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Abstract Challenge tests are used to assess the resilience

of human beings to perturbations by analyzing responses to

detect functional abnormalities. Well known examples are

allergy tests and glucose tolerance tests. Increasingly,

metabolomics analysis of blood or serum samples is used

to analyze the biological response of the individual to these

challenges. The information content of such metabolomics

challenge test data involves both the disturbance and res-

toration of homeostasis on a metabolic level and is thus

inherently different from the analysis of steady state data. It

opens doors to study the variation of resilience between

individuals beyond the classical biomarkers; preferably in

terms of underlying biological processes. We review

challenge tests in which metabolomics was used to analyze

the biological response. Specifically, we describe strategies

to perform statistical analyses on the responses and we will

show some examples of these strategies applied to a

postprandial challenge that was used to study a diet with

anti-inflammatory properties. Finally we discuss open

issues and give recommendation for further research.

Keywords Challenge tests � Perturbation � Statistical

analysis � Review � Redefining health

1 Introduction

The current definition of health is a state of complete

physical, mental and social well-being, and was drafted by

the WHO in 1946 (WHO 2006). This definition has drawn

growing criticism with respect to two aspects. First, a

complete physical, mental and social well-being is rarely

achieved by most individuals (Lancet 2009; Huber et al.

2011). Secondly, there is a growing awareness that
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organisms need to be adaptable and flexible to the changing

environmental conditions. It has been suggested to change

the emphasis of this definition towards ’the ability to adapt

and self-manage in the face of social, physical and emo-

tional challenges’ (Lancet 2009; Huber et al. 2011).

Interestingly, Georges Canguilhem had already defined

health in 1943 as the ability to adapt to one’s environment

(Canguilhem 1991). To comply with this newly proposed

definition, experimental models need to be developed that

describe the disturbance and restoration of homeostasis and

that can thus be employed as measures of health and well-

being. Applying a challenge test combined with meta-

bolomics may help identify sets of metabolites that predict

differences in the responses between healthy, compromised

and diseased subjects.

The concept of health can be modernized and visualized

in terms of a health space based on molecular phenotypes

(Bakker et al. 2010; Bouwman et al. 2012). This health

space can be assessed by recording a treatment response of

which a challenge test is a special case. A challenge test

investigates the disturbance and restoration of homeostasis

of an individual upon a physiological stressor and its

response has indeed been shown to be related to health

status. The most well-known challenge test used in the

medical field is the oral glucose tolerance test (OGTT) that

determines how quickly glucose is cleared from the blood.

This test is used for the diagnosis of type 2 diabetes and

insulin resistance. Also plasma metabolic profiling com-

bined with a glucose challenge has already been used

successfully to differentiate between healthy individuals

and individuals with an impaired glucose tolerance,

showing that pre-diabetic subjects have blunted response in

processes of proteolysis, lipolysis, ketogenesis and gly-

colysis (Shaham et al. 2008). Challenge tests are also

widely used in life-science research, but these tests are not

always referred to as challenge tests explicitly. Other fre-

quently used names for the same concept include stress

tests, stimulation tests, perturbation tests, provocation tests

and tolerance tests. All of these tests intend to trigger a

physiological response.

The first documented use of a challenge test was pub-

lished in 1943 by (Jawetz and Meyer 1943) in an article on

avirulent strains of Pasteurella pestis. The researchers were

confronted with two questions: (1) how to assert the

avirulence, and (2) how to assert the (induced) immunity.

The solution was to challenge the test animals with the

avirulent inoculum and to score the number of animals

developing the plague. The efficacy of the immunity

induced by the vaccine was tested by challenging the

immunized test animals with a test dose after which the

number of dying animals were scored. Without this chal-

lenge there was no way of telling whether a strain is

avirulent or whether the vaccination is effective. The idea

of challenge tests was quickly accepted. Allergy tests in

which subjects are confronted with allergens are nowadays

common practice (Arbes et al. 2005).

We will discuss challenge test data analysis in the

context of metabolomics and assessment of health status. A

challenge test is a designed provocation and the induced

response is analyzed for diagnostic classification, dis-

crimination, stratification or exploratory analysis. This can

be done both at the group level—to evaluate the effect of

treatments—and/or on an individual level to study personal

phenotypes. We focus on metabolomics, since this tech-

nology is increasingly used to arrive at a systems-view of

the challenge response. For biological interpretation of the

challenge test results it can be useful to distinguish dif-

ferent biological processes such as inflammation, oxidative

stress and metabolism (Bouwman et al. 2012).

We start with giving some examples of challenge tests,

then we discuss at length the different approaches to ana-

lyze the (multivariate) data. We will use a running example

to show some of the methods and give also some new ideas

on how to tackle the data analysis problems. We end with a

discussion and some future perspectives.

2 Types of challenges tests

In the context of challenge tests, a broad range of different

types of metabolomics-based tests have been described, of

which the metabolic response to an OGTT has mostly been

applied (Matysik et al. 2011; Shaham et al. 2008; Spégel

et al. 2010; Zhao et al. 2009; Skurk et al. 2011; Wopereis

et al. 2009; Rhee et al. 2011; Lin et al. 2011; Ho et al.

