D. Trutschel et al.

123



If four of the five parameters (i) power 1 � b, where b is

the probability of error type II, (ii) number of samples N,

(iii) effect d between two groups, and (iv)variance r2 are

given, the missing parameter can be calculated (Broadhurst

and Kell 2006). The R package stats provides the

function power.t.test for the Student’s t test.

In both the hierarchical and the non-hierarchical case,

the distribution under the null hypothesis l1 ¼ l2 is t-

distributed with DoF ¼ 2 � ðN � 1Þ degrees of freedom.

The distribution of the alternative is a non-central t-dis-

tribution with the same number of DoF and the non-cen-

trality-parameter ncp ¼
ffiffiffi

N
2

q

l1�l2

r . So via ncp the

distribution of the alternative hypothesis depends on the

three parameters N,d; r2, which determine the position of

the non-central t-distribution.

Here, we are interested in the influence of different

sources of variation, replication strategies and sample sizes

have on the statistical power in multilevel models (Snijders

2005).

In the case of non-hierarchical experiments the variance

is r2 ¼ r2
bio þ r2tech, while in the case of hierarchical

experiments with different levels of variances r2 ¼ r2
bio þ

r2tech
T : T is the number of technical replicates for each bio-

logical sample and the technical variance is

r2
tech ¼ r2

prep þ r2
instr, where each preparation is a technical

replicate which is measured once.

Thus the distribution of the alternative hypothesis

between hierarchical and non-hierarchical models are dif-

ferent because r2
tech [

r2
tech

T
, or in other words the 95%

confidence interval of true difference in means is smaller

when calculated via a hierarchical model compared to a

non-hierarchical model.

We have implemented power calculation for the hier-

archical case in the R-function power.hier-

arch.ttest(). The example in the supplemental

material vignette shows the usage. The function is analo-

gous to power.t.test, but requires the individual

variances r2
tech and r2

bio and the number of technical rep-

licates T .

3 Results and discussions

In this section we quantify the variance levels of our study.

We also investigate the quality of variance estimation to

guide the choice of required observations in each variance

level. Knowing the variances we can calculate the loss of

power using the total variance instead of biological vari-

ance in Student’s t test and discuss the precision of tests

with regard to the confidence interval of the mean effect

size. Furthermore, we give some advice on using technical

replicates or not, and how to include them in the analysis.

3.1 Sources of variation in MS experiments

3.1.1 Quantify sources of variation

We have implemented the variance estimation for pilot

studies following a hierarchical design as introduced in

Sect. 2.1.4 in R. The user needs to supply the preprocessed

mass feature intensity matrix, which can be obtained with

XCMS as described in Sect. 2.1.3, together with a

description matrix that assigns the individual samples and

the corresponding replication level. A detailed example is

available as supplemental vignette.

We have performed the pilot study for a typical

A. thaliana metabolomics experiment, as described in

Sect. 2.1.2. After the data preprocessing of the 108 sam-

ples, we obtained a 108 � 642 intensity matrix. The actual

identity of our 642 features is for the remainder of this

paper not relevant.

Using the methods implemented in R we determined the

individual variances in the dataset. Figure 2 shows the

estimated variances for all S ¼ 642 features both at the

individual levels and the total variance. Negative variances

can occur in a few cases in the upper levels because the

estimator is unbiased.

The mean values of all feature variances are

r2
instr ¼ 0:043; r2

prep ¼ 0:076; r2
biol ¼ 0:172. The level

increases from technical to biological variation

r2
instr \ r2

prep \ r2
biol and the mean total variance r2

tot ¼
0:291 is the sum of these individual contributions.

These values will vary according to the actual pilot

study. If the samples are obtained from a homogeneous

culture of e.g. bacteria, the biological variance might be

lower, while a more complex sample processing (including

e.g. solid phase SPME cartridges, vacuum concentration

and re-solving) could increase the preparation variation.

We can also derive the proportion of each variance

source of the total variance, analogous to the intra-class

correlation (ICC) definitions in Sampson et al. (2013). For

example the mean proportion of plant variance on total

variance is the average proportion across all S features in

the data matrix. It is calculated as ICCmean ¼ 1
S

PS
i ICCi

with ICCi ¼ ir2
biol

ir2
tot

for each feature i. In relative numbers the

average instrumental variance is 16.7 %, preparation vari-

ance is 29.1 %, and plant variance is 54.2 % of the total.

We can also use the distribution of ICCi of the individual

features to illustrate the amount of features with a mini-

mum ICC, as shown in the second graph in Fig. 2. In our

case, half of the features have in ICC above 0:58.
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In our pilot study we performed 108 LC/MS measure-

ments altogether, but we will describe in the next subsec-

tion whether also a lower number of plants N\27 would

lead to sufficiently reliable variance estimates.

