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Abstract The type and use of quality control (QC)

samples is a ‘hot topic’ in metabolomics. QCs are not novel

in analytical chemistry; however since the evolution of

using QCs to control the quality of data in large scale

metabolomics studies (first described in 2011), the need for

detailed knowledge of how to use QCs and the effects they

can have on data treatment is growing. A controlled

experiment has been designed to illustrate the most

advantageous uses of QCs in metabolomics experiments.

For this, samples were formed from a pool of plasma

whereby different metabolites were spiked into two groups

in order to simulate biological biomarkers. Three different

QCs were compared: QCs pooled from all samples, QCs

pooled from each experimental group of samples sepa-

rately and QCs provided by an external source (QC sur-

rogate). On the experimentation of different data treatment

strategies, it was revealed that QCs collected separately for

groups offers the closest matrix to the samples and

improves the statistical outcome, especially for biomarkers

unique to one group. A novel quality assurance plus pro-

cedure has also been proposed that builds on previously

published methods and has the ability to improve statistical

results for QC pool. For this dataset, the best option to

work with QC surrogate was to filter data based only on

group presence. Finally, a novel use of recursive analysis is

portrayed that allows the improvement of statistical anal-

yses with respect to the ratio between true and false

positives.

Keywords Quality control samples � Quality assurance

procedure � False positives � Recursive analysis � In silico �
QC surrogate

1 Introduction

Quality control (QC) is a ‘hot topic’ in metabolomics and

many research articles have been published that both

exemplify the reasons for and proposed uses of QC sam-

ples; their inclusion in metabolomics analyses is now

routine in many applications (Gika et al. 2007, 2012; Guy

et al. 2008; Kamleh et al. 2012). The analysis of QC

samples in metabolomics was first described in 2006,

although the concept of QC in validated methods has long

been described (Sangster et al. 2006). In any case, QC

samples are analysed at the start and end of an analytical

run as well as at intermittent points throughout, and their

function is to monitor the performance of a method. In a

validated method, the QC sample usually consists of the

blank matrix spiked with known concentrations of the

analyte in order to confirm reliability of its quantification in

samples throughout an analytical run (Sangster et al.

2006). In the case of metabolomics, this type of QC is not

applicable since the approach is often untargeted, involving

100–1,000s of unknown compounds at unknown concen-

trations. Instead, the idea of analysing a ‘biological QC’

arose from the description of pooling aliquots of all sam-

ples and injecting this mixture as the QC. Since it was

proposed in 2006 (Sangster et al. 2006), it is now a routine
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approach in metabolomics to inject this QC pool several

times at the start of the analytical run to ensure system

stability and to analyse the same pool at intervals

throughout the analysis for monitoring purposes.

There are many ways to deal with the information

provided by the intermittently injected QC pool and new

methods to deal with data are constantly evolving. On

interpreting the QC samples, one can decide whether or

not the analysis was performed in a reliable and repro-

ducible manor, and whether or not all/some of the data is

of high enough quality to consider in statistical analyses.

One common way to show this reproducibility is through

the clustering of QC samples in principal components

analysis (PCA). QC samples are expected to cluster clo-

sely to each other in the unsupervised plot (Sangster et al.

2006). Another measure of reproducibility is the assess-

ment of % relative standard deviation (RSD) of each

metabolic feature across QC samples (Godzien et al.

2013a).

More recently, the use of QCs has progressed to control

the quality of data in large scale studies. For example,

procedures for large-scale metabolomics with respect to

how to utilise QC samples in data-treatment have been

proposed (Dunn et al. 2011). This saw the introduction of a

surrogate QC sample in metabolomics studies where the

first batches of samples were analysed analytically before

the collection of all samples in the cohort. In this way the

QC sample still functioned as a measure of instrument

stability over time and enabled final integration of data

from all analytical batches; however since the sample was

external to the biological samples, specific strategies for

data filtering and signal correction based on QCs were

proposed. In this case, it was reported that data should be

filtered based on at least 50 % presence in QCs and

exhibiting RSD lower than 20 % (HPLC–MS data) or

30 % (GC–MS data). Such data can then be used in batch-

matching and signal correction (between filter by presence

and filter by reproducibility) in order to generate a com-

plete dataset for statistical analyses (Dunn et al. 2011).