2013). The metabolic evaluation of a single perturbation

ranges from two (before and after the challenge) up to nine

different time points (Spégel et al. 2010). Metabolomics-

based challenge tests are mainly used by the nutritional and

medical research field. In the nutritional research field the

purpose of the application of a metabolomics-based chal-

lenge test is the assessment of the health effect of a

nutritional intervention. Several studies describe the post-

prandial metabolic response after a metabolic challenge

(this can be a high fat challenge (OLTT), the OGTT or a

complex mixed challenge) to the intervention itself to

assess the health effect of a nutritional intervention (Pellis

et al. 2012; Bondia-Pons et al. 2011; Lehtonen et al. 2013;

Rodriguez et al. 2013; Zivkovic et al. 2009). In nutrition

and lifestyle research, the concept of perturbation of

homeostasis to quantify health related processes is

advancing (Elliott et al. 2007; Ommen et al. 2008). The

postprandial response reveals multiple aspects of metabolic

health that would not be apparent from studying the fasting

(homeostatic) parameters. Also other types of challenges

have been applied to study the health effect of a nutritional
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or lifestyle intervention, such as an exercise challenge

(Hodgson et al. 2013; Nieman et al. 2012).

The medical research field harbors a large proportion of

the applied metabolomics based OGTT challenge tests. The

metabolic profiling of the OGTT response had several

purposes; (1) to improve the accuracy of the insulin sen-

sitivity assessment itself (Spégel et al. 2010; Zhao et al.

2009; Skurk et al. 2011), (2) to predict metabolic processes

related to future diabetes status (Shaham et al. 2008; Rhee

et al. 2011), (3) to assess the effect of a pharmacological

intervention on glucose and insulin metabolism (Wopereis

et al. 2009), and (4) for the mechanistic understanding of

processes related to glucose and insulin control (Matysik

et al. 2011; Lin et al. 2011; Ho et al. 2013). Also other

types of metabolomics-based challenges have been applied

in the medical field. A nice example of where metabolo-

mics can contribute to improvement of the diagnostic test

has been provided by (Peeters et al. 2011). Allergies are

often detected or diagnosed using challenge tests. The

gold-standard skin prick test has a low specificity of only

20–50 % in detecting peanut allergy; therefore this diag-

nosis needs to be confirmed by performing a peanut chal-

lenge to distinguish peanut-allergic from peanut-tolerant

patients. A metabolomics approach applied in the peanut

challenge test has been shown to outperform the gold-

standard skin prick test, as allergic patients already showed

deviant metabolite levels prior to peanut ingestion, thus

before the onset of allergic reactions (Peeters et al. 2011).

Furthermore, the postprandial metabolic profile before and

after a (standardized) meal challenge was also used to

identify pathways associated with colon motility in order to

find potential targets for the treatment of children with

constipation (Rodriguez et al. 2013). Another example

involves lipopolysaccharide (LPS), which is an endotoxin

that induces a strong (dose-dependent) inflammatory

response and is one of the constituents of the membrane of

Gram-negative bacteria. A metabolomics-based ex-vivo

LPS challenge was used to identify pathway shifts during

macrophage activation (Rodriguez et al. 2013).

Finally, metabolomics-based challenge tests have been

used to study so called personalized health to distinguish

response subgroups (after an intervention) or to detect

metabolic phenotypes in subjects with a suboptimal health

status, for example, pre-diabetes (Shaham et al. 2008; Ho

et al. 2013; Krug et al. 2012; Rubio-Aliaga et al. 2011). A

good example where several metabolic challenge protocols

have been applied to uncover early alterations in metabo-

lism preceding chronic diseases is provided by (Krug et al.

2012). Fifteen young healthy male volunteers were sub-

mitted to a four days challenge protocol, including 36 h

fasting, oral glucose and lipid tests, liquid test meals,

physical exercise, and cold stress. Blood, urine, exhaled air,

and breath condensate samples from up to 56 time points

were analyzed with metabolomics technology. It was

shown that physiological challenges allowed for a better

characterization of the inter-individual variation, even in

phenotypically similar volunteers, by revealing metabo-

types not observable in baseline metabolite profiles (Rubio-

Aliaga et al. 2011).

2.1 The data

The various ways of analyzing the response to a challenge

is best illustrated on data from a typical intervention study.

Such a study has for example been described by (Pellis

et al. 2012). In this cross-over designed study, 36 over-

weight subjects consumed a dietary supplement mix based

on ingredients with anti-inflammatory properties (treatment

condition) or placebo over 5 weeks. The idea is that

improved health effects as a consequence of the dietary

intervention cannot be extracted from a homeostatic state,

but will be visualized by applying a challenge test which

activates many underlying physiological processes. The

effect of this dietary intervention is evaluated by a mixed

challenge test for both the placebo and the (nutritional)

intervention. The response to the mixed challenge was

quantified based on a total of 145 plasma metabolite, 79

protein and 7 clinical chemistry levels, measured at six

time points up to 6 h after the challenge. We focus on the

responses of the plasma metabolites that were obtained by

GC–MS measurements. In the remainder of the text the

mixed challenge test that directly follows the intervention

is referred to as the (nutritional) intervention, while the

other is referred to as the placebo.