3.1.2 Influence of replicate numbers on variance

estimation quality

The variation of an estimated parameter can be used as a

measure of the quality of the estimation, because the less

the estimator varies, the more accurate the estimator is. The

estimation of variances described above results from the

hierarchical design of the pilot study. We now determine

how confident these estimates are, using the variance of the

variance estimation depending on the number of replicates.

We simulate measurements in our hierarchical experi-

ment design, drawing the intensities of one feature from a

normal distribution with the mean and variance of our

actual setup determined from the pilot study. With this

simulated data, we can estimate the variances in each level.

This simulation is repeated a large number of times, to

determine the 95 % confidence interval of the variance

estimation as a measurement of quality of estimation, see

Algorithm 1 in supplemental section S3.

In Fig. 3 we show the width of the 95 %-confidence

interval of estimated variances for a combination of sim-

ulated numbers of replicates in several levels. From the

figure we can determine whether an increase in the number

of preparations or in the number of biological replicates

results in a more reliable variance estimation.

For the topmost level of biological variation r2
biol, we

observe that the quality of the estimation depends almost

Fig. 2 The distribution of estimated variances of all measured

features in leaf samples. a from left to right the estimated variances of

all measured features S ¼ 642 in leaf samples for r2
instr; r

2
prep;r

2
biol,

and r2
tot are plotted. Each dot represents the estimated variance of one

feature in the sample. The mean of all estimated feature variances for

each variance level is given below and shown as black bar. b The

cumulative distribution of ICCi for all features i. E.g. 80 % of the

features have an ICC above 0:31, half of the features have an ICC

above 0:58, and even 20 % are above 0:8. The higher the proportion

of features with a large ICC, the more important is a hierarchical

experiment

Fig. 3 95 %-confidence interval of estimated plant (upper) and

preparation variance (lower). Using Algorithm 1 in supplementary

material, we simulated data for N ¼ 2; 3; :::; 30 plants and

E ¼ 2; 3; :::; 12. The quality of the estimation of plant variance in

the upper plot is (mostly) independent of the number of extractions

and only depends on N, while the estimation of preparation variance

improves with both higher E and N. Generally, the quality of

estimation is related to the product of observation numbers in the

current level of preparations and the level of plants above
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exclusively on the number of plant replicates (see top of

Fig. 3). Because of the hierarchical design of the pilot

study, we do not need a large number of preparation rep-

licates from a single plant to reliably preparation variation

estimate r2
prep.

We recommend to not acquire more than two technical

(preparation or injection) replicates, and instead focus on

the biological replicates, because the quality of preparation

variance estimation is related to the product of the number

of plant and preparation replicates. More generally, the

quality of the variance estimation on any level is related to

the product of observations in this level and the levels

above.

In our case, if we want to estimate a plant variance with

�0:15 and preparation variance with �0:075 confidence of

95 % it is sufficient to use N ¼ 18 biological and E ¼ 2

preparation replicates in the pilot study.

3.2 Hypotheses tests for differential metabolites

and biomarker detection

3.2.1 Treating with different types of replications

In a typical metabolomics experiment, we need to detect

statistically significant features. In the simplest case, we

use a Student’s t test between two sample classes, while

ANOVA is used for more than two sample classes.

Because we are interested in the biological effects, a

large number of biological replicates might be needed to

accurately detect significant features. However, in reality

several constraints might apply which limit the number of

biological replicates, for example if only a finite number of

samples is available. In that case, technical replicates can

improve the accuracy of statistical tests.

The detection of differential features with the Student’s

t test has to be performed based on the biological replicates,

rather than using technical replicates, or even worse, com-

bining and treating technical and biological replicates as the

same (Pavlidis et al. 2003; Johnson et al. 2007). Therefore,

the measured biological and technical replicates must be

treated separately in the hypothesis test: the Student’s t test

assumes that all samples are independent observations.

Technical replicates of a sample are not independent from

each other. This would violate the most important

assumption and overestimates the degrees of freedom of the

underlying hypothesis distribution. In general this lead to

more false positives (Broadhurst and Kell 2006; Karp et al.

2005), as shown in Figure S3 in supplemental section S5.

Considering the problem of non-independent observations

scientists have to apply the correct analysis approach.