Additional uses of QCs in batch control for metabolomics

studies have also been recently reported including the

determination of day-to-day reproducibility in metabolite

profiling (Gika et al. 2012).

Different types of QC samples have been proposed

beyond the classical pooling technique and the utilisation

of a surrogate QC in large-scale studies (or in studies where

sample volumes do not permit the pooling of biological

samples to form the QC sample) (Ciborowski et al. 2012b;

Godzien et al. 2013b). For example, in a study published in

2009, three different ways to prepare QCs were exempli-

fied that included the injection of Milli-Q water, a mixture

of metabolite standards and the re-injection of some of the

biological samples (Llorach et al. 2009).

Although the use of QCs is now routine in metabolomics

studies and there are different strategies published for the

type of sample and the way they are used in data treatment,

the effect of using different QCs and the data treatment

procedures that are most appropriate based on the type of

QC used in an experiment is not well defined. To this end,

we have designed a controlled experiment utilising HPLC–

MS, whereby different metabolites have been spiked at

different concentrations into human plasma in order to

simulate two biological groups of samples. Moreover, other

metabolites have been altered in silico to represent features

that are present in one group and completely absent in the

other. These types of features are usually disease or treat-

ment specific and are either absent or present in case

subjects relative to controls. QCs were formed either by

pooling equal volumes of all samples into one QC (QC

pool), pooling equal volumes of samples from the each

group separately (QCA and QCB), or employing a surro-

gate QC from different human plasma (QC surrogate). The

appropriateness of different filtering strategies were com-

pared and contrasted for each with respect to their effect on

the final statistical results.

The choices made in data treatment procedures have

different influences on the interpretation of metabolomics

data. In some studies, it is possible to choose the type of

QCs to be used, however the experimental design may lead

to only one possibility. In any case, different decisions can

be made in data treatment and the effects of such decisions

are presented herein.

2 Materials and methods

2.1 Chemicals and reagents

Ultrapure water, used to prepare all the aqueous solutions

was obtained ‘‘in-house’’ from a Milli-Qplus185 system

(Millipore, Billerica, MA, USA). LC–MS grade acetoni-

trile and analytical grade formic acid were purchased from

Fluka Analytical (Sigma-Aldrich Chemie GmbH, Stein-

heim, Germany). All spiked metabolites were acquired

from Sigma-Aldrich (Chemie GmbH, Germany).

2.2 Biological samples

The pool of plasma was deproteinised by the use of cold

methanol:ethanol 1:1 (-20 �C) in the proportion 1:3

(Ciborowski et al. 2010). Plasma was vortex-mixed for

1 min and then incubated on ice for 10 min. Vortex-mixed

plasma was centrifuged at 16,0009g for 20 min at 4 �C. The

resulting supernatant was collected and separated into two

tubes (A and B), to which eight metabolites were added.

Hydrocortisone, tetradecylamine and octanoyl-carnitine
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were spiked to A and octylamine, palmitoyl-carnitine and

progesterone were spiked to B at different concentrations.

Acetyl-carnitine and decanoyl-carnitine were spiked to both

mixes in equal concentrations to control the procedure. Each

metabolite was added at a concentration of 10 ppm. Samples

were formed by mixing different proportions of plasma A

and plasma B to simulate two groups with intra-group bio-

logical variation as described in Table 1. QCs were formed

by pooling equal volumes of each sample (QC pool); equal

volumes of samples from group A (QC A); equal volumes of

samples from group B (QC B) or by pooling surrogate

plasma that was extracted in the same way. Figure 1 shows a

schematic of how samples and QCs were formed.

2.3 Analysis by HPLC–QTOF–MS

The analysis was set up in one batch of samples that started

with ten QC pool samples for equilibration and stabilisa-

tion of the system, followed by samples in a randomised

order. After the injection of every fourth sample, one of

each of the QCs were analysed until the end of the run.

