
ORIGINAL ARTICLE

Application of gas chromatography mass spectrometry (GC–MS)
in conjunction with multivariate classification for the diagnosis
of gastrointestinal diseases

Michael Cauchi • Dawn P. Fowler • Christopher Walton • Claire Turner •

Wenjing Jia • Rebekah N. Whitehead • Lesley Griffiths • Claire Dawson •

Hao Bai • Rosemary H. Waring • David B. Ramsden • John O. Hunter •

Jeffrey A. Cole • Conrad Bessant

Received: 22 January 2014 / Accepted: 6 March 2014 / Published online: 20 March 2014

� Springer Science+Business Media New York 2014

Abstract Gastrointestinal diseases such as irritable bowel

syndrome, Crohn’s disease (CD) and ulcerative colitis are a

growing concern in the developed world. Current techniques

for diagnosis are often costly, time consuming, inefficient, of

great discomfort to the patient, and offer poor sensitivities

and specificities. This paper describes the development and

evaluation of a new methodology for the non-invasive

diagnosis of such diseases using a combination of gas

chromatography mass spectrometry (GC–MS) and chemo-

metrics. Several potential sample matrices were tested:

blood, breath, faeces and urine. Faecal samples provided the

only statistically significant results, providing discrimination

between CD and healthy controls with an overall classifi-

cation accuracy of 85 % (78 % specificity; 93 % sensitivity).

Differentiating CD from other diseases proved more chal-

lenging, with overall classification accuracy dropping to

79 % (83 % specificity; 68 % sensitivity). This diagnostic

performance compares well with the gold standard technique

of colonoscopy, suggesting that GC–MS may have potential

as a non-invasive screening tool.

Keywords Gastrointestinal diseases � Irritable bowel

syndrome � Crohn’s disease � Ulcerative colitis � Gas

chromatography mass spectrometry � Partial least squares

discriminant analysis

1 Introduction

Gastrointestinal diseases are an increasing cause for con-

cern as incidence rates, particularly in the developed world,

are rising annually (Abraham and Cho 2009). Diseases of

particular concern are irritable bowel syndrome (IBS),

Crohn’s disease (CD) and ulcerative colitis (UC), the two

latter grouped together as inflammatory bowel disease

(IBD), caused by inflammation of the mucosal lining of theElectronic supplementary material The online version of this
article (doi:10.1007/s11306-014-0650-1) contains supplementary
material, which is available to authorized users.
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gut. These two have traits that overlap, making them dif-

ficult to separate in diagnosis (Nakamura et al. 2003; von

Stein et al. 2007; von Stein et al. 2008). In some cases, a

patient previously diagnosed with UC can later be re-

diagnosed with CD (Moum et al. 1997; Seidman and De-

slandres 1997). It is known that CD can affect any part of

the gastrointestinal tract whereas UC will only affect the

large colon (Nakamura et al. 2003). IBS is a functional

disorder in which inflammation in the gut is minimal.

The characteristic trait of IBS is malaise accompanied

by abdominal pain and coincides with a change in the

frequency and/or consistency of faeces (Nakamura et al.

2003). CD typically affects the lower part of the ileum

(Nakamura and Barry 2001), and like UC is a chronic

disease with unknown aetiology. The mucosa and sub-

mucosa of the large intestine becomes inflamed and a

visible indication is diarrhoea mixed with blood. (Na-

kamura and Barry 2001). It has been reported that surgery

can be used to alleviate discomfort (Vella et al. 2007).

1.1 Current diagnostic methods

The current gold standard methods for diagnosing CD and UC

are colonoscopy (Fefferman and Farrell 2005; Manes et al.

2009) and sigmoidoscopy (Stange et al. 2008). These methods

are invasive, of some discomfort to the patient and are also

expensive. Blood tests may reveal the presence of inflammation

in the body, particularly in IBD (Makidono et al. 2004). Radi-

ography to image the gut is now less used as it is less accurate

than endoscopy and because radiation carries health risks.

Alternative methods of diagnosis are continuously being

investigated. Genetic factors are believed to be very impor-

tant in the pathogenesis of UC and CD (Papadakis and Tar-

gen 1999; Farrell et al. 2001), and a multi-gene approach that

involves the identification of specific IBD genes originating

from colonoscopic biopsies (von Stein et al. 2007; von Stein

et al. 2008) has been proposed. By using quantitative poly-

merase chain reaction (PCR) experiments, seven differen-

tially expressed marker genes were identified. The

expression levels of the differentially expressed genes were

used in a classification algorithm to distinguish between the

diseases. This led to a classification accuracy of 86–92 %

which compared well to the clinical approach. IBD speci-

ficity and sensitivity ranged from 94–95 to 85–95 %,

respectively. However, these tests require initial colonos-

copy and are therefore limited in their application.

Enzymes found in faeces can be employed as markers in

order to identify CD and UC, in particular calprotectin and

lactoferrin via the ELISA (enzyme-linked immunosorbent

assay) method (Angriman et al. 2007; Mendoza and Abreu

2009). As well as detecting IBD, they may be used to

monitor response to medical therapy, and predict the

recurrence of disease after surgery.

Proton transfer mass spectrometry has been employed to

analyse the headspace of fluid extracted from the gut during a

colonoscopy and to compare with breath samples (Lechner

et al. 2005). Significant differences were observed in the

exhaled breath and also the headspace, however it was also

reported that it was difficult to distinguish IBS from healthy

controls particularly in the fluid samples. It was acknowl-

edged that gas chromatography mass spectrometry (GC–

MS) would be a better tool for this task.