3 Response analysis

Consider the hypothetical responses of three subjects to an

arbitrary challenge including the disturbance and restora-

tion of homeostasis (Fig. 1). The three response curves drift

Fig. 1 Responses in challenge tests. Once the challenge is applied,

the response follows rapidly. The three curved lines represent three

individual responses to the same challenge. The dashed horizontal

lines mark the upper and lower limits of the normal steady state range
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out of the normal healthy range differently. This between-

subject variation provides information on the resilience of

specific phenotypes which can be used for diagnosis and

prognosis. This figure also shows that recording of chal-

lenge test responses often includes taking more samples per

subject over the course of time. Doing so allows for a

description of the evolution of the response in time. This

implementation of registering individual challenge

responses by multiple samples over time gives more

information on the whole response profile, but complicates

the analysis of challenge tests.

The statistical analysis of the recorded responses mostly

deals with one of three types of experimental questions;

classification, discrimination, or exploration. Classification

is commonly used in clinical practice to detect pathological

conditions. Based on a challenge test result an individual

may be classified as pre-diabetic. Discrimination problems

are found in the evaluation of differences between groups

of individuals. The discrimination analysis either provides

diagnostics (such as biomarkers for a disease) or biological

knowledge. Exploratory experiments are usually done

when there is a need to develop or improve the mechanistic

or biological understanding of a system. We will discuss

the various statistical analysis methods keeping these goals

in mind. Additionally, we are going to discuss approaches

for single response analysis (i.e. where each metabolite is

analyzed separately or univariate methods) and multiple

response analysis where also the relationships between

metabolites are considered ( multivariate methods).

3.1 Single response analysis

3.1.1 Two-step approach: extracting characteristics

from raw data

The response of an individual to a challenge is exemplified

by the curves in Fig. 1. One way to describe the individual

response is to extract characteristic information from the

curves. Many different characteristics of the response

curves can be used to summarize an individual response,

each characteristic focusing on a different aspect of the

challenge response. In practice information on the whole

response curve is not available, but only data from the

sampling points (see Figs. 1, 6).

Plasma glucose levels are under strict homeostatic

control. In compromised subjects, such as obese, this

control fails because of diminished sensitivity to insulin

often leading to diabetes mellitus type 2 (DM2) (Diabetes

2011). The glycemic categories of fasting glucose levels,

hyperglycemia (plasma glucose concentration above 11.1

mmol/L), the euglycemic range (concentrations between

3.9 and 11.1) and hypoglycemia, are well-defined. The

glycemic categories can be defined on single samples, and

on the recorded challenge responses as shown in Fig. 1.

Evaluating whether a subject is euglycemic when several

response samples are recorded means that for each subject

the fraction can be calculated by scoring the number of

euglycemic samples over the total samples. The fraction

gives an indication of how frequent the recorded series is

(ab)normal. This approach is used by (Wang et al. 2011).

Another approach is using the area under the curve

(AUC), a measure that gives quantitative insight in the

glucose levels after the challenge. The AUC gives insight

in the total size of the response. The AUC can be calculated

in different ways (Pellis et al. 2012). Besides using the

euglycemic fraction (Wang et al. 2011) also used the AUC.

Other characteristics that can be extracted are, for instance,

the maximum amplitude of the response curve, the slope of

the curve at the start, and the slope of the curve after the

maximum was reached and the system goes back to the

ground state (Lee et al. 2004; Pellis et al. 2012), all to be

estimated from the measured samples.

The extracted measures such as the AUC vary across

individuals, because they have differences in health status,

belong to different phenotypic groups, or are under dif-

ferent treatment regimes. Group differences can be asses-

sed using statistical tools such as linear models like

Cik ¼ lþ hk þ �ik ð1Þ

and values of the characteristics Cik for different individ-

uals i are explained by the group mean hk of the group k

where the individual belongs to. An overall mean estimate

of the characteristic (l) is included, so that the group mean

hk is expressed as a difference from the overall mean. The

terms �ik then contain the individual deviations from the

group means. More explanatory factors can be added to the

model of Eq. 1 to explain the variation in the extracted

characteristics. The linear model described above can be

applied, for example, to the three groups of (Wang et al.

2011), consisting of healthy, pre-diabetic and DM2 sub-

jects. Besides analyzing the AUC, also the responses at

individual time points in the measurement series can be

analyzed each in a separate linear model.

The linear model approach can be used for testing dif-

ferences between groups; for classification by assessing how

a subject deviates from a group, as well as for exploratory

analysis. Note, however, that when this approach is used for

analyzing comprehensive metabolomics data then a model

has to be made for each metabolite separately, generating

many model results which hampers interpretation.

3.1.2 Two-step approach: extracting characteristics

from fitted data

An alternative to using raw data is to derive meaningful

characteristics from the fitted responses. In several settings
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the steepness of the response slopes or the location of the

maximum response are of prime biological interest. The

fitted response allows for a more efficient extraction of

such features as it is defined on a continuous scale and not

restricted to the measured time points. We will give an

example using the Weibull function, which has been used

before in kinetic modeling (Piotrovskii 1987; Heikkila

1999; Liu et al. 1996).

f ðx;/Þ ¼ c � b

a

� �
� x
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The vector of parameters / is now represented by the

symbols a; b; c; d and g. Next, smoothed (that is, fitted) data

can be calculated and also extracted features such as the

concentration at maximum response, time at maximum

response, slopes at 50 % of the maximum response, and the

offset. For studying differences between individuals in the

context of using fitted data the following approach can be

taken (see Fig. 2). First, an average profile derived from the

raw data is calculated per metabolite across all individuals.