Eight samples were analysed for each group and five of

each QC. The order of analysis is provided in the Sup-

plementary Information (Fig. S1, SI).

All analyses were performed by HPLC–QTOF–MS

(HPLC 1200 series coupled to QTOF 6520, Agilent) using

a previously described method (Ciborowski et al. 2010).

The system was operated with a flow rate of 0.6 mL/min

and with a gradient that started with 25 % B, reached 95 %

B in 35 min, returned to 25 % B in 1 min and was main-

tained at 25 % B for a further 9 min. Briefly, 10 lL of

sample was loaded onto a reversed-phase column

(Discovery HS C18 15 cm 9 2.1 mm, 3 lm; Supelco)

with a guard column (Discovery HS C18 2 cm 9 2.1 mm,

3 lm; Supelco). The mobile phase consisted of solvents A

and B: water with 0.1 % formic acid and acetonitrile with

0.1 % formic acid, respectively. Data were collected for

each sample in positive ionisation modes in full scan mode

(m/z 50–1,000). The capillary voltage, nebuliser gas flow

rate and the scan rate were 3,000 V, 10.5 L/min and

1.02 scan/s, respectively.

2.4 Data re-processing

The molecular feature extraction (MFE) tool in Mass

Hunter Qualitative Analysis (B.06.00, Agilent) was

employed to clean data of background noise and to provide

a list of all possible features in each sample. Features were

created using the accuracy of mass measurements to group

ions related to charge-state envelope, isotopic distribution,

and/or the presence of adducts and dimers, as well as

potential neutral loss of molecules. The MFE algorithm

finds co-eluting ions that are linked and sums all ion signals

into one value defined as a feature. Compound abundance

is assigned as a sum of volume for each related ion/peak.

Data were reprocessed considering ions such as [M?H]?

and [M?Na]?, neutral water loss and the maximum per-

mitted charge state was double. Following this, data were

aligned in Mass Profiler Professional (12.6.1, Agilent) and

exported for analysis. Alignment was performed based on

m/z and RT similarities within the samples. No shifts were

observed in peaks over the analysis; therefore, alignment

was performed without prior RT correction. Parameters

applied were 1 % for RT window and 20 ppm for mass

tolerance. Alignment was performed by restricting the

number of ions and charge states defined previously during

extraction of features.

2.5 Data pre-treatment

Data were filtered based on different criteria to compare

and contrast their effects on the reproducibility of the final

dataset. Data were filtered (i) based on at least 50 % pre-

sence and lower than 30 % RSD in respective QCs, where

missing values were included in RSD calculation; (ii)

based on at least 50 % presence and lower than 30 % RSD

in respective QCs, where missing values were not included

in RSD calculation and (iii) based on at least 80 % pre-

sence and lower than 30 % RSD in respective QCs, where

missing values were not included in RSD calculation.

After concluding the best option for filtering data based

on QC RSD, different methods of quality assurance (QA)

were compared: filtered based on the selected QC RSD

filtration method optimised for the present dataset from QA

previously published (Dunn et al. 2011) (QAopt); QAopt

Table 1 Proportions of plasma mixes used to form each sample

Group Sample % Plasma A % Plasma B

A 1 100 0

2 96 4

3 92 8

4 88 12

5 76 24

6 72 28

7 68 32

8 64 36

B 9 0 100

10 4 96

11 8 92

12 12 88

13 24 76

14 28 72

15 32 68

16 36 64
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with the addition of including features that were not present

in QCs [quality assurance plus (QA?)] and no filtration

based on QC samples. In all cases, filtering based on pre-

sence in at least n - 1 samples of at least one of the two

groups was performed. For all features that passed the fil-

ters, missing values were replaced in different ways. For

QC samples (n = 5) one missing value per feature was

replaced by the median of all others and two missing values

per feature were replaced by 1/2 of the minimum. For

samples per group (n = 8) two missing values per feature

were replaced by the median of all others, 3–5 missing

values per feature were replaced by 1/2 of the minimum

and for more than 5 missing values, they were kept as

zeros.