If a Student’s t test is used for the statistics, the correct

approach is to average the technical replicates (Broadhurst

and Kell 2006; Horgan 2007). Averaging technical repli-

cates will decrease the technical variance r2
tech. If technical

replicates are measured from several preparations, then the

technical variance decreases to
r2
prepþr2

instr

E
. If technical rep-

licates are injection replicates from the same preparation,

then the technical variance decreases to
r2
instr

I
þ r2

prep. Thus,

the observed total variance will be closer to the biological

variance.

But are the technical replicates required in first place?

The answer depends both on the achievable improvements

in statistical power, but also on the actual costs and

required efforts. If the estimated biological variance r2
biol is

much greater than the technical variances r2
prep and r2

instr,

doubling (or even tripling) the number of measurements

will only gain little power, but significantly increase the

effort required for data analysis and storage, while the

same increase in power could also be achieved by

increasing the number of biological replicates by some

percentage.

If the technical variance r2
tech is too high, or if additional

power resulting from technical replicates is required, they

can be incorporated explicitly into a hierarchical type of

ANOVA, also called nested variance analysis (Karp et al.

2005), or even more general, a multilevel mixed model,

rather than using the simple averaging approach described

above. In fact, the Student’s t test can be interpreted as a

special case of the general ANOVA, and this in turn as a

special case of the the nested or hierarchical ANOVA

(Ahrens 1967), which allows to explicitly consider differ-

ent levels of replicates and thus variances, as described in

Table 1 in supplemental section 6.

The R code in the supplemental information vignette

provides the method diffAnovData() to detect sig-

nificant features in experiments with both technical and

biological replicates, using nested ANOVA. The usage is

described in detail in the vignette itself.

3.2.2 Example for experimental design and trade-off

decisions

Here we provide a discussion of the trade-off decisions

using the variance levels we obtained for our analytical

platform from the pilot study similar to the discussion of

the influence of different sources of variability on the

power of a test in Sampson et al. (2013). We use the fol-

lowing simple design as an example: two different sample

classes, such as genotype wild-type (WT) and mutant (MT)

are used. Using the variance estimation above, we obtain

for our analytical setup r2
biol ¼ 0:172 and r2

tech ¼ r2
instr þ

r2
prep ¼ 0:119 as the mean biological and technical vari-

ances of all features in our sample study.
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Because the hierarchical t test separates the technical

and biological variances, we implemented the new method

power.hierarch.ttest() in the R code in supple-

mental information vignette for power analysis. Therefore

we need the technical variance r2
techn, the biological vari-

ance r2
bio and number of technical replicates T of each

biological replicate, in addition to the parameters of the

Student’s t test power analysis.

With the functions in our implementation, four ques-

tions relevant to the experimental design decision can be

answered based on the variance estimation obtained in the

pilot study. First, we are interested in the minimal number

of biological replicates N required to detect differential

features with a statistically significant effect of d and at

least a power of 1 � b. Often, a power of more than 0:8 is

deemed to be sufficient. If we want to be able to detect an

effect of d ¼ 1 with M ¼ 4 measurements (technical

replicates of each biological sample) and the observed

variances r2
biol ¼ 0:172 and r2

tech ¼ 0:119 determined

above in 3.1.1, a minimal number of N ¼ 5 plants from MT

and WT each is needed.

The effect d (also called log fold-change) is the differ-

ence between the mean values d ¼ jl1 � l2j with l being

the arithmetic mean of the logarithmic data.

Secondly, we want to know how many measurements M

of each biological replicate are required to detect differ-

ential features with a hierarchical t test if only a given

number of biological samples are available. For example,

M ¼ 27 technical replicates are needed if we limit the

number of biological replicates to N ¼ 4, and leave the

other parameters a; power; d; r2
biol and r2

tech as in the pre-

vious example. If the number of technical replicates is set

to one, then the hierarchical test will reduce to the com-

monly used non-hierarchical Student’s t test.

Thirdly, we determine the achievable power for a given

number of samples N and measurements M. Common

metabolomics experiment designs use e.g. four replicates

per population (Böttcher et al. 2009), and two technical

replicates are performed. For a given setup, a power of

1 � b ¼ 0:69 can be achieved for N ¼ 4 and M ¼ 2, so

that 69 % of all differential features with a mean difference

of d ¼ 1 can be detected.

Finally, the question arises, which mean differences can

be detected if at least 80 % true positive features are

demanded. In this example of N ¼ 4 samples and M ¼ 2

measurements per sample, the real effect d ¼ 1:15 is sta-

tistically significant.

