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Abstract Fusarium graminearum and related species

commonly infest grains causing the devastating plant dis-

ease Fusarium head blight (FHB) and the formation of

trichothecene mycotoxins. The most relevant toxin is de-

oxynivalenol (DON), which acts as a virulence factor of the

pathogen. FHB is difficult to control and resistance to this

disease is a polygenic trait, mainly mediated by the quan-

titative trait loci (QTL) Fhb1 and Qfhs.ifa-5A. In this study

we established a targeted GC–MS based metabolomics

workflow comprising a standardized experimental setup for

growth, treatment and sampling of wheat ears and sub-

sequent GC–MS analysis followed by data processing and

evaluation of QC measures using tailored statistical and

bioinformatics tools. This workflow was applied to wheat

samples of six genotypes with varying levels of Fusarium

resistance, treated with either DON or water, and harvested

0, 12, 24, 48 and 96 h after treatment. The results suggest

that the primary carbohydrate metabolism and transport,

the citric acid cycle and the primary nitrogen metabolism

of wheat are clearly affected by DON treatment. Most

importantly significantly elevated levels of amino acids and

derived amines were observed. In particular, the concen-

trations of the three aromatic amino acids phenylalanine,

tyrosine, and tryptophan increased. No clear QTL specific

difference in the response could be observed except a

generally faster increase in shikimate pathway intermedi-

ates in genotypes containing Fhb1. The overall workflow

proved to be feasible and facilitated to obtain a more

comprehensive picture on the effect of DON on the central

metabolism of wheat.

Keywords Metabolomics � Wheat (Triticum aestivum) �
Plant–pathogen interaction � Metabolism � Deoxynivalenol
(vomitoxin) � Fusarium head blight (scab) �
Phenylpropanoids

1 Introduction

Fusarium head blight (FHB, scab) is a fungal plant disease

commonly affecting wheat and other small-grain cereals. It

is responsible for severe harvest losses and considered a

relevant global hazard for food safety and security (Cha-

kraborty and Newton 2011). The most important species

provoking FHB is Fusarium graminearum, which is also

known as the main producer of the trichothecene deoxy-

nivalenol (DON). This mycotoxin constitutes a major vir-

ulence factor of the fungus and effectively inhibits

eukaryotic protein translation (Pestka 2010). Besides the

severe economic impact of FHB, due to direct yield losses,

DON poses a health risk for consumers, and so also indirect

costs for mycotoxin risk management are very high. The
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use of fungicides is generally regarded as inefficient to

tackle FHB and trichothecene contamination alone (Le-

hoczki-Krsjak et al. 2010). Hence, breeding and planting of

FHB resistant wheat lines is considered the most practi-

cable and economical approach to manage the disease and

its adverse impacts.

Resistance towards FHB in wheat is controlled by sev-

eral quantitative trait loci (QTL) (Bai et al. 2003; Bu-

erstmayr et al. 2009; Somers et al. 2003), with Fhb1

(formerly Qfhs.ndsu-3BS) and Qfhs.ifa-5A being the most

important ones (Anderson et al. 2001). Wheat cultivars

containing the Fhb1 QTL are already planted on a large

scale in highly Fusarium affected areas in the United States

(McMullen et al. 2012). Qfhs.ifa-5A contributes mainly to

type I resistance, i.e. lowering the rate of initial infection.

Fhb1 and to a lesser extent also Qfhs.ifa-5A slows down or

even inhibits the spread of the pathogen from the initial

infection site (so-called type II resistance) (Schweiger et al.

2013). It has been proposed that the major resistance

mechanism conferred by Fhb1 is the conjugation of DON to

DON-3-glucoside (Lemmens et al. 2005). This conjugation

leads to an inactivation and much reduced toxicity of the

conjugate towards plants is observed compared to the free

toxin (Poppenberger et al. 2003). Recently, eight DON-

biotransformation products were detected in planta besides

the already known DON-3-glucoside using an untargeted

screening strategy (Kluger et al. 2013). This includes a

product annotated as DON-glutathione (GSH), further two

DON-GSH-related metabolites (the processing products

DON-S-cysteinyl-glycine and DON-S-cysteine) and five

unknown DON conjugates. While Fhb1was associated with

the formation of DON-3-glucoside, an association of GSH

mediated detoxification with QTL is unknown to date. DON

is a contributor to cellular injury and, besides inhibiting

eukaryotic ribosomes, also damages plasma membranes and

chloroplasts. Furthermore, it causes cell death in grains

through the triggering of reactive oxygen species (ROS)

such as hydrogen peroxide (Walter et al. 2010; Desmond

et al. 2008). Walter et al. (2008) used wheat cDNA arrays

(unfortunately covering only a small part of the genome) to

analyse the effect of DON on the transcriptome of a cross

between the cultivars ‘Remus’ and ‘CM-82036’. They

discriminated ten transcripts related to proteins with various

cellular functions and associated with the inheritance of

DON resistance and Fhb1. In barley transcriptome analysis

indicated a massive up regulation of cysteine biosynthesis

upon DON treatment but also a strong up regulation of gene

transcripts encoding ABC transporters, UDP-glucos-

yltransferases, cytochrome P450 s, and glutathione-S-

transferases (Gardiner et al. 2010a).

Metabolomics has a great potential to substantially

improve our understanding of plant–pathogen interactions,

allowing the observation of plant mechanisms to resist

pathogen induced stress and invasion based on small

molecules (Kushalappa and Gunnaiah 2013). The appli-

cation of GC-EI-MS in plant metabolite analysis has

become routine during the past 10–15 years (Allwood et al.

2009) and is regarded as the gold standard for the analysis

of primary metabolites (Fiehn et al. 2000; Hill and

Roessner 2013). Modern metabolic profiling approaches

offer the possibility to identify resistance-related metabo-

lites (induced by pathogen challenge and differentially

abundant and correlated with resistance), thereby contrib-

uting to an advanced understanding of their biosynthesis,

regulation and the underlying genes (Fiehn et al. 2000).

Despite the unquestionable importance of DON as viru-

lence factor and thus FHB disease development, surpris-

ingly to the best of our knowledge no studies have been

conducted to investigate the specific role of DON on the

wheat metabolome so far.

Therefore, in this study a suitable analytical platform

was established and applied to investigate the plant’s

response to the major fungal virulence factor DON at the

metabolome level. We focused on the effect of DON rather

than the overall response towards fungal infection on

purpose, to be able to clearly attribute the observed meta-

bolic changes to the toxin. Two parent wheat cultivars and

four derived near isogenic lines (NIL), all previously

studied with regard to their F. graminearum resistance

level and characterized at the transcriptome level during

infection (Kugler et al. 2013; Schweiger et al. 2013), were

tested. The NILs were employed to investigate the influ-

ence of two major QTL associated with FHB resistance. A

targeted approach was chosen to investigate whether

metabolites are differentially abundant upon treatment and/

or depending on the wheat genotype.

2 Experimental

2.1 Experimental design

2.1.1 Biosource

Six different spring wheat (Triticum aestivum L.) lines were

used in the experiments. The resistant parent cultivar ‘CM-

82036-1TP-10Y-OST-10Y-OM-OFC’ (abbreviated to ‘CM-

82036’) originated from the cross ‘Sumai#3’/’Thornbird-S’

and was developed in a shuttle breeding program between

CIMMYT Mexico and South America. It has a very high

level of resistance against FHB comparable to ‘Sumai#3’

(Buerstmayr et al. 1996) and against DON (Lemmens et al.