2.6 Data treatment

Prior to statistical analysis, the distribution of data for each

feature was assessed. Scripts for MATLAB (R2010a,

MathWorks) were built in-house to test the normality of

each feature based on the Shapiro–Wilk method and for

normally distributed features, homogeneity of variance was

Fig. 1 Sample formation. Plasma was pooled, extracted and sepa-

rated into two tubes (A and B). Unique metabolites were spiked to

each plasma pool (in addition to metabolites spiked to each in equal

concentrations). Different proportions of plasmas A and B were

mixed to form samples and QCs were formed by pooling specific

samples as shown. QC surrogate was formed from a different pool of

plasma that was extracted in the same way

Fig. 2 PCA scores plot of all samples and QCs filtered based on

90 % presence in at least one of two groups. Groups of samples are

circled to show each group of samples and QCs. Cumulative R2 and

Q2 were calculated to be 0.313 and 0.107, respectively
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tested based on the Levene method. For normally distrib-

uted features, p-values were calculated using the Student’s

t test assuming equal variances for features that passed the

Levene test and with no assumption of equal variances for

all others. For non-normally distributed features, the

Mann–Whitney U test was employed. Post-correction was

performed for all features together using the Bonferroni

method.

2.7 Recursive analysis

MFE is a naı̈ve peak discovery tool which finds all

co-eluting signals corresponding to the same molecule.

Data re-processing is performed for each sample sepa-

rately, therefore whenever information contained in the

data file is different between samples (due to the alterations

in the metabolites intensity and/or sample matrix) the final

output can be slightly different. These differences cause the

misassignments either for the neutral mass given or total

feature intensity. Such misassignments can be sources of

either false positive and/or true negative errors. Recursive

analysis is based on the Find by Ion algorithm which uses

previously found compounds (resulting from MFE) as the

data source listed in the previous output (the list of previ-

ously found features before, after or during the data ana-

lysis procedure, saved in the format. cef—compound

exchange file). Using spectra from all ions, m/z and total

feature intensity are re-calculated. Data re-processing is

performed for each data file separately but the search is

based on the list of features created for all samples under

investigation, therefore information missed in one data file

can be re-covered by comparison with other samples. The

workflow for recursive analysis is shown in Fig. S2, SI.

A novel application of recursive analysis was applied to

features found to be statistically significantly different

between groups A and B (as determined by univariate

analysis). The obtained data were treated exactly the same

as data obtained by MFE. To ensure conditions were

comparable, Bonferroni correction was performed on equal

numbers of features (Fig. S3, SI). Although recursive

analysis was only performed on statistically significant

features, corrected p-values were calculated simultaneously

for all features (all others obtained previously by MFE).

This procedure was applied to test the same number of

features, since the number of masses tested affects the

results of post-correction output.

3 Results and discussion

3.1 Assessment of data quality

To elucidate the effect of different QCs on the analysis and

final interpretation of data, a controlled experiment has

been designed. Eight metabolites were spiked into human

plasma (six at varying concentrations to simulate bio-

markers and two at controlled concentrations between

Fig. 3 PCA scores plots of different filtering strategies based on QC

samples. Filtering based on 50 % presence was performed without

(missing value = NaN) and with (missing value = 0) considering

missing values in CV calculation. Cumulative R2 and Q2 for these

models were 0.286 and 0.061 and 0.445 and 0.284, respectively. For

data filtered by 80 % presence in QCs, missing values were not

considered in the calculation of CV. Cumulative R2 and Q2 for this

model were calculated as 0.349 and 0.153. Filled circles Group A,

open circles Group B, grey triangles QC
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groups) to create two biological groups, representing a

biological dataset. Acquired data were checked in terms of

quality and reproducibility considering pressure stability,

chromatogram reproducibility, number of features per

sample and total signal per sample (Godzien et al. 2013a).