Doing this for all metabolites results in population average

responses (Fig. 2a shows these average responses for all

metabolites). Next, a clustering method selects and groups

metabolites with a similar behavior. One of these clusters is

shown in Fig. 2b and used for further explanation. Then all

the individual profiles for all metabolites (Fig. 2c) are fitted

with the same model (Fig. 2d), resulting in individual

parameters (Fig. 2e) and fitted responses (Fig. 2f). From

these fitted profiles characteristics can be extracted (Fig. 2g).

The Weibull function is used for smoothing the response.

The cluster shows a characteristic response: a fast

increase in concentration after the challenge followed by a

restoration to the baseline concentration. The vast majority

of the responses in this cluster can be modeled with the

earlier mentioned Weibull function apart from some

exceptions (see Supplementary Material). The extracted

features can be arranged in a three-way array with indi-

viduals, metabolites and extracted features as the modes.

An efficient method to analyze such a three-way array is

the PARAFAC model which is a generalization of PCA to

A B C D E F G

Fig. 2 A schematic overview of the proposed methods for analyzing

the challenge responses. a The (standardized) population average

response for each metabolite is determined. b The data from a are

divided in six clusters, b shows the cluster averages. c Individual (i)

responses per metabolite (m) from the cluster. d Selection of

smoothing function. e The fitted function parameters. f Smoothed

fitted responses. g Extracted features

A B C

Fig. 3 The PARAFAC analysis of the extracted characteristics of

cluster 1. a The factor loading plot of the inter-individual variation,

with a convex hull connecting the most extreme individuals. b The

factor loading plot of the metabolites. c The factor loading plot of the

extracted characteristics
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more than two modes (Bro 1998). When applying this

model using two components, that explain 29 % of the

variation, results in three sets of loadings (Fig. 3).

Figure 3a shows the PARAFAC loadings for the indi-

viduals. This plot can be interpreted as revealing inter-

individual differences. Subjects 16, 19 and 33 are on the

edges of the convex hull and are the most dissimilar in their

behavior (see Figure S5). Figure 3b shows that lysine and

tyrosine have very similar responses. Finally, Figure 3c

shows that the first factor is dominated by the maximum

concentration whereas the second factor is dominated by

the contrast between the time at maximum concentration

and the slope of the ascending part of the response curve.

The loadings of this PARAFAC model can be used for a

follow-up analysis. The loadings for the individuals can be

used to predict the fasting insulin levels which were also

available for each individual. The correlation between the

predicted and the observed fasting insulin levels

(r ¼ 0:62; p\0:01) gives relevance to the loadings found

in the PARAFAC model. To corroborate this conclusion

we built an NPLS model between the original three-way

array (the same as used for the PARAFAC modeling) and

the fasting insulin levels. NPLS is an extension of PLS for

the three-way case (Bro 1998). A leave-one-out analysis

was performed using an NPLS model, giving a Q2 of 0:146

suggesting that there is modest predictive power. More on

the results and mathematical details can be found in the

Supplemental Materials.

3.1.3 One step approach

When a whole time series is recorded, it is more interesting

to analyze all time points simultaneously, leading to new

insights not contained in the AUC or single time point

measurements. The model of Eq. 1 can be extended by

including a term for describing time dependent behavior. In

Eq. 3 the effect of treatment or group and the effect of time

on the response values is included to describe the variation

in response values:

yijk ¼ lþ uj þ hk þ �ijk; ð3Þ

with hk as before, uj the time effect for time point tj, j the

index for time point. Interactions between effects can be

included in the model when, for instance, the treatments

have different time profiles. Such behavior can be detected

by testing the interaction between the treatment effect and

the time effect (wjk):

yijk ¼ lþ uj þ hk þ wjk þ �ijk ð4Þ

and the parameters, l;uj; hk;wjk can be estimated using

either ordinary least squares, or maximum likelihood. One

of the assumptions underlying these estimation methods is

that all observations are independent. However, response

values from a single challenge are obtained from the same

individual, making these observations dependent and the

assumption invalid. Linear mixed models or repeated

measurement ANOVA are able to account for the depen-

dencies between time points for an individual where an

individual is modeled as a random effect. Restricted

maximum likelihood estimation of the effects guarantees

more appropriate estimates and standard errors for

hypothesis testing. For an extensive description of linear

mixed models the reader is referred to Searle (1971) and

Verbeke (2009). The time dependent behavior can be

modeled as a qualitative factor or can be described mod-

eled by simple functions, such as linear, quadratic or cubic

polynomials.