2005). The second parent ‘Remus’ (‘Sappo’/‘Mex’//‘Fa-

mos’) is a spring wheat cultivar developed at the Bavarian

State Institute for Agronomy in Freising, Germany. It pos-

sesses well-adapted agronomic characters for cultivation in
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Central Europe but is highly susceptible to Fusarium ear

infection and DON (Buerstmayr et al. 1996; Lemmens et al.

2005). In addition four near isogenic wheat lines (NILs),

which differed in two validated QTL (see Table 1) related to

the FHB resistance level (Fhb1 and Qfhs.ifa-5A) were

included in the experiment (Schweiger et al. 2013). TheNILs

have been developed from one BC5F1 plant with ‘Remus’ as

the recurrent parent (5 backcrosses). In the BC5F2 lines that

contain the resistance alleles from ‘CM-82036’ of bothFhb1

and Qfhs.ifa-5A, or either Fhb1 or Qfhs.ifa-5A or none have

been selected (Table 1).

2.1.2 Growth environment

Seeds of the spring wheat lines were germinated and the

seedlings were submitted to a cold treatment at 5 degrees

centigrade for one week to improve tillering. Pots (diam-

eter 23 cm) were filled with 7 L of a homemade substrate

(mix of 500 L heat-sterilized compost, 250 L peat, 10 kg

sand and 250 g rock flour). In each pot 5 plants of the same

wheat line were planted. During the experiment the pots

were watered if required (typically 3 times/week). Water

was applied until the substrate was completely wet and the

water started to seep out through the holes in the bottom of

the pot. The soil substrate contained sufficient minerals to

support seedling growth. At the end of tillering (stage 5 on

the Feekes scale) 2 g of a mineral fertilizer (COMPO

Blaukorn� ENTEC�, N/P/K/Mg: 14/7/17/2) was applied

per pot. During plant cultivation the plants were treated

twice a week overnight (10 h) with sulphur (Sx) (sulphur

evaporator, Nivola�) to prevent mildew. This treatment

was stopped when heading started.

Experimental design was a completely randomized

block with 5 (biological) replications. Upon reaching the

correct developmental stage, the ears were labeled before

treatment. Only one ear per plant was used in the experi-

ment to prevent possible systemic effects of an earlier

treated ear on the other later flowering ears of the same

plant. Experiments were done in a greenhouse with

computer-controlled settings for light, temperature and

relative air humidity. Light was provided by a mix (50:50)

of two types of lamps: 1) MASTER SON-T PIA Plus and

2) MASTER HPI-TPlus (Philips). Light intensity (outside

dark) was 360 lmol s-1 m-2 at 1 m above the soil

throughout the complete experiment. Relative air-humidity

was set between 60 and 70 % during plant growth. Tem-

perature (day/night) and duration of illumination (in hours)

varied according to the development stage of the plants:

after planting until the end of tillering (stage 3 on the

Feekes scale), 12 �C/10 �C/12 h; end tillering until mid-

stem extension when the ear starts to swell (stage 8),

14 �C/10 �C/14 h light; mid stem extension to start head-

ing (stage 10.1), 16 �C/14 �C/14 h; from the start of

heading until start of flowering (stage 10.51), 18 �C/14 �C/
14 h; and from the start of flowering (stage 10.51) until the

end of the experiment, 20 �C/18 �C/16 h. The seedlings

needed 9–10 weeks to reach the flowering stage.

2.1.3 Treatment

As mentioned above the plants were illuminated for

16 h day-1 during treatment. The lamps were switched on

at 05:00 am in the morning. Treatment of the ears started at

08:00 am. Flowering ears (stage 10.51) were selected and

individually labeled. A woolen thread was used to label the

lowest treated spikelet. In the left and the right floret of the

treated spikelets 10 lL of the DON solution (5 g/L in

water) was applied between the palea and the lemma

directly on the floret using a multi-stepper pipette without

wounding the plant. The central floret was not included.

Ten adjacent spikelets (located in the center of the ear)

starting with the labeled spikelet were treated in acropetal

direction. In total, one milligram toxin was applied per ear,

equally distributed in main 20 florets. Mock ears were

treated exactly in the same way using bi-distilled water

only. Subsequently the ear was covered for 24 h with a

small transparent plastic bag internally wetted by spraying

2 mL of bi-distilled water with a hand-hold sprayer. This

assured a high relative humidity promoting diffusion of the

mycotoxin into the ear. Besides DON and mock treatment,

wheat ears were also inoculated with a F. graminearum

spore suspension as a third treatment in the course of this

experiment. These results are beyond the scope of this

paper and will be reported elsewhere.

2.1.4 Harvest

The treated ears were sampled either directly after treat-

ment (time point 0) or 12, 24, 48 and 96 h after treatment.

The ear was cut from the plant and the non-treated spikelets

were carefully removed by clipping the rachis with a sur-

gical scissor below and above the treated spikelets. The

Table 1 Distribution of the two QTL mainly responsible for FHB

resistance in wheat in the two parent lines (‘Remus’, no QTL, sus-

ceptible; ‘CM-82036’, both QTL, resistant) and four near isogenic

lines (NILs; C1–C4), all of which are near isogenic to the parent line

‘Remus’

Genotype QTL Fhb1 QTL Qfhs.ifa-5A

Remus Parent line 2 2

C1 NIL 1 1

C2 NIL 1 2

C3 NIL 2 1

C4 NIL 2 2

CM-82036 Parent line 1 1
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scissors were cleaned before collecting the next sample

using 70 % ethanol. The treated ear part including the

rachis and complete spikelets (chaff and florets) was put in

a small vial. The vial was immediately filled with liquid

nitrogen resulting in shock freezing of the sample. All

treatments were carried out as five biological replicates

except in four groups, where only four replicates were

obtained. This resulted in 25 DON treated and 25 mock

treated samples per genotype (50 samples per genotype,

total number of biological samples: 296).

2.2 Chemicals and reagents

Methanol (LiChrosolv, LC gradient grade) was obtained from

Merck (Darmstadt, Germany) and acetonitrile (HiPerSolv

Chromanorm, HPLC gradient grade) from VWR (Vienna,

Austria). Water was purified by reverse osmosis using an

ELGAPurelabUltra-AN-MK2 system (VeoliaWater, Vienna,

Austria). DON (purity [98 %) was produced and purified

according to Altpeter and Posselt (1994). Internal standards

(2H8-valine,
2H4-succinic acid, 13C6-glucose, nonadecanoic

acid methylester (NONA)), as well as formic acid (MS grade),

chloroform, pyridine and methoxyamine hydrochloride

(MOX)were purchased fromSigmaAldrich (Vienna,Austria),

N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA) from

Wagner Munz (Vienna, Austria). GC–MS reference standards

were obtained either from Sigma Aldrich (Vienna, Austria) or

as a gift from Dr. Nils Hoffmann (Bielefeld, Germany).

Depending on the solubility, standard stock solutions were

prepared in acetonitrile, 50 % aqueous methanol or water.

Mixedn-alkane standard solutionsC8–C20 andC21–C40 (Sigma

Aldrich, Vienna, Austria) for RI calibration were diluted with

isooctane to a final concentration of 5 mg/L per alkane.