Data were initially filtered based on presence in at least

90 % of one of two groups in order to assess the global

analysis through PCA (Fig. 2). As can be clearly seen, the

positions of different types of QCs in the PCA space were

concordant with respect to the positioning of groups. For

all subsequent calculations and filtering, raw data were re-

analysed.

3.2 QC RSD calculation

Different strategies for filtering based on QC were tested

for QC pool data to elucidate the most reproducible

method for this dataset. Data were filtered (i) based on at

least 50 % presence and lower than 30 % RSD in

respective QCs, where missing values were included in

RSD calculation; (ii) based on at least 50 % presence and

lower than 30 % RSD in respective QCs, where missing

values were not included in RSD calculation and (iii)

based on at least 80 % presence and lower than 30 %

RSD in respective QCs, where missing values were not

included in RSD calculation. Filtering methods were

compared through comparison of PCA models as shown

in Fig. 3.

As can be seen in the PCA scores plots, QCs were best

clustered following filtering based on 50 % presence in

QCs, considering missing values. However, on interpreta-

tion of the data, it was observed that this filtering method

resulted in the lowest number of features in the final dataset

(757), as opposed to the other method of filtering based on

50 % presence (1,884) and the method based on 80 %

(1,070). The reproducibility of QC data may not reflect that

of the samples. For this reason, the most stringent filtering

method could lead to loss of information that would have

been relevant when comparing biological groups.

The source of missing values in metabolomics data is

usually associated with analytical error (usually a higher

number of missing values) or data reprocessing errors

(usually a lower number of missing values). In theory,

filtering based on 80 % presence in QCs retains features

with lower numbers of missing values, attributed to

reprocessing errors; therefore this option best reflects the

‘real’ data. This method offers the best compromise since it

requires detection in a higher frequency of QC samples, but

does not penalise features that had a very low number of

missing values that could lead to their expulsion from the

dataset in RSD calculation.

Data were subsequently filtered based on 90 % presence

(in this case 7/8 samples—87.5 % which was rounded to

90 %) in at least one of the two groups and missing values

in data were replaced as described in Sect. 2.

3.3 Comparison of QCs

Figure 4 shows the PCA plots for data filtered by each

different QC. QCs clustered well in each case and the

positioning of QCs in the plot was concordant with the

types of QC displayed in each. A slight spread in QC

surrogate was observed, however, since there was no

observed trend due to analysis (Fig. S4, SI), this spread

could not be explained by variation due to the order of

measurement. As would be expected, the positions of the

QCs in the separately prepared QCs (QCs A and B) were

close to their respective groups.

During the analysis of data at the chromatogram level, it

was observed that the signal of spiked metabolites was

reduced in QC pool samples and that QCs A and B were

closer to their respective groups (Fig. S5, SI). For this

reason, using QCs A and B could be advantageous over QC

pool since true biomarkers could be lost in QC filtering

with QC pool. Moreover, the total useful signal (Godzien

et al. 2010) in QC pool samples (signal corresponding to

relevant data) was lower than QCs A and B (8.21 9 107 for

QC pool compared to 8.29 9 107 and 8.33 9 107 for QCs

A and B respectively). The advantages of this are twofold:

higher total useful signal could be indicative of signal from

a greater number of features (higher metabolite coverage),

and enhanced signal in separate QCs could be due to the

lack of dilution effect as occurs in QC pool. Figure 5

illustrates the number of features after QAopt performed

for each QC separately. As can be seen, the total number of

features when summing information from QCs A and B

was higher than QC pool by more than 300 features.

Analysing the data with respect to each spiked metab-

olite in different QCs revealed different levels of infor-

mation about the QCs. Table 2 shows the % RSD

calculated for each spiked metabolite in the different

groups of QC.

The first clear observation is that three of the metabo-

lites would be filtered out of the analysis if QC surrogate

was used due to absence, or presence with unacceptable %

RSD if the traditional method of filtering was applied

(Dunn et al. 2011). This highlights the necessity to revise

filtering options when working with QC surrogate (since it

is assumed that selecting another type of QC cannot be an

option due to experimental design).