With nonlinear models a more complex functional

description of the response can be given with time as a

continuous variable. Sometimes relevant models are

available that describe the observed time-dependent

behavior with parameters that have biological or physio-

logical meaning. Examples are models that describe dose-

response relations, pharmacokinetics (PK), or the time-

resolved behavior of a physiological feature (see (Davidian

and Giltinan 2003)). Many of the concepts used in linear

models can be transferred to nonlinear models. Equation 5

is an example of a simple kinetic model (adapted from

(Davidian and Giltinan 2003)) of the blood glucose levels

after ingestion or injection of glucose. In this model,

p1; k1; p2; k2 describe the pattern of glucose absorption in

the blood (p1 [ 0; k1 [ 0) and glucose clearance from the

blood (p2\0; k2 [ 0), and t represents the continuous

variable time:

yij ¼ p1e�k1tj þ p2e�k2tj þ �ij ð5Þ

In pharmacokinetic modeling, the emphasis increasingly

shifts from estimating the parameter values for the popu-

lation or group, to getting insight into how these parame-

ters vary among individuals (Sheiner and Ludden 1992;

Huisinga et al. 2012). This leads to models like in Eq. 6,

yij ¼ pi;1e�ki;1tj þ pi;2e�ki;2tj þ �ij ð6Þ

where each parameter is now individualized. A more

general form of Eq. 6 is shown in Eq. 7, in which /i is the

parameter vector for individual i. The vector xij is a vector

of predictor variables, which includes the variable time, but

may also include individual descriptors, such as treatment,

age or BMI:

yij ¼ f ðxij;/iÞ þ �ij ð7Þ

Having defined a nonlinear function f with parameters /i

the recorded responses can be fitted, and the parameters

can be estimated. The model parameters can be thought of

as consisting of a part that represents the population value
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for that parameter, and a part that accounts for individual

deviations from the population parameter value (Lindstrom

and Bates 1990; Davidian and Giltinan 2003). This so

called nonlinear mixed model concept allows for obtaining

information on the variability in model parameters, esti-

mating group differences and individual behavior.

The one step approach to statistical analysis of challenge

test response profiles generates models and parameters that

can be used for multiple purposes. Treatment effects can be

tested for individual metabolites. Model parameters of

linear as well as nonlinear models can be used for

exploratory analysis and reveal a stratification of individ-

uals in their response to the challenge test. This may even

go down to the personalized level generating individual-

specific model parameters. Obviously, also in this case the

parameters of the model can be used for classification,

discrimination and exploratory analysis. The drawback

mentioned earlier remains: having measured large numbers

of metabolites generates many model (parameters) making

interpretation not an easy task.

3.2 Multivariate response analysis

A challenge applied to a subject typically induces a

response in multiple biochemical components. It may be

advantageous to analyze the simultaneous relationships of

more of these components, that is, to perform a multivar-

iate analysis (Dillon 1984). Only a small number of studies

are published were multivariate data analysis is part of the

study. Almost all the multivariate analyses of challenge

responses are applied using extracted characteristics of the

metabolites such as AUCs.

3.2.1 Exploratory analysis

A commonly used method for data exploration in meta-

bolomics is principal component analysis (PCA, (Smilde

et al. 2004; Jolliffe 1986)). Many measured components

are biochemically, mechanistically, or otherwise related,

meaning that the variation that is observed in the different

components is not uncorrelated. This property is used in

PCA to construct new variables that are combinations of

the original variables. A limited number of these variables

are then able to describe the original variation in the data.

Visual inspection of the values of these new variables may

then reveal important information on the individuals (for

example, grouping) and the original variables (which are

related or not). In a study by (Zivkovic et al. 2009) PCA is

used to visualize the differences between inter- and intra-

individual variation in responsiveness to a lipid challenge.

Subjects are often considered as being drawn from the

same population in most analyses where the focus is on the

relations between variables. However, subjects may show

systematic differences, and fall into subpopulations that

differ in a meaningful way (Dillon 1984). Methods that seek

to identify these subclusters are known as clustering algo-

rithms, of which K-means is a popular member. Pellis (2012)

describes a specific application of K-means clustering on

metabolomics challenge test data, by clustering the popula-

tion average response profiles of different metabolites (see

also Section 3.1.2). In doing so they identify a subset of six

characteristic challenge test response profiles among

metabolites. Alternative approaches include simultaneously

clustering of both individuals and (the characteristics

extracted from) the response profiles.

3.2.2 Differential equations

In PK/Pharmacodynamics (PD) modeling, often sets of

differential equations are used to describe the dynamic

behavior of a set of metabolites and their interaction. These

methods are routinely used to study the effects of phar-

macological agents (PK) on physiological responses (PD)

(Sheiner and Ludden 1992) in vitro and in vivo. These

types of models can also be applied on glucose challenge

tests to assess insulin sensitivity (Bergman et al. 1979),

bioavailability in the context of nonlinear renal clearance

(Thompson and Toothaker 2004), and dynamic modeling

of aerobic exercise effects (Roy and Parker 2007).

The minimal glucose model, introduced by (Bergman

et al. 1979), serves as an example of a model consisting of

differential equations in which G is glucose, X is (propor-

tional to) the insulin concentration in the remote compart-

ment, I is the insulin concentration, Sg is the glucose

responsiveness, and the parameters p2; p3; kabs; kempt are rate

constants. To parametrize this model the glucose uptake has

to be included and one extra parameter f=V appears which is

the fraction of glucose which actually enters the plasma per

unit volume of the plasma. The insulin measurements are

taken as forcing functions in the model. The Supplementary

Material gives more technical details.

dGðtÞ
dt
¼ Sg ðGb � GðtÞÞ � XðtÞGðtÞ þ RðtÞ ð8Þ

dXðtÞ
dt
¼ p3ðIðtÞ � IbÞ � p2XðtÞ ð9Þ

dglðtÞ
d t
¼ �kempt glðtÞ þ DdðtÞ ð10Þ

dgintðtÞ
d t

¼ �kabs gintðtÞ þ kempt glðtÞ ð11Þ
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RðtÞ ¼ f

V
kabs gintðtÞ ð12Þ

Figure 4 shows the minimal glucose model applied to a

subjects response. Besides the estimated glucose response

the rate constants are also available for further analysis.