2.3 Sample preparation and GC–MS analysis

All sampling and sample preparation steps as well as the

reporting of chemical analysis and metadata relative to data

pre-processing, pre-treatment, processing, post-processing

and interpretation were performed in full compliance with

the metabolomics standards initiative (MSI) according to

Fiehn et al. (2007), Goodacre et al. (2007) and Sumner

et al. (2007). Harvested samples were immediately quen-

ched in liquid nitrogen and subsequently stored at -80 �C
until further processing. Each of the frozen wheat samples

were milled to a fine powder for 2 min at 30 Hz using a

ball mill (MM301 Retsch, Germany) with liquid nitrogen

pre-cooled 10 mL stainless steel vessels and a 9-mm

stainless steel ball. The homogenized wheat ears

(100 ± 2 mg fresh weight) were weighed into Eppendorf

tubes and extracted with 1 mL of pre-cooled methanol/

water 3 ? 1 (v/v) including 0.1 % formic acid, by vor-

texing for 10 s and further treatment in an ultrasonic bath at

room temperature for 15 min according to De Vos et al.

(2007). Samples were centrifuged for 10 min at 8,5009g at

4 �C and 200 lL of the supernatant were combined with

140 lL water, 75 lL chloroform and 10 lL of internal

standard mixture (each 1.7 g/L 2H8-valine,
2H4-succinic

acid, 13C6-glucose in methanol/water 1 ? 1 (v/v)). After

shaking, the tubes were again centrifuged for 4 min at

8,5009g at 4 �C and 200 lL of the methanol/water phase

were transferred into micro-inserts in GC/HPLC vials. The

samples were evaporated overnight using a centrifugal

evaporator (Labconco, Kansas City, MO) at 15 �C and

subsequently put on the GC auto sampler (PAL LHX-xt,

CTC Analytics, Carrboro, NC) for an optimized online two

step derivatization procedure. The sample was re-sus-

pended in 40 lL MOX (20 mg/mL pyridine) and agitated

for 90 min at 60 �C. Thereafter, 50 lL MSTFA and 10 lL
internal standard (NONA, 370 mg/L) were added before

the vial was again agitated at 60 �C for 60 min. Prior to

analysis, the samples were kept in the drawer for 10 min at

4 �C to allow equilibration and sedimentation of particles.

For separation and detection of analytes an Agilent 7890A

gas chromatograph coupled to a 5975C inert XL MSD

detector (Agilent, Waldbronn, Germany) was used. The

instruments were controlled by ChemStation software

(Agilent Technologies, version E.02.01.1177). A volume

of 1 lL of the liquid sample was injected into the split/

splitless injector at 250 �C in split mode and using a split of

25:1. An HP5-ms column (30 m 9 0.25 mm 9 0.25 lm;

Agilent Technologies, Waldbronn, Germany) was operated

at a constant flow of 1 mL/min helium. After keeping the

oven at 50 �C for 2 min, it was heated to 310 �C (10 �C/
min) and subsequently kept at this temperature for 15 min.

The MSD interface was kept at 290 �C throughout the run.

After 7 min of solvent delay, the detector was used in scan

mode m/z 50–800. The EI source was kept at 230 �C and

the MSD quadrupole at 150 �C. Autotuning of the MSD

was performed at least once a week or after exchange of

spare parts, such as the liner which was exchanged after a

maximum of 70 injections. All samples were measured in a

randomized manner.

2.4 Quality control for GC–MS measurements

As a quality control measure, several QC sample types

were employed, making up more than one third of all

injections in total. First, homogenized and pooled wheat

ears from the presented experiment, representing all

genotypes, treatments and time points, were included for

data normalization (referred to as wheat aggregate QC

sample). Mixed n-alkane solutions for RI calibration were

included regularly to ensure stable retention times (RI

calibration standard). Furthermore, a QC standard mixture

consisting of 15 authentic reference standards in pure
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solvent was injected regularly (mixed standard QC sample)

after drying and derivatization. Besides, empty vials were

either filled with the extraction solvent (solvent blank QC;

dried before derivatization) or left empty (empty vial QC)

and included into the measurement sequence to test for

contaminations of the derivatization solvents or unintended

analyte carry over from sample to sample, respectively.

2.5 Data processing by Metabolite Detector software

Raw GC–MS data files were acquired by ChemStation and

exported in the net.cdf format. The converted files were

subsequently imported by the MetaboliteDetector software

(Hiller et al. 2009; version 2.5.20130104-Linux) and fur-

ther processed. Besides mass spectral deconvolution (set-

tings: peak threshold 5; minimum peak height 5;

deconvolution width 7; required number of peaks 20) and

computation of feature areas for relative quantification, the

retention index for compound recognition was calculated

and the corresponding spectra were compared to an in-

house library. This library was established by measuring

132 authentic reference standards using the same deriva-

tization protocol, analytical parameters and instrument as

the wheat samples analysed in the study at hand as rec-

ommended for unambiguous identification by Allwood

et al. (2011). Metabolites were identified by comparison of

mass spectra and retention indices to the spectra library

using a cut-off value of 70 % (Abu Dawud et al. 2012).

The feature areas of three specific fragment ions were

recorded for each metabolite and the ion with the highest

signal to noise ratio was detected by an in-house, Python

based software, and chosen for further data processing and

comparative quantification in all samples. In case of mul-

tiple silylation products per metabolite only the most

abundant derivate was utilized for relative quantification

after careful evaluation as suggested by Lisec et al. (2006).

A table providing relevant metadata of chromatography

and mass spectrometry as well as information on the

identification level can be found in the Supplementary

Material (Table S1).

2.6 Data normalization

To compensate for MS intensity shifts between measurement

sequences and genotypes, data normalization was performed

before statistical analysis. To this end, for each experimental

sample the integrated feature area of a single compound

under investigation was divided by the average feature area

of the respective metabolite in the wheat aggregate QC

samples within a distinct measurement sequence. For

metabolites which were not detected in the majority of wheat

aggregate QC samples or for which the coefficient of vari-

ation (CV) of feature areas ranged above 30 % for the wheat

aggregate QC samples, the average feature area of the ion at

m/z 74 of the internal standard nonadecanoic acid methyl-

ester (NONA) in the wheat aggregate QC samples in a par-

ticular sequence was used for normalization. Moreover, all

data were manually inspected during data evaluation to

identify the underlying causes of missing values and outliers

using MassHunter (Agilent Technologies, Qualitative Ana-

lysis B.06.00) and MetaboliteDetector software. The data

matrix containing normalized metabolite abundances is

available at the MetaboLights metabolomics data repository

under study identifier MTBLS112 (http://www.ebi.ac.uk/

metabolights/MTBLS112).

2.7 Statistical analysis

The final data matrix was processed and evaluated by a

tailored in-house R-scipt (R version 3.0.2 (R Development

Core Team 2012) and R-Studio, Version 0.97.551). Miss-

ing values were replaced by the lowest value of the

respective metabolite in the data set ±40 % random vari-

ation to keep the variance of the data set. Normal distri-

bution was tested by the Shapiro–Wilk test followed by one

Dean-Dixon outlier test per group after log transformation.

Outliers were replaced by the median value ±20 % random

variation of the respective group assuming that the

metabolite abundances are similar within the same bio-

logical group (Hrydziuszko and Viant 2012).

The Šidák method (Šidák 1967) for multiple testing

correction was applied before univariate comparison of

individual metabolites between two treatments with a non-

paired t-test. This correction prevents an accumulation of

the global cumulative alpha-error by adapting the indi-

vidual significance level of each performed t-test. The

global significance threshold thus remained 5 %. The

R-package ChemometricsWithR (Wehrens 2011) was used

for principal component analysis (PCA). Metabolite feature

areas were range-scaled across all experimental samples

(Van den Berg et al. 2006) prior to PCA and ellipses in the

PCA scores plot were calculated using the co-variance

matrices of PC1 and PC2 of the respective sample types.