Second, although the intensity of each spiked metabolite

was higher in QCs A and B compared to the pool (Fig. S5,

SI), the % RSD was not always lower. This demonstrates

that reproducibility cannot always be improved with

intensity. Furthermore, differences between the numbers of

features with similar % RSD were not different between

Controlling the quality of metabolomics data 523

123



QCs A, B and QC pool (Fig. S6, SI). This highlights that

although the total useful signal was higher in QCs A and B

than pool, there was negligible difference on the repro-

ducibility of the data. This was unexpected since splitting

QCs into two samples was theorised to improve matrix and

dilution effects and subsequently reproducibility.

Irrespective of the samples, the QCs analysed and the

way they are employed in filtering and data treatment

changes the dataset. The result of this can be the decision to

keep or filter out real biomarkers. It is clear that QC sur-

rogate is expected to be different to the samples, and

therefore care must be taken in filtering. However, as can

be seen in Fig. 6, QC pool samples are different to samples,

which is a fact often overlooked. This highlights the

importance of such an investigation to reveal the best

options to work with different QCs. The lowest number of

features different between QCs and samples occurred for

QCs A and B which further proves that these QCs are the

most related to the samples and potentially offer the best

option in an experimental design. Furthermore, if QC pool

or QC surrogate have to be selected, different strategies

must be employed to account for the differences between

them and samples. Although the numbers of features dif-

ferent between samples and QCs seem to be high, it should

be clarified that the number does not reflect features present

only in QCs (absent in samples), it reflects the number of

features that did not pass filters either in QCs or samples.

Fig. 4 PCA plots of samples filtered based on at least 80 % presence

and lower than 30 % coefficient of variance in respective QCs.

Cumulative R2 and Q2 were calculated as 0.405 and 0.193 for QC

pool, 0.387 and 0.196 for QC surrogate, 0.344 and 0.185 for QC A

and 0.488 and 0.362 for QC B. Filled circles Group A, open circles

Group B, grey triangles QC

Fig. 5 Venn diagram of the number of features following QAopt

procedure performed for each type of QC separately
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In addition to QAopt, different filtering options were

introduced to observe their effects on statistical outcomes.

This could be measured by comparing the consequence of

different filtration strategies for different types of QC on

the rate of true/false positives from statistical analysis.

QA? was introduced as a solution to recover informa-

tion lost in QC filtering. The reproducibility of features that

are not present in QCs cannot be assed, although they could

be key biomarkers in the real samples. QA? is based on

QAopt, with the addition of including features absent in

QCs and present in a high proportion of samples from one

of the groups. Features were added to QA filtered data

when their presence was high enough to pass the filtration

based on groups, even though they were absent in QCs.

Simultaneous filtration based on QCs and groups allowed

the easy identification of such variables. QA? was

Table 2 % RSD calculated for

spiked metabolites across each

group of QCs

ND not detected

Mass Retention time Metabolite RSD of the signal (%)

QC pool QC surrogate QC A QC B

362.2094 4.07 Hydrocortisone 4.30 9.18 7.23 4.59

213.2458 13.99 Tetradecylamine 3.56 99.01 3.14 4.46

287.2104 4.02 Octanoyl-carnitine 6.70 6.97 7.47 7.10

129.1515 1.91 Octylamine 4.89 ND 6.73 5.72

399.3367 18.84 Palmitoyl-carnitine 6.92 7.89 7.11 6.51

314.2249 15.49 Progesterone 5.21 ND 3.24 5.12

Fig. 6 Venn diagrams of the

overlap between samples and

different types of QCs after

filtering with respective QC.

Groups were filtered based on

90 % presence in its respective

group and QCs were filtered

based on 80 % presence and

lower than 30 % RSD
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expected to be particularly useful for both QC pool (where

features can be lost by dilution effect) and QC surrogate

analyses. For these datasets, 18 and 32 features were added

to QC pool and QC surrogate, respectively. The success of

this method was measured by comparing the rate of true/

false positives from statistical analysis.