Table 1 shows the coefficients underpinning the plot

shown in Fig. 4. Even though the estimated glucose con-

centration appears to be a good approximation of the

measured glucose concentration, the uncertainty is fairly

large. Note that the standard deviation of the estimated

glucose responsiveness (Sg) is orders of magnitude larger

than its estimated value meaning that the obtained estimate

is not very reliable.

Though models like these have interpretational advan-

tages compared to using linear mixed modeling, the prac-

tical identifiability of the parameters may be problematic.

Exhaustive reviews on the modeling of the glucose-

insulin dynamics are found in (Boutayeb and Chetouani

2006), and (Makroglou et al. 2006). In theory the param-

eters obtained from those models can be used for classifi-

cation, discrimination and exploratory analysis. Extending

this approach, however, to the metabolomics case requires

models for all metabolites involved which are not available

to date.

3.2.3 Network analysis

A popular way of exploring metabolomics data is by using

association networks. The idea is very simple: calculate

correlations between all pairs of metabolites and plot the

results. There are some caveats, however, which have to be

dealt with. First, correlations do not distinguish between

direct and indirect relationships. This is usually tackled by

calculating partial correlations (Fuente et al. 2004). Sec-

ondly, a cut-off point has to be chosen for a (partial) cor-

relation to be significant. Different approaches to this

extent exist, for example, using rigorous statistical tests or

using permutation tests.

For our example we generated partial correlation net-

works for the 22 amino acids in the data set. First-order

partial correlations were used and the significance was

established by using the individuals as replicates (for

details; see Supplementary Material). The partial correla-

tions were calculated across the time points of the chal-

lenge for the placebo and intervention groups separately.

The results are shown in Fig. 5a and b. There are differ-

ences between the two networks (for example, the link

between alanine and L-histidine), which are thus related to

the intervention. Typically these networks are build to

represent pathways or mechanisms that are thought to be

altered due to the applied intervention, but such analyses

and their interpretation go beyond the scope of this paper.

Note that this approach only takes bivariate relationships

into account and thus cannot be considered truly

multivariate.

3.2.4 Classification and discriminant analysis

In many experiments categorical information about the

subjects, defining group membership (healthy or with dis-

ease; male or female) can be used in conjunction with the

multivariate response profiles. The objective of discrimi-

nant analysis is identifying metabolite responses that are

different between the (two) groups, or creating models for

predicting group membership of future subjects. In the

multivariate context, two approaches for discriminant

analysis are the most popular, principal component dis-

criminant analysis (Hoefsloot et al. 2008) and partial least

squares-discriminant analysis (Barker and Rayens 2003).

Typically such types of analyses identify combinations of

metabolites that can discriminate between groups (Dillon

1984). For challenge test analysis, these methods can be

applied to a single time point or an extracted parameter

such as the AUC. An example of using full time profiles is

0 50 100 150 200 250 300 350

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

Time

gl
uc

os
e

subject 32

G

Fig. 4 The glucose concentration following a challenge test. The

response was fitted using a minimal glucose-insulin model

Table 1 The estimated coefficients of the minimal glucose model.

Note that the standard errors of the glucose responsiveness (Sg) are

large compared to the estimate meaning it carries very little

information

Symbol Estimate SD

Sg 3.99 9 10-8 0.012

p2 0.031 0.015

p3 2.37 9 10-5 1.2 9 10-5

f=V 0.026 0.008
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reported (Wopereis et al. 2009; Rubingh et al. 2011) where

it is shown that subtle differences of challenges test

metabolites before and after a treatment can be found using

sophisticated three-way methods (Smilde et al. 2004).

4 Discussion

The following sections will address some of the issues

underlying challenge tests and their analysis.

4.1 Defining a proper challenge

The basic rationale for using challenge tests is their response

induction which gives an indication of the subjects’ physi-

ological ability to cope with that particular stressor. The

response from a challenged subject typically reveals infor-

mation that is unobservable in an unchallenged state.

For a challenge to be relevant three requirements need to

be fulfilled. First, the response should be detectable by an

analytical measurement technique. Secondly, the detected

biochemical response variables should have a relationship

with the physiological state. In other words, a proper

challenge test should focus on perturbing or exciting those

metabolites that are known to have a relationship with the

physiological phenomenon being queried. Taking these

components together, a challenge test can be seen as a way

to assess the adaptability and the resilience of a subject to a

perturbation. The resilience that the subject exhibits in

coping with the perturbation is a measure of its (perceived)

health. The third requirement is that the dosage of the

challenge response should be matched with the (expected)

physiological response. Dosages that are too high may push

the response outside the physiologically relevant envelope,

while a dosage that is too low may fail to induce a

detectable response.

4.2 Sampling design

Experimental design is an important part of each study, for

an in-depth discussion of the topic the reader is referred to

(Casella 2008). For studies including challenge tests this is

no exception, only now experimental designs have to be

determined at two levels. The first level relates to the

design of the study or trial, and this is not different for

studies with or without challenge tests. The experimenter

has to consider the use of designs such as, a pretest-posttest

design (Bennett et al. 2004), a parallel or a repeated

measures within-subjects design or a matched case-control

design (Miyazaki et al. 2003).