For heatmap clustering of samples and metabolites the

squared Euclidean distance and ward linkage were utilized.

3 Results and discussion

3.1 Overview of GC–MS analysis and workflow

performance

3.1.1 Metabolite coverage

For the identification of metabolites an in-house library

consisting of 132 compounds was established. We were
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able to detect 66 of those metabolites in the tested wheat

samples on a regular basis (i.e. the metabolite was present

in at least four out of five replicates for at least one time

point). Authentic reference standards were purchased when

feasible (i.e. available commercially and accessible by the

chosen analytical approach). As most of the detected

metabolites were annotated using a library created by ref-

erence standards, they can be regarded as ‘‘level 1 - iden-

tified compounds’’ when utilizing the four levels of

metabolite identification proposed by the MSI (Sumner

et al. 2007). We chose a targeted approach predominantly

consisting of primary metabolites but also included

metabolites that have putatively been related to FHB

resistance before (Bollina et al. 2011; Hamzehzarghani

et al. 2008). Some of the 66 annotated metabolites had to

be excluded due to considerable carry over or metabolite

levels close to the limit of detection. An example for this

was e.g. the observation that a certain metabolite was

detected in only one out of six measurement sequences,

probably due to a better performance of the instrument on

that particular day for the effected analyte. Therefore, the

final data matrix contained a total number of 58 analytes

(Table S1). When comparing the targeted with the untar-

geted processing option of the MetaboliteDetector software

it was found that we were able to automatically annotate

about 40 % of all features which were detected in case of

the untargeted approach using the established in-house

library. Taking into account that this workflow was tailor

made to detect predominantly primary metabolites, we

judge this as a share which is highly satisfying for a tar-

geted approach.

GC–EI–MS instrumentation was employed to establish

the applied analytical platform. For the required derivati-

zation of polar metabolites in GC–MS based methods

MSTFA and MOX are most often the reagents of choice

and were also utilized in the workflow described here. An

automated in-line derivatization and sample injection sys-

tem was employed to guarantee timely derivatization at

defined constant temperature just before analysis since this

step was described as being very critical in the literature

(Roessner and Dias 2013). However, artefact formation can

occur during derivatization for GC–MS analysis. The loss

of a guanidine group of agmatine during silylation with

MSTFA results in the product putrescine-4TMS. In anal-

ogy, arginine also loses a guanidine group with ornithine-

4TMS as product (Fig. S1). Thus, for the biogenic amines

agmatine and putrescine the sum of both substances can be

measured in the form of putrescine, while the sum of

arginine and ornithine is measured in the form of ornithine

by GC–MS. Also, citric and isocitric acid were evaluated

as a sum parameter since both substances exhibit similar

spectra and the column did not allow for a clear separation

of the compounds under the applied conditions.

3.1.2 Results of QC measurements

Although the application of GC–MS in plant metabolite

analysis has become routine (Allwood et al. 2009) every

workflow needs adequate in-house performance evaluation

and QC measures as this is crucial for the validity and

repeatability of such studies. Adequate analytical accuracy

was assured by use of aggregate wheat QC samples, which

overall constituted more than 20 % of measured samples

within a certain sequence and permitted to normalize all

data. For 90 % of the abundant metabolites (i.e. detectable

in at least 80 % of the samples) the feature areas, which

were used for comparative quantification, showed a CV

below 30 % in the aggregate wheat QC samples within all

measurement sequences. For other GC–MS based plant

profiling studies it was found that the variability due to

biological variation is greater than the variability due to the

overall analytical precision (Fiehn et al. 2000). RI cali-

bration standards proofed stable retention behavior of the

GC column within and across all measurement sequences

and the solvent blank and empty vial QC samples verified

the extraction and derivatization solvents not to be con-

taminated. Based on this evaluation we judged the tech-

nical workflow to be well suited for the performed

experiment.

3.1.3 Data pre-processing (metabolite identification,

missing value and outlier treatment)

The parameters of the employed MetaboliteDetector soft-

ware (Hiller et al. 2009) were extensively tested and

optimized using experimental wheat- and various different

QC samples (wheat aggregate QC sample, mixed standard

QC sample, QC solvent blank). For identification of

metabolites a combined score of at least 70 % for mass

spectra and RI index was utilized. The maximum RI dif-

ference for a feature in the library and the sample respec-

tively was set to 10.

Missing values were replaced by the lowest value

(Hrydziuszko and Viant 2012; Steuer et al. 2007) of the

respective feature in the data set ±40 % random variation

to keep the variance of the data. Less than 20 % of the

feature areas in the matrix were affected by this procedure

and thereof most missing values were observed for

metabolites which were detected at later time points only.

To further justify this approach, it was manually verified

that the underlying chromatogram of this lowest value,

assumed to be the limit of detection, corresponds to a

signal to noise ratio of approximately 3 to 1.

The Dean-Dixon test revealed that less than 3 % of the

data points in the matrix were regarded as outliers and

affected by the median replacement procedure described

above. Thereof, many were in groups with one missing
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value (out of five replicates) which were obviously not due

to a missing feature in the raw data but because the iden-

tification criteria of the MetaboliteDetector were too rig-

orous (max RI difference 10). When the RI window was

altered to 20, many of those missing features were addi-

tionally detected. However, when increasing the RI toler-

ance window the annotation might become more doubtful

hence we favored this approach.

3.2 General description of metabolic response in wheat

As a first step to evaluate the final data matrix we run a set

of principal component analysis (PCA) and compared

DON and mock (i.e. water) treated samples at different

time points in all six genotypes. As a result the ‘CM-

82036’ cultivar was excluded in this initial evaluation as its

different genetic background caused a clear separation

from the other five genotypes and minimized the visibility

of effects which potentially can be attributed to the QTL

present in the different NILs. Using the PCA a clear dis-

tinction between mock and DON treated samples became

obvious already at the first time point at 12 h after treat-

ment. The variance increased until 24 h after treatment and

likewise until 48 h after treatment at which the difference

between mock and DON treated samples was most prom-

inent (PCA in Fig. 1). 96 h after DON treatment the sep-

aration between the tested wheat lines, as based on the

measured metabolites, was still very distinct but slightly

decreased when compared to 48 h. Based on these obser-

vations we concluded that time point 48 h is the one most

feasible to evaluate changes in metabolite patterns in detail.

Furthermore, a PCA was performed to specifically evaluate

the effect of the different time points in the cultivar

‘Remus’ after DON and mock treatment. At hour zero both

treatments are overlapping thereby demonstrating that the

plants were in an identical state at the beginning of the

experiment. The distinct separation of the different sam-

pling points following DON treatment further confirmed

that the quantity of applied DON (1 mg per wheat ear) was

appropriate as a continuous progress of the metabolic

response over time was observed based on the levels of the

measured metabolites (Fig. 2).

The dominating effect of the treatment over the geno-

type becomes evident in the heatmap (Fig. 1). The heatmap

was generated for 44 metabolites which were found fre-

quently across all genotypes. Three clusters were identified

with distinct patterns of altered metabolite abundances.