Information from QC filtering is also commonly lost in

the case where features are only detected in one group and

are completely absent in the other and are therefore often

absent from QC samples (Ciborowski et al. 2012a). To

reflect this situation, additional in silico features were

altered in the data through deleting values in one group

while maintaining the original values for the other group in

a random selection of eight features. Four features were

altered to be present only in group A samples and four only

in group B. Values for QCs were altered such that they

(i) were present or absent according to their respective

group for QCs A and B, (ii) were absent in all QC surrogate

samples since case specific metabolites would not be

expected to be present in external plasma and (iii) were

altered for QC pool such that some features would be

missed as metabolites present only in one group can be

diluted and not observed due to their origin in the samples.

Table 3 details the formation of in silico altered metabo-

lites. A different number of features were altered to be

present in QC pool in order to highlight the effect of dif-

ferent filtering strategies in different scenarios.

The effect of different filtration strategies on the statis-

tical outcome was compared for all spiked and in silico

altered metabolites. Table 4 highlights the results for each

type of QC. Equally for QC pool and QC surrogate, both

QA and QA? were tested. Additionally, not filtering QC

surrogate data was compared to observe its effect on the

balance between true and false positives. Both metabolites

spiked at equal concentrations were found to be true

negatives.

All spiked metabolites added at varying concentrations

were found to be statistically significant from QAopt and

QA? for QC pool and QCs A and B methods, however it

was possible only through using QCs A and B to obtain all

spiked and in silico added metabolites as true positives.

Although from the analysis of spiked metabolites there was

not a significant difference between QAopt and QA?

methods, in the case that features of interest are present

only in one group and not the other (as tested by the

in silico addition of features), QA? improves the true

positive rate by 50 % without affecting the false positive

rate. Additionally, for in silico added metabolites, the same

improvement could be made for QC surrogate working

with no filtration compared to QA?. It can also be

observed from these data that no filtration offers the best

solution working with QC surrogate.

One important consideration to take into account is the

goal of the study. For biomarker discovery, maintaining a

lower level of false positives is more important than

improving the true positive rate. On the other hand, in

pathophysiological exploration studies, a higher true posi-

tive rate is desired regardless of the false positive rate. For

these reasons the data in the table can be interpreted in

different ways. For example, if the goal of a study utilising

QC surrogate whereby data contain features present

exclusively in one group, the best filtration for biomarker

discovery would be QAopt, however for understanding the

Table 3 Design of in silico adjusted features

Feature Present only

in group:

QC A QC B QC pool QC

surrogate

1 A 5 0 0 0

2 B 0 5 0 0

3 A 5 0 1 0

4 B 0 5 1 0

5 A 5 0 2 0

6 B 0 5 2 0

7 A 5 0 3 0

8 B 0 5 3 0

For each adjusted feature, the group in which it was present is

highlighted (where it was completely absent in the other) and the

number of QCs in which the feature was present is shown for each

type of QC

Table 4 Summary of statistical findings for spiked and in silico

added metabolites for each type of QC

QAopt QA? No QC filtration

Six differently spiked metabolites

QC pool

True positive 6 6

False positive 9 10

QC surrogate

True positive 3 5 6

False positive 4 11 10

QCs A and B

True positive 6

False positive 9

Six differently spiked metabolites ? eight in silico features

QC pool

True positive 6 10

False positive 9 10

QC surrogate

True positive 3 9 14

False positive 4 11 10

QCs A and B

True positive 14

False positive 9
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mechanism of a condition, no filtration offers 100 % true

positive rate.

As the observed false positive rate was high regardless

of the type of QC and strategy for data treatment, recursive

analysis was employed in an attempt to minimise false

positives due to artefacts in data pre-treatment. Table 5

shows the same results following recursive analysis of

significant features. In all cases, recursive analysis reduced

the false positive rate without affecting the true positive

rate. Specifically, it can be seen that working with recursive

analysis in conjunction with QC surrogate, whether or not

metabolites are present in both groups or exclusively in

one, no filtration offers the best solution. Additionally,

recursive analysis greatly improves the results working

with QCs A and B.