The second level involves the definition of when and

how many samples should be collected during each chal-

lenge test: the sampling design. An optimal sampling

scheme allows for a proper description of the response

using a minimal number of samples. It cannot be stressed

enough that an optimal sampling design is critical for the

detection of a response. The aim of the sampling design is

to recover the challenge response profile as good as pos-

sible from the measured data. The design is most fre-

quently constructed by using assumptions on the shape of

the profile that is to be expected. Key features of the true

profile may be missed when the sampling design is sub-

optimal as will be explained in the following example.

Figure 6 shows the response of two subjects differing in

the shape of their response (solid line). The dots in the

curve mark the sampling points. The differentiation of the

two responses strongly depends on the unobserved part

between the first and second time point for which no data is

available. The consequence of this sampling design is that

the two curves appear similar in shape. For the differenti-

ation between the two curves extra sampling points are

required. See also Supplemental Materials Figure S1 and

S4.

A BFig. 5 Partial correlation

network of the challenge tests

for (a) the placebo, and (b) the

anti-inflammatory supplement

mix intervention

58 D. J. Vis et al.

123



One of the unique selling points of metabolomics is the

simultaneous quantification of numerous metabolites in a

single sample. The consequence is that the sampling design

is identical for all the metabolites. As a result, the sampling

design needs to balance the various types of metabolite

responses. As most experiments deal with serum samples,

it is worthwhile to recognize that the response processes

take place at different physiological levels. The majority of

metabolism takes place inside clusters of cells, for exam-

ple, in liver or muscle tissue. In the serum compartment the

transport to and from these clusters of cells is observed as a

mixture of all relevant processes. The processes that take

place are furthermore modulated by phenotypic charac-

teristics of the individual, including circadian effects.

4.3 Measurement error

All methods in use to quantify the (relative) concentration

of metabolites come with a measurement error. Typical

sources of errors are the instrument, operator, protocol,

sample treatment, and chemical properties of the metabo-

lite. Recently new figures of merit were introduced by

(Batenburg et al. 2011) to quantify this problem.

Measurement error correlation can emerge when the

quantification of two (or more) metabolites have something

in common. This correlation can be positive or negative,

for example, when some metabolite is quantified too high

the other metabolite also is too high due to a shared sample

treatment. For other metabolites, overestimating the one

leads to an underestimate of the other. This type of

behavior is commonly seen in LC–MS when there are

overlapping peaks, and the measurement error of different

metabolites may correlate as a result of incorrect data

processing.

The measurement error also depends on the abundance

of a metabolite, but this is not necessary a linear

relationship. Heteroscedastic measurement error and the

between metabolite error correlation may influence the

challenge test response.

4.4 Multivariate analysis

The application of multivariate data analysis techniques to

challenge studies is very limited at present. With the

introduction of metabolomics, more and more challenge

responses are measured in whole sets of metabolites. To

take full advantage of this type of measurements the

application of multivariate methods can be beneficial.

Metabolites often respond in a concerted way, and this can

be revealed with these methods. Small effects that are not

detected in single metabolites may be seen in combined

responses of multiple metabolites, a phenomenon known as

consistency at large.

For exploratory purposes techniques like PCA and

clustering are being used. More advanced techniques such

as ANOVA Simultaneous Component Analysis (Smilde

et al. 2005) can provide additional information, since

underlying experimental designs can be taken into account.

The benefit of using the underlying experimental design

has been illustrated using metabolomics data (Jansen et al.

2005; Vis et al. 2007; Xia et al. 2012).

Many different multivariate techniques are available for

classification and discrimination purposes (Dillon 1984;

Anderson 2003). This whole area is still relatively uncov-

ered territory in the analysis of challenge test based studies.

Especially for extracted response characteristics the

implementation is straightforward. For the analysis of full

response profiles the analysis becomes much more com-

plicated, but some examples exist (Wopereis et al. 2009;

Rubingh et al. 2011). The domain of multi-way analysis

(Smilde et al. 2004) seems to be an appropriate framework

for the analysis of these full response profiles. To under-

stand this, the challenge test data can be seen to be

arranged in a cube instead of a matrix, where the dimen-

sions of the data cube are respectively, the individuals, the

metabolites, and the sampling time points. Each element in

the data cube now contains a quantitative measure of a

certain metabolite at a certain sampling time point for a

single individual. Note that modeling responses like this

does assume that the profiles are comparable between

metabolites and that they are without meaningful delays

between them.

4.5 Method selection

Given all the approaches discussed above the question

arises which method to use in which situation. This is of

course depending on the biological question being asked,

but some general remarks can be made. The use of

Fig. 6 Theoretical challenge test responses (black lines) of two

individuals, with sampling points (red dots). Subject 1 (with the

highest response) clearly has a different profile from subject 2,

however, since no observations are available between the first and the

second time point, the rapid response of subject 1 can not be detected,

and the profile that will be estimated from observed sampling points

probably will resemble more the dashed line
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fundamental models in terms of systems of ordinary dif-

ferential equations is limited. This is mainly because these

models do not yet encompass many metabolites. Hence,

their range of applicability is limited to only those

metabolites which are included in the model.