The powerful effect of the fungal major virulence factor

DON can also be seen in Fig. S2 where altered metabolite

levels between mock- and DON treated samples of the

wheat line ‘Remus’ are illustrated. Thirty-two of the

detected metabolites were altered by the treatment when

testing at a significance level of p\ 0.05. The fact that 32

out of 66 metabolites (48 %) were significantly affected by

the DON treatment highlights the ultimate impact of this

single virulence factor and for the first time demonstrates

its large influence on the metabolome level. When applying

a multiple significance correction (Šidák 1967) this number

decreased to eleven metabolites due to a more rigorous

significance limit (p\ 0.00091). Eight out of these eleven

metabolites were amino acids. The others included the

carbohydrate transport form sucrose, the biogenic amines

putrescine/agmatine and urea. For further eight metabolites

the p value could not be calculated since the analyte was

absent in one of the treatments. For example shikimic acid

was induced by DON whereas it was not detected in the

mock treated ‘Remus’ samples (indicated in Fig. S2 as ‘‘not

detected’’ (n.d.)). The NIL C4, exhibiting the highest

genetic similarity to ‘Remus’, showed exactly the same

behavior for highly significant metabolite alterations with

the exception that additionally aspartic acid was more

abundant in DON treated samples (p-value: 0.0008).

3.3 Effect of deoxynivalenol on central metabolism

A number of metabolites which showed tendencies towards

lower concentrations following DON treatment in ‘Remus’

and its NILs (Fig. 1, cluster A) participate in glycolysis

(glucose, glucose-6-phosphat, fructose-6-phosphate, gly-

ceric acid-3-phosphat). Also other sugars (fructose, gal-

actose, ribose, arabinose) and a sugar phosphate (ribulose-

5-phosphat) followed this trend. Ribulose-5-phosphate and

fructose are also mainly responsible for the separation of

the initial time point in the PCA depicted in Fig. 2 (see

loadings plot). Only two amino acids, namely alanine and

serine, were less abundant in the DON treated samples.

Interestingly, both are known to have a high turnover and

are closely connected to glycolysis: serine can be produced

from glyceric acid-3-phosphate and alanine is most com-

monly generated by a reductive amination of pyruvate

(Fig. 3).

In contrast, several amino acids showed a clearly ele-

vated level as a response to DON treatment (Fig. 1, cluster

B). Nine of the twelve metabolites in this cluster were

amino acids. Furthermore, increased levels of sucrose were

observed, which presumably indicates carbohydrate trans-

port from photosynthetic tissue to the sink tissue in the ear.

Besides, also quinic acid (a precursor of the shikimate

pathway) and putrescine/agmatine occurred at higher

abundances in the DON treated group and were therefore

attributed to cluster B. These results indicate that the toxin

alone is able to elicit at least parts of the pathogen defense

program observed during Fusarium infection.

The heatmap cluster (C) contains metabolites which

exhibited moderate concentration increases following DON

treatment. Interestingly, a number of metabolites in this
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cluster belong to the TCA cycle (citric/isocitric acid, suc-

cinic acid, fumaric acid, malic acid). In Fig. 4 the increase

in TCA intermediates and the decrease of glycolysis related

metabolites is illustrated in detail for all investigated

genotypes. These observations could point at the need of

the plant to generate energy and reduction equivalents to
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Fig. 1 Heatmap and principal component analysis (PCA) illustrating

the different metabolite levels in ‘Remus’ and its four NILs C1, C2,

C3 and C4, 48 h after deoxynivalenol treatment. Metabolite feature

areas were normalized and range-scaled across all experimental

samples. Three different metabolite clusters can be identified in the

heatmap: (a) contains metabolites, which tended to be less abundant

as a result of the DON treatment when compared to mock, while

cluster (b) shows an increase in metabolite levels. Cluster (c) contains
metabolites which showed a moderate abundance increase following

DON treatment. The clustering according to DON (black) and mock

(blue) treatment was highly pronounced in the sample clustering and

the PCA while genotypes clustered only occasionally. The first

principal component (PC1) was inverted to comply with the heatmap

(Color figure online)
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cope with the toxin. Also after the application of the

SnToxA effector protein onto wheat (another fungal toxin

produced by the pathogen Stagonospora nodorum) photo-

synthesis decreased and metabolites involved in the TCA

cycle increased in general (Vincent et al. 2011). The acti-

vation of plant defence actions requires an enhanced

energy supply that presumably is mainly derived from

photosynthesis, but also seems to require greater respira-

tory rates (Bolton 2009). In line with the moderate increase

in TCA cycle intermediates, also derived keto acids which

are precursors of amino acids were elevated. For example

2-ketoglutaric acid is used to form glutamic acid through

transamination and both metabolites are increased upon

DON treatment under the tested conditions. In analogy,

glutamine and pyroglutamic acid (a derivative where the

free amino group of glutamine or glutamic acid is cyclized

to a lactam) as well as aspartic acid and asparagine were

more abundant.

In plants ornithine and urea are typically derived from

arginine via arginase in the mitochondrion. This arginine

catabolism is crucial for the mobilization of nitrogen from

source tissue (Witte 2011). The generated urea is exported

to the cytosol, hydrolyzed, and the resulting ammonium is

re-assimilated by glutamine synthase (Witte 2011). The

Fig. 2 Scores and loadings plot of the performed principle compo-

nent analysis (PCA) for the wheat line ‘Remus’ following deoxyni-

valenol and mock treatment. At time point zero the treatments

overlap, indicating an identical state of the plants at the initial stage of

the experiment. In contrast, the other sampling time points are clearly

separated after deoxynivalenol treatment, thereby demonstrating its

effect over time and proofing that an appropriate amount of toxin was

applied to the plants. To enhance visibility only a selection of

metabolites is enumerated in the loadings plot, the numbering of

metabolites is in accordance with Table S1
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loadings in Fig. 2 indicate that the abundances of ornithine

and urea considerably changed over time in the ‘Remus’

genotype. It can be concluded that both the primary

carbohydrate metabolism and the primary nitrogen

metabolism of the plant were significantly modified by

DON treatment (Fig. 3). However, the clear trend of

Fig. 3 Schematic overview of metabolic pathways upon deoxyni-

valenol (black) and mock (blue) treatment in the wheat cultivars

‘Remus’ and ‘CM-82036‘. Black arrows indicate specific metabolic

steps whereas grey arrows stand for multi-step reactions. Metabolites

in faint colour were not included in the measurements. Abbreviations:

3-PGA 3-phosphoglycerate, 2-PGA 2-phosphoglycerate, a-KG

a-ketoglutarate, Fru-1,6-diP fructose-1,6-diphosphate, GABA 4-ami-

nobutyrate (c-aminobutyrate), Glc-Conj. Glucoside-conjugates, GSH-

Conj Glutathione-conjugates, Homo-Cys Homocysteine, PEP phos-

phoenolpyruvate, Phe phenylalanine, Succ-CoA succinyl-CoA, TAM

Tryptamine, Trp Tryptophan, Tyr Tyrosine, UDP-Glc uridine diphos-

phate-glucose (Color figure online)
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decreased glycolysis intermediates and increased sucrose

abundances following treatment was only evident in

‘Remus’ and all of the tested NILs. Therefore, this

behavior appeared to be independent from the presence of

the two resistance QTL. In the highly resistant parent line

‘CM-82036’ the observed effects were less pronounced.

Fig. 4 Time line of metabolite abundances of glycolysis intermedi-

ates (a), TCA cycle metabolites (b) and derived keto acids, amino

acids and amines (c). Deoxynivalenol treatment is depicted in black,

whereas mock treated samples are blue; whiskers describe the

standard deviation. The y-axis gives the normalized relative

metabolite abundance. Glycolysis products exhibited decreased levels

after DON treatment (a) while molecules included in the TCA cycle

(b) and derived keto acids, amino acids and amines (c) seemed to be

stimulated by treatment (Color figure online)
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This suggests that additional factors, which are not asso-

ciated with either of the two QTL help to protect ‘CM-

82036’ against the toxic effects of DON.