The fact that no filtration provided the best option for

QC surrogate was likely due to the true positives being

strong markers. In this way, true positives were not lost

through QC filtration and false positives were reduced due

to a significantly larger number of features being tested in

the Bonferroni false positive rate test (*25 % more).

However if the biomarkers were not strong markers, there

is a risk of losing them with no filtration through Bonfer-

roni false positive rate testing, therefore, QA? can offer a

reasonable compromise to working with QC surrogate.

3.4 Creation of a second dataset

Surrogate QC samples were introduced in metabolomics

studies as an option to analyse batches of samples from a

large cohort (Dunn et al. 2011). Although QA filters were

proposed as the method to deal with such data, it could also

be more appropriate, as shown in the present study, to

follow no filtration based on QCs. Working with no fil-

tration of QCs, it is not possible to perform batch correc-

tion in large studies. Therefore, in order to justify the

possibility to work with no filtration, another dataset was

created to show the effects of using (not-filtered) batches

separately through validating one with another.

A second dataset was created from the acquired data

whereby a scaling factor was applied to each sample to

simulate another batch. Reviewing several datasets, it was

observed that the variation in total signal between samples

is on average 0.2 and for QCs 0.05. Therefore, a scaling

factor was randomly created for each based on these tol-

erances. The second dataset was used both in batch cor-

rection by LOESS (Dunn et al. 2011) using an in-house

written script for MATLAB and for validation of the first

batch.

Although batches cannot be merged as described pre-

viously, if the experimental design permits (there are

enough samples per experimental group in order to perform

robust statistical analysis), batches can be used separately

with the option of validating one with the other—per-

forming statistics separately for each dataset and compar-

ing final results.

Two strategies for combining data were tested: (i) two

batches (acquired and created datasets) were treated sepa-

rately following exactly the same data treatment (described

in Sect. 2); (ii) two batches were combined together and

signal correction through LOESS was applied before sta-

tistical analysis performed in the same way as described

previously. To compare the obtained results, lists of p-

values obtained for the acquired data was compared both

with the created data and the LOESS batch-matched data as

a reference. Comparing LOESS batch matched data and

data whereby one batch was used to validate the other,

Table 5 Summary of statistical findings (after recursive analysis) for

spiked and in silico added metabolites for each type of QC

QAopt QA? No QC filtration

Six spiked metabolites

QC pool

True positive 6 6

False positive 4 4

QC surrogate

True positive 3 5 6

False positive 2 5 3

QC A and B

True positive 6

False positive 3

Fig. 7 Venn diagrams of

statistically significant masses

between a acquired data and

created data treated separately

for statistical analysis and

b between the acquired data and

the results after batch matching

both datasets through LOESS
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there was no effect on the true positive rate, however the

false positive rate was reduced by *50 % (Fig. 7).

As shown form this particular investigation, combina-

tion of datasets in large scale studies is still possible, even

without filtering based on QCs and following the LOESS

procedure. Depending on the experimental design this

could offer an attractive alternative for studies with QC

surrogate.

4 Conclusions

To elucidate the effect of different QCs on the analysis and

final interpretation of data, a controlled experiment has

been designed. Choices made in data treatment can have a

considerable impact on the final dataset and on the results

of statistical analyses. The presented data portray that the

most relevant type of QC (if the experimental design per-

mits) is the use of separate pools of QCs for each experi-

mental group (QCs A and B). If it is not possible to do this

(due to a very limited sample volume), and either QC pool

or QC surrogate is necessary then the way they are used in

data treatment should be carefully planned. From the

results presented, the best way to deal with QC surrogate is

to work without any filters based on QC (filtering should be

only group specific). Using QC pool, QA? offers a suitable

option whereby features can be ‘saved’ and the true posi-

tive rate can be improved without affecting the false pos-

itives. Finally, recursive analysis has been suggested as a

valuable method to recover data that ultimately improves

statistical analyses (true positives are increased further with

no effect on the false positives).
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