Figure 4 provides a combined global view of the influ-

ence of replication on the achievable confidence interval of

the mean difference. The smaller the confidence interval,

the less uncertainty is in the results. We calculate the size

of the confidence interval of mean differences, for each

number of biological replicates N ¼ 2; :::; 100 and techni-

cal replicates M ¼ 1; 2; 5; 10; 100 per biological replicate

for the type I error probability of a ¼ 0:05. The figure

shows that the size of confidence interval decreases with

increasing number of biological replicates, and also that

additional technical replicates improve the results. But the

gain from additional technical replicates are much smaller,

and the practical effort for large numbers of technical

replicates is in general not justified by the increase in

detection ability. If the proportion of biological variation

on total
r2
bio

r2
tot

, decreases, technical replicates will be more

beneficial.

The experimentalists will have to decide whether the

increased quality of the test justifies the added costs and the

experimental effort when using more replicates. The costs

can be interpreted as both actual costs, or as relative costs

between biological and technical replicates.

We provide two further methods in the R code in sup-

plemental information vignette to support this decision.

First, supportMat() can be used to find all possible

combinations of biological and technical replicates in a

two-level hierarchical experiment design, given the

parameters a; 1 � b; d; r2
biol and r2

tech and a maximum of

possible number of biological and technical replicates.

Given a ratio of the costs between biological and technical

replicates, the second method minCostPoss() chooses

the combination which has the lowest costs. This

Fig. 4 Comparison of confidence interval sizes of fixed effect for

different numbers of biological replicates (x-axis) and technical

replicates (different line styles). The size of the 95 % confidence

interval of the fixed effect (corresponding to a ¼ 0:05) is shown on

the y-axis, assuming the variances obtained in the pilot study

(r2
biol ¼ 0:172 and r2

tech ¼ 0:119)
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comparison of costs can help to choose an efficient

experimental design.

For a given setup with a ¼ 0:05; 1 � b ¼ 0:8, esti-

mated variances r2
biol ¼ 0:172; r2

tech ¼ 0:119 and maxi-

mal possible number of N ¼ 100 biological and M ¼ 100

technical replicates, two examples are given in Table 1:

(a) for a minimum effect of d � 1:00 and different cost

relations, (b) for a fixed cost relation of 9 : 1, but various

minimum effects d. The table shows the ‘‘cheapest’’ pos-

sibility of replicates for each cost ratio between biological

and technical replicates and a given d ¼ 1:00 in rows 1, 2,

3 and 6. Biological replicates will be more expensive than

technical replicates until a ratio of 7:3, while at 8:2 the two

choices 5 biological and 2 technical replicates or 6 bio-

logical replicates without technical replication deliver the

same test quality at the same costs. For a fixed cost ratio,

the dependency between different effect sizes and repli-

cates can be compared. Table 1 shows for several effects

the number of technical and biological replicates required

to expect 80 % true differential features and only 5 % false

positives at a cost ratio of 9 : 1 in rows 4–10. For a real

effect of d ¼ 1:5 or below, technical replicates and the

hierarchical t test are superior (i.e. cheaper) than a normal

t test without technical replication.

4 Conclusion

In mass spectrometry-based metabolomics there are several

sources of variance. Based on a pilot study, we have shown

that the hierarchical variance analysis is a method to

quantify and separate these additive sources of variances.

Such a pilot study is also a tool to determine the different

sources of variance relative to the overall observed vari-

ance in an MS experiment and should be performed for

each analytical setup and each organism or tissue type. Our

proposed pilot study design is the most efficient to deter-

mine these variances. In our setup we found that the bio-

logical variance is larger than both the instrumental and

preparation variance combined.

The statistical power depends on (1) the observed vari-

ance, and (2) the number of biological replicates and

(3) the real effect that is relevant for the biological question

and which is desired to be statistically significant. To

decrease the influence of non-biological variance, technical

replicates can be acquired and analysed with a hierarchical

type of Student’s t test, or having more than two classes

with nested ANOVA, or in general with multilevel mixed

models. In the supplemental material we have shown that

the naı̈ve use of a Student’s t test for both technical and

biological replicates yields false positives due to an over-

estimation of the degrees of freedom. In scientific publi-

cations it is thus very important to clearly report the

structure of the experiment, and whether samples are

independent. This includes the types of replicates, to avoid

that ‘‘pseudo replicates’’ are used. Only with such infor-

mation it is possible to select the appropriate test statistics.

For large studies following the pilot experiment, an

optimal experiment design is highly desired to save costs

and effort, while maintaining a desired level of statistical

power. We have shown how different cost ratios between

technical and biological replicates can affect the overall

design. It should be noted that costs reflect both the mon-

etary as well as human and infrastructure resources

required to perform the experiment.

We provide the R code for the estimation of variances

and the calculation of costs and benefit (in terms of sta-

tistical power) under the GPL license to support research-

ers in the design of experiments.
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