3.4 Effect of deoxynivalenol on metabolites

specifically related to plant stress and plant defense

Some of the amino acids which were explicitly more

abundant in DON treated wheat (Fig. 1, Cluster B) have

been associated with different plant defense mechanisms.

This includes the three aromatic amino acids phenylala-

nine, tyrosine, and tryptophan which are all synthesized by

the shikimate pathway. This pathway is known to provide

the building blocks for important aromatic secondary

metabolites such as phenylpropanoids or other defense

related compounds such as amines (e.g. tryptamine, tyra-

mine) and its hydroxycinnamic acid amide conjugates as

well as the plant hormone auxin (Fig. 3). Phenylalanine

was described as FHB resistance related metabolite before

in a study utilizing LC-HRMS (Gunnaiah et al. 2012).

Methionine is a precursor of ethylene formation via the

Yang cycle (Van de Poel et al. 2012) and was suggested as

an inducer of plant defense responses. Interestingly, a

recent experiment revealed three sulphur containing DON

conjugates in planta: the glutathione conjugate (DON-

GSH) and its processing products DON-S-cysteinyl-glycine

and DON-S-cysteine (Kluger et al. 2013). The common

increase of methionine and cysteine following DON

application points to an important role of sulphur con-

taining amino acids in glutathione-mediated DON detoxi-

fication. The intracellular cysteine pool was seemingly not

depleted through the formation of DON-GSH, although

GSH derived DON conjugates have been found in the same

set of DON treated samples using LC-HRMS instrumen-

tation (Kluger et al. unpublished).

Furthermore, lysine, threonine as well as proline, which

is known to protect plants against abiotic stress, were

clearly more abundant in DON treated wheat ears (Fig. 1

and Fig. S3). Two biogenic amines, putrescine/agmatine,

which originate from the amino acids ornithine and argi-

nine, respectively, occurred at higher abundances in the

DON treated group as well. Putrescine, which was tenta-

tively identified in a previous study, was associated with

increased Fusarium resistance (Hamzehzarghani et al.

2008). Its time course is shown for all tested wheat lines in

Fig. 5 together with other metabolites which are generally

presumed to be related to resistance.

Pyroglutamic acid, aspartic acid, and arginine have been

reported to be associated with Fusarium resistance in an LC-

HRMS approach before (Bollina et al. 2010) and were also

found to bemoderately elevated followingDON treatment in

this experiment. While in the mentioned study these

metabolites have only been annotated putatively we can

confirm these former findings by similar observations of a

relative increase of their concentration levels and definitive

identification (level 1). Pyroglutamic acid (also known as 5

oxo-proline) plays an important rolemaintainingGSH levels

by glutamate recycling (Paulose et al. 2013).

3.5 Metabolites related to the resistance QTL Fhb1

and Qfhs.ifa-5A

One of the objectives of this experiment was to

investigate if primary metabolites covered by the uti-

lized method can be associated with the two major QTL

responsible for FHB resistance in wheat. Therefore, we

examined by univariate comparison the fold change of

metabolite abundances between ‘Remus’ and the

respective NILs 48 h after treatment. However, under

the tested conditions no significant effect of one of the

QTL on primary metabolite abundances was observed

after 48 h. This can be explained by the dominating

effect of the treatment rather than that of the tested

QTL as derived from multivariate statistics (PCA and

hierarchical clustering in Fig. 1). The lack of a QTL

specific effect is in line with transcriptomics data of

Fusarium infection of the same NILs (Schweiger et al.

2013), where also no clear evidence for a QTL specific

effect on metabolic genes was found. Modified meta-

bolic patterns potentially mediated by the QTL are

probably more pronounced when looking at secondary

metabolites particularly involved in pathogen defense.

Hence, we intend to investigate those metabolites using

different analytical methodology in the future (Bueschl

et al. 2014).

Another potential explanation for the absence of sig-

nificantly altered metabolite abundances which can be

attributed to the tested QTL after 48 h could be the chosen

time point. Since the highly resistant cultivar ‘CM-82036’

seems to have a generally faster metabolic response to

fungal infection (Fig. 5), the time courses for both parent

lines and the four NILs are plotted for all 58 annotated

metabolites (Fig. S3) to allow also interpretation of earlier

time points. Interestingly, shikimic and quinic acid seem to

increase faster in genotypes containing Fhb1 but then

decrease after 48 and 96 h while in the non Fhb1 con-

taining genotypes these two metabolites reach a plateau at

a constant elevated level throughout most of the observed

time points. The decrease in metabolite levels at later time

points could either indicate that the plants defense resour-

ces are becoming depleted or that defense via these

metabolites is not active any more. However, this finding

needs further investigation. Besides this observation, no

clear QTL specific changes were obvious. It was already

suggested by other studies that the pace of the plants
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defense response is more critical in determining resistance

towards DON and thus the spread of FHB disease than the

involved compounds itself (Walter and Doohan 2011). This

was also observed for the wheat lines tested in this

experiment on the transcriptome level (Schweiger, personal

communication).

GC–MS mostly detects primary metabolites which fre-

quently constitute intermediates of potential secondary

metabolites. Theoretically, the pool of a biosynthetic pre-

cursor of a secondary metabolite could be stable, although

a higher net flux to the relevant secondary metabolite

occurs, if it is compensated by a higher flux from earlier

biosynthetic steps. So we cannot exclude that different

accumulation of defense metabolites is causing the differ-

ence in resistance due to the QTL, but this seems rather

unlikely.

3.6 Putative biological functions of the metabolic

response induced by DON

A reduced amount of assimilates was observed following

DON treatment. It has been previously described that DON

induces (by unknown mechanisms) a light dependent loss

of chlorophyll (Bushnell et al. 2009). Bleaching after DON

application due to a reduction in chlorophyll content was

also observed in duckweed (Abbas et al. 2013). In many

plant-pathogen systems, photosynthesis decreases at the

site of infection (Bolton 2009). We propose that the

observed reduction in the amount of assimilates is caused

by a reduction of photosynthesis. It might be possible that

acetyl-CoA is produced via b-oxidation of fatty acids in the

glyoxysomes once photosynthesis is impaired by DON.

Acetyl-CoA could then be further utilized in the glyoxylate

Fig. 5 Time course of metabolites which generally have been

associated with resistance towards Fusarium head blight in the two

parent wheat lines and the four near isogenic lines C1–C4.

Deoxynivalenol treatment is depicted in black, whereas mock treated

samples are blue; whiskers describe the standard deviation. Most of

the displayed metabolites were considerably more abundant in the

DON treated samples. The highly resistant cultivar ‘CM-82036’

seemed to be faster in the induction of some of the metabolites, e.g.

shikimic acid or putrescine/agmatine are enhanced already 12 h after

treatment (Color figure online)

734 B. Warth et al.

123



cycle, a pathway similar to the TCA cycle, to supply

energy. Mature plants, including wheat, have been dem-

onstrated to possess the enzymes involved in this cycle

(Vincent et al. 2011). Therefore it is intended to evaluate

the levels of fatty acids following DON application in

further studies. The local reduction in photosynthetic

metabolism initiates the transition from source status to

sink status in infected leaf tissue (Bolton 2009). Interest-

ingly, although the flowering wheat ear already constitutes

a sink organ, we observed elevated sucrose concentration

in the DON treated tissue. It should be mentioned that

some pathogens can also drain energy from the primary

metabolism to its own advantage (Bolton 2009; Seifi et al.