Univariate data analysis tools have the advantage that

the whole machinery of (non-) linear models can be

applied. Indeed, all kinds of designs can be incorporated in

the data analysis, correlations among observations can be

accounted for and analysis on population or individual

level can be performed. The main drawback is that rela-

tions between metabolites are not taken into account since

the analysis is univariate.Multivariate data analysis tools

have the advantage of utilizing the relations among

metabolites, but lack the whole machinery of (non-) linear

models as mentioned above.

4.6 Future perspectives

4.6.1 Method development

A promising avenue for method development is to use

stoichiometric models such as Recon1 (Duarte et al. 2007)

and HepatoNet (Gille et al. 2010) in combination with

challenge test data. Such stoichiometric models can be

used as a scaffold to analyze the metabolomics data from

challenge test. The advantage of such stoichiometric

models is that they are comprehensive and describe a large

part of the metabolism.

Another avenue is to extend multivariate analysis with

some of the characteristics of the univariate (non-) linear

models machinery. Also combining multivariate analysis

methods with metabolic networks or physiological models

(de Graaf et al. 2009) is a viable route to take.

4.6.2 Stratification, subtyping & personalization

A challenge test is performed to learn more about the

metabolic responses in a group. Within each group, no

matter how homogeneous it appears, subjects tend to

respond differently. Part of the observed variation is likely

due to sampling fluctuations or measurement error (noise),

but another part of it carries meaningful information. This

may lead to stratifying the subjects based on their response.

The new sub groups can then be further investigated as

(smaller) homogeneous groups for associations with clini-

cal risk factors or other phenotypic characteristics.

The approach of stratification of responses and the

detailed understanding of the relation between the strata

and the risk factors or phenotypic characteristics can lead

to a subtyping of (sub-clinical) pathology. Subtypes of liver

disease or metabolic ailments are examples of this. With

such a subtyping available, new subjects can be categorized

as belonging to a subtype, and all actions to amend the

subject’s health can be further tailored using that infor-

mation. In the end this approach leads to a personalized

treatment plan that ideally minimizes the (toxic) side

effects while maximizing the chances of recovery (Greef

et al. 2006; Schnackenberg et al. 2009).

4.6.3 Using prior information

In genomics prior information about pathways or gene

function is sometimes used (Curtis et al. 2005; Cavalieri

and Filippo 2005; Nam and Kim 2008; Xiong and Choe

2008) to direct statistical analysis. More recently, these

ideas have also emerged in metabolomics. The challenge

response analysis consistently deals with at least three data

modes, individuals, metabolites, and time. One example of

the analysis of these three modes is given in the Section

Analyzing extracted characteristics.

Prior information in the time-mode can be used for at least

two purposes: in designing the challenge test and in ana-

lyzing the resulting data. The time-sampling design, as dis-

cussed in a preceding section, draws on information from

other experiments. This information is used to devise an

optimal sampling design for a given number of samples that

allow for the optimal recovery of the responses. For ana-

lyzing the resulting data, prior information about the

underlying dynamics can be incorporated into the analysis,

either explicitly such as differential equations or implicitly

with penalizing the solutions to obey the expected dynamics.

In the metabolite mode, prior information can be

available regarding a functional relationship between the

metabolites, (inter) modular relations, or pathway mem-

bership. Such information can be used to direct the analysis

towards biochemically meaningful results. For example,

increased energy demand typically results in increased

gluconeogenesis, and that process triggers responses that

culminate in increased serum glucose levels. At the same

time it affects the concentrations of various amino acids

and fatty acids. As this process is reasonably well under-

stood it can be formalized in mathematical or statistical

terms and used as prior information in the modeling,

thereby directly steering the analysis. In using biological

prior information about the metabolites it should be rec-

ognized that biological processes are not all taking place at

the scale of direct molecular interactions, this phenomenon

of scale should be considered in the defining this type of

knowledge (de Graaf et al. 2009).

Prior information can also be used on the individual

mode. During the screening process various characteristics

of the subjects are recorded which are compared to the

study inclusion criteria. These baseline characteristics can

also be used to drive the analysis of the challenge response

data.
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A simple way of accomplishing incorporation of prior

information in the challenge response analysis is by using a

penalization technique. The penalty forces the estimation

of model parameters towards the prior information. The

strength of the influence of the prior information can be

gradually controlled by changing the weight of the penalty.

A larger penalty weight forces the analysis to be closer to

the prior. Such techniques with variable forcing penalties

are also known as gray models (Westerhuis et al. 2007).

5 Conclusion

In the years to come, metabolomics as a science will

continue to mature, which will culminate in many more

metabolites that can be reliably measured in human sam-

ples. We expect that the maturation and wider adoption of

metabolomics will coincide with an increasing awareness

and appreciation of the information richness present in

challenge test responses. The latter is especially valuable

when combined with a drive to characterize the systems

level understanding of the responses.

With this in mind, we have given an overview of

methods currently in use and some of their drawbacks. We

feel that the potential information to be obtained from

challenge tests is not yet fully realized due to limitations in

sampling design and subsequent data analysis. We gave

some avenues for improvements in this respect. Some of

these improvements are based on adaptations of existing

methods, some others are completely new.
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