2013). For instance, hijacking sugar efflux with TAL

effectors for increased loading of sucrose into phloem

transport is a strategy of Xanthomonas on rice (Chen 2014).

Hence, this DON induced mechanism could ensure a useful

supply of the carbohydrate via long-distance transport.

However, with respect to the progression of the FHB dis-

ease it might be more relevant that the observed increased

sucrose abundance following DON treatment reflects the

need of the plant to replenish UDP-glucose via the reverse

reaction of sucrose synthase. UDP-glucose is utilized (and

would otherwise be depleted) by highly DON induced

UDP-glucosyltransferases which synthesize the conjugate

DON-3-glucoside. It has been proposed that the major

resistance mechanism conferred by Fhb1 is the conjugation

of DON to DON-3-glucoside (Lemmens et al. 2005).

However, Gunnaiah et al. (2012) indicated an alternative

mode of Fhb1 mediated resistance related to cell wall

thickening caused by the deposition of hydroxycinnamic

acid amides, phenolic glucosides and flavonoids. In our

study both DON-3-glucoside (Kluger et al. unpublished)

and the abundances of shikimate pathway intermediates

(Fig. 3) increased faster upon DON treatment indicating

that both mechanisms actively contribute to resistance, and

correlate with the presence of the Fhb1 QTL. To further

investigate these hypotheses we intend to perform further

studies using isotopically labelled tracers which for

example can be applied onto source tissue. Such a setup

would allow to elucidate whether the tracer is translocated

to the infection site. Furthermore, it is planned to determine

the concentrations of UDP-glucose in the same set of

samples using a targeted LC–MS/MS approach and exter-

nal calibration for absolute quantification.

It seems plausible that the (partial) inhibition of protein

synthesis by DON is of advantage to the fungus since the

plant cannot efficiently translate induced defense tran-

scripts into functional proteins. Moreover, blocking of

protein synthesis by DON results in the accumulation of

truncated proteins, which have to be turned over. It

has been shown that ubiquitin-mediated degradation is

important for DON resistance in yeast (Abolmaali et al.

2008). Theoretically, a block of protein biosynthesis and

increased hydrolysis of aberrant proteins could lead to

accumulation of free amino acids. In this scenario the

proportion of the individual amino acids contained in the

proteins should be unchanged by the turnover. Yet, we

observed that only selected amino acids, not all, were

increased. We therefore consider it more likely that the

observed changes on the amino acid pools reflect changes

in the transcription of biosynthetic genes, similar to

responses which were also observed during Fusarium

infection (Schweiger et al. 2013; Gardiner et al. 2010a).

Unfortunately, no transcriptome derived data of DON

treated wheat is available to verify this assumption.

Since the basal expression of most amino acid biosyn-

thetic genes is already high, the frequently applied

threshold of a two-fold change is often not reached in

transcriptomic studies and as a consequence this increase is

generally neglected. A reported exception is the extremely

high up-regulation of cysteine biosynthesis in DON treated

barley (Gardiner et al. 2010a). The active role of cysteine

also in wheat is suggested by the fact that this amino acid

was found in our study at constantly elevated levels

throughout the experiment while DON-GSH and derived

conjugates were continuously increasing, especially in the

genotypes not carrying the Fhb1 QTL (‘Remus’, C3, C4;

data not shown). This indicates that the intracellular cys-

teine pool was not depleted but could be replenished in our

plants. The other accumulating amino acids, in particular

the aromatic amino acids may be further metabolized to

synthesize defense compounds. The tryptophan biosyn-

thetic gene anthranylate synthase was found transcription-

ally up-regulated 5.9 9 in DON treated barley after 24 h

(Gardiner et al. 2010a). We also observed the simultaneous

increase of phenylalanine, quinic acid and shikimic acid

upon toxin treatment, which are all precursors of

phenylpropanoids.

Furthermore, our results show that DON induces a

higher level of various biogenic amines. It was shown that

after infection with F. graminearum the glutamine-oxo-

glutarate aminotransferase cycle was redirected toward the

production of ornithine and arginine, resulting in the for-

mation of polyamines (Gardiner et al. 2010b). The induc-

tion of the conversion of agmatine to polyamines, which

can induce DON production in Fusarium (Gardiner et al.

2009), was previously reported by Gunnaiah et al. (2012).

Polyamines have many ascribed functions in abiotic and

also biotic stress, in particular also in the formation of cell

wall reinforcements by formation of hydoxycinnamic adic

amides (Bassard et al. 2010). Such conjugates were indeed

detected in an accompanying study using LC-HRMS

(Kluger et al. unpublished).
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4 Concluding remarks

This paper describes the altered metabolic signature of six

wheat genotypes carrying different combinations of the

two most important FHB resistance QTL following DON

treatment. The newly established GC–MS based meta-

bolomics workflow including greenhouse experiments,

sample preparation and analysis as well as the data pro-

cessing and interpretation allows investigating the central

wheat metabolism and will be a valuable tool for future

investigations of other plant systems as well.

Many metabolites related to DON treatment were

detected, but no clear effect of the QTL was found besides

the faster increase in shikimate pathway intermediates in

Fhb1 genotypes. Our results indicate that photosynthesis is

impaired by DON, and that both the primary carbohydrate

metabolism and the primary nitrogen metabolism of the

plant are significantly modified by DON treatment. Sig-

nificantly increased amino acid levels were detected and

may arise from hydrolysis of irregular proteins but are most

likely due to an active defense response of the plant trig-

gered by DON alone. Based on the obtained results we

hypothesize that both, detoxification of DON and DON

induced cell wall reinforcement are involved in the Fhb1

mediated response towards DON treatment. Further studies

are necessary to investigate if this also holds true for

Fusarium infected wheat.
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for skillful technical assistance and Dr. Wolfgang Schweiger for

fruitful discussions and critically reviewing the manuscript. This work

was supported by the Austrian Science Fund projects #F3706-B11

and #F3702-B11.

Conflict of interest Authors declare that they have no conflict of

interest.

Compliance with ethical requirements This article does not con-

tain any studies with human or animal subjects.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Abbas, H. K., Yoshizawa, T., & Shier, W. T. (2013). Cytotoxicity and

phytotoxicity of trichothecene mycotoxins produced by Fusar-

ium spp. Toxicon, 74, 68–75.

Abolmaali, S., Mitterbauer, R., Spadiut, O., Peruci, M., Weindorfer,

H., Lucyshyn, D., et al. (2008). Engineered bakers yeast as a

sensitive bioassay indicator organism for the trichothecene toxin

deoxynivalenol. Journal of Microbiological Methods, 72(3),

306–312.

Abu Dawud, R., Schreiber, K., Schomburg, D., & Adjaye, J. (2012).

Human embryonic stem cells and embryonal carcinoma cells

have overlapping and distinct metabolic signatures. PLoS One,

7(6), e39896.

Allwood, J. W., De Vos, R. C. H., Moing, A., Deborde, C., Erban, A.,

Kopka, J., et al. (2011). Plant metabolomics and its potential for

systems biology research: Background concepts, technology, and

methodology. Methods in Enzymology, 500, 299–336.

Allwood, J. W., Erban, A., de Koning, S., Dunn, W. B., Luedemann,

A., Lommen, A., et al. (2009). Inter-laboratory reproducibility of

fast gas chromatography-electron impact-time of flight mass

spectrometry (GC-EI-TOF/MS) based plant metabolomics. Met-

abolomics, 5(4), 479–496.

Altpeter, F., & Posselt, U. K. (1994). Production of high quantities of

3-acetyldeoxynivalenol and deoxynivalenol. Applied Microbiol-

ogy and Biotechnology, 41(4), 384–387.

Anderson, J. A., Stack, R. W., Liu, S., Waldron, B. L., Fjeld, A. D.,

Coyne, C., et al. (2001). DNA markers for Fusarium head blight

resistance QTLs in two wheat populations. Theoretical and

Applied Genetics, 102(8), 1164–1168.

Bai, G., Guo, P., & Kolb, F. L. (2003). Genetic relationships among

head blight resistant cultivars of wheat assessed on the basis of

molecular markers. Crop Science, 43(2), 498–507.

Bassard, J.-E., Ullmann, P., Bernier, F., & Werck-Reichhart, D.

(2010). Phenolamides: Bridging polyamines to the phenolic

metabolism. Phytochemistry, 71(16), 1808–1824.

Bollina, V., Kumaraswamy, G., Kushalappa, A. C., Choo, T., Dion,

Y., Rioux, S., et al. (2010). Mass spectrometry-based metabolo-

mics application to identify quantitative resistance-related

metabolites in barley against Fusarium head blight. Molecular

Plant Pathology, 11(6), 769–782.

Bollina, V., Kushalappa, A. C., Choo, T. M., Dion, Y., & Rioux, S.

(2011). Identification of metabolites related to mechanisms of

resistance in barley against Fusarium graminearum, based on

mass spectrometry. Plant Molecular Biology, 77(4–5), 355–370.

Bolton, M. D. (2009). Current review: Primary metabolism and plant

defense-fuel for the fire. Molecular Plant-Microbe Interactions,

22(5), 487–497.

Buerstmayr, H., Ban, T., & Anderson, J. A. (2009). QTL mapping and

marker-assisted selection for Fusarium head blight resistance in

wheat: A review. Plant Breeding, 128(1), 1–26.

Buerstmayr, H., Lemmens, M., Grausgruber, H., & Ruckenbauer, P.

(1996). Scab resistance of international wheat germplasm.

Cereal Research Communications, 24(2), 195–202.

Bueschl, C., Kluger, B., Lemmens, M., Adam, G., Wiesenberger, G.,

Maschietto, V., et al. (2014). A novel stable isotope labelling

assisted workflow for improved untargeted LC–HRMS based

metabolomics research. Metabolomics, 10(4), 754–769.

Bushnell, W. R., Perkins-Veazie, P., Russo, V. M., Collins, J., &

Seeland, T. M. (2009). Effects of deoxynivalenol on content of

chloroplast pigments in barley leaf tissues. Phytopathology,

100(1), 33–41.

Chakraborty, S., & Newton, A. C. (2011). Climate change, plant

diseases and food security: an overview. Plant Pathology, 60(1),

2–14.

Chen, L.-Q. (2014). SWEET sugar transporters for phloem transport

and pathogen nutrition. New Phytologist, 201(4), 1150–1155.

De Vos, R. C. H., Moco, S., Lommen, A., Keurentjes, J. J. B., Bino,

R. J., & Hall, R. D. (2007). Untargeted large-scale plant

metabolomics using liquid chromatography coupled to mass

spectrometry. Nature Protocols, 2(4), 778–791.

Desmond, O. J., Manners, J. M., Stephens, A. E., Maclean, D. J.,

Schenk, P. M., Gardiner, D. M., et al. (2008). The Fusarium

mycotoxin deoxynivalenol elicits hydrogen peroxide production,

programmed cell death and defence responses in wheat.

Molecular Plant Pathology, 9(4), 435–445.

736 B. Warth et al.

123
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Šidák, Z. (1967). Rectangular Confidence Regions for the Means of

Multivariate Normal Distributions. Journal of the American

Statistical Association, 62(318), 626–633.

Somers, D. J., Fedak, G., & Savard, M. (2003). Molecular mapping of

novel genes controlling Fusarium head blight resistance and deoxy-

nivalenol accumulation in spring wheat. Genome, 46(4), 555–564.

Steuer, R., Morgenthal, K., Weckwerth, W., & Selbig, J. (2007). A

gentle guide to the analysis of metabolomic data. Methods in

Molecular Biology, 358, 105–126.

Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R.,

Daykin, C. A., et al. (2007). Proposed minimum reporting

standards for chemical analysis: Chemical Analysis Working

Group (CAWG) Metabolomics Standards Initiative (MSI).

Metabolomics, 3(3), 211–221.

R Development, & Team, C. (2012). R: A Language and Environment

for Statistical Computing. Vienna, Austria: R Foundation for

Statistical Computing, Retrieved from http://www.R-project.org.

Van de Poel, B., Bulens, I., Markoula, A., Hertog, M. L. A. T. M.,

Dreesen, R., Wirtz, M., et al. (2012). Targeted systems biology

profiling of tomato fruit reveals coordination of the yang cycle

and a distinct regulation of ethylene biosynthesis during

postclimacteric ripening. Plant Physiology, 160(3), 1498–1514.

Van den Berg, R., Hoefsloot, H., Westerhuis, J., Smilde, A., & van

der Werf, M. (2006). Centering, scaling, and transformations:

improving the biological information content of metabolomics

data. BMC Genomics, 7(1), 142.

Vincent, D., Du Fall, L. A., Livk, A., Mathesius, U., Lipscombe, R. J.,

Oliver, R. P., et al. (2011). A functional genomics approach to

dissect the mode of action of the Stagonospora nodorum effector

protein SnToxA in wheat. Molecular Plant Pathology, 13(5),

467–482.

Walter, S., Brennan, J., Arunachalam, C., Ansari, K., Hu, X., Khan,

M., et al. (2008). Components of the gene network associated

with genotype-dependent response of wheat to the Fusarium

mycotoxin deoxynivalenol. Functional & Integrative Genomics,

8(4), 421–427.

Metabolic profiling of wheat following deoxynivalenol treatment 737

123

http://www.R-project.org


Walter, S., & Doohan, F. (2011). Transcript profiling of the

phytotoxic response of wheat to the Fusarium mycotoxin

deoxynivalenol. Mycotoxin Research, 27, 221–230.

Walter, S., Nicholson, P., & Doohan, F. M. (2010). Action and

reaction of host and pathogen during Fusarium head blight

disease. New Phytologist, 185(1), 54–66.

Wehrens, R. (2011). Chemometrics with R: Multivariate data analysis

in the natural sciences and life sciences. Heidelberg: Springer.

Witte, C.-P. (2011). Urea metabolism in plants. Plant Science, 180(3),

431–438.

738 B. Warth et al.

123


	GC--MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment
	Abstract
	Introduction
	Experimental
	Experimental design
	Biosource
	Growth environment
	Treatment
	Harvest

	Chemicals and reagents
	Sample preparation and GC--MS analysis
	Quality control for GC--MS measurements
	Data processing by Metabolite Detector software
	Data normalization
	Statistical analysis

	Results and discussion
	Overview of GC--MS analysis and workflow performance
	Metabolite coverage
	Results of QC measurements
	Data pre-processing (metabolite identification, missing value and outlier treatment)

	General description of metabolic response in wheat
	Effect of deoxynivalenol on central metabolism
	Effect of deoxynivalenol on metabolites specifically related to plant stress and plant defense
	Metabolites related to the resistance QTL Fhb1 and Qfhs.ifa-5A
	Putative biological functions of the metabolic response induced by DON

	Concluding remarks
	Acknowledgments
	References