1.2 GC–MS as a diagnostic tool

Gas chromatography mass spectrometry (GC–MS) has

become an important technique in the field of metabolo-

mics, due to its high sensitivity, reproducibility and good

peak resolution, all of which results in large information-

rich datasets (Pasikanti et al. 2008). Walton et al. employed

GC–MS to identify a number of key volatile organic

compounds (VOCs) in faeces and showed that differences

in abundance could lead to the distinction between CD and

other gastrointestinal diseases (Walton et al. 2013).

Extracting useful information from the acquired GC–MS

data requires sophisticated multivariate data analysis meth-

ods provided by chemometrics (Otto 1999; Brereton 2003;

Lavine and Workman 2004; Kussmann et al. 2006). Multi-

variate analysis of GC–MS data typically involves an

exploratory approach followed by pattern recognition (Otto

1999). The former often utilises principal components ana-

lysis (PCA) to reduce the dimensionality of the data to assist

in recognising trends within the dataset and identifying

outlying samples (Wold et al. 1987). Pattern recognition in

the form of multivariate classification aims to determine

which samples belong to a designated class (Pasikanti et al.

2008). One commonly employed classification technique is

partial least squares discriminant analysis (PLS-DA) (Barker

and Rayens 2003; Wiklund et al. 2007). This is a supervised

technique that permits the separation of samples into dif-

ferent classes, for example cases versus controls. Other

machine learning algorithms are also available such as sup-

port vector machines (Sattlecker et al. 2010) and artificial

neural networks (Hagan et al. 1996), however PLS-DA is

often preferred due to the relative ease with which models

can be built, tested and optimised. For example, PLS-DA

was recently employed to successfully diagnose patients

with bladder cancer from GC–MS data, attaining 100 %

sensitivity (Pasikanti et al. 2010).

1.3 Application of GC–MS and PLS-DA to diagnosis

of gastrointestinal diseases

The hypothesis underlying the work presented in this paper

is that a combination of GC–MS and PLS-DA could be

used to identify disease-specific metabolomic fingerprints
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from easily accessible biological samples (blood, urine,

faeces and breath). If characteristic profiles can be found

for each of the three gastrointestinal diseases (IBS, CD and

UC) this could form the basis of a new diagnostic tool.

Specifically, this study looked at the ability to distinguish

these diseases from healthy controls, but more importantly,

from each other. The latter step is of great relevance

because it gives an indication of the efficiency of the

classification model to discriminate the target disease from

not only healthy controls but from other diseases, which is

exactly the challenge faced in real clinical applications.

2 Experimental

2.1 Reagents

Analytical grade reagents and solvents were employed

throughout, unless otherwise stated.

2.2 Sampling

2.2.1 Selection of candidates

A total of 91 candidates were selected from patients

attending the Gastroenterology Department at Adden-

brooke’s Hospital (Cambridge, UK) whom had been invi-

ted to participate in the study, and had provided written

consent. Using the conventional diagnostic techniques of

radiology, endoscopy and histology of intestinal biopsies,

24 were found to have CD, 19 had UC, and 28 had IBS.

The remaining 20 candidates, who had given negative

results to questionnaires, were recruited as healthy control

subjects. They were friends of members of the gastroen-

terology department who lived and worked outside the

hospital, and who were in good health and taking no

medication other than the oral contraceptive and who met

the inclusion criteria (age 18–65; fit and healthy; not

pregnant or lactating; no history of GI disease; had taken

no antibiotics in the previous 6 weeks and were not on

chronic medication, e.g. for blood pressure, diabetes, etc.).

Every candidate was expected to give a breath, urine,

faecal and blood sample.

The study received ethical approval from the National

Research Ethics Service in Leeds (West) in July 2007 (07/

Q1205/39) and participants’ samples were anonymised.

2.2.2 Sample collection

Sample collection was achieved over a period of several

months. In order to collect the faecal samples, sample pots

were supplied to each candidate to fill. Urine and blood

samples were taken on site at Addenbrooke’s. The breath

samples were also collected on site. A detailed description

of the collection of each sample type is given below.

Breath was sampled directly onto thermal desorption

(TD) tubes using a device constructed for the purpose. The

volunteer wore a facemask with full head harness covering

nose and mouth, and breathed normally. The mask incor-

porated non-return valves and a side-stream sample of

exhaled breath was obtained from the exhalation pathway.

Sampling flow rate was 200 ml min-1, controlled using a

pump and mass flow controller. The device was under

software control such that the alveolar portion of a number

of breaths could be sampled and accumulated into the TD

tube. Sampling was continued until a total volume of

500 ml of breath had been obtained in this way, the process

taking typically 5 min.

Faeces were collected into 60 ml sterile polypropylene

vials. The samples were refrigerated and then transferred

by specialist courier on dry ice to the laboratory whereupon

they were immediately frozen at -80 �C prior to analysis.

Urine was collected into 60 ml sterile polypropylene

vials and then immediately decanted into three aliquots in

polypropylene sterile universal bottles, before being

immediately frozen at -80 �C until analysis. It has been

reported that the vapour emissions from human urine are

not significantly changed by the freezing process on sam-

ples to be analysed via GC–MS (Peakman and Elliott

2008).

Blood for this study was collected into vacutainer tubes

containing EDTA to prevent clotting. The whole blood was

then stored at -80 �C prior to analysis.

2.2.3 Sample preparation

Gas sampling bags for headspace analysis of faeces urine

and blood were constructed from Nalophan NA� (65 mm

inflated diameter) which were cut into lengths of 500 mm.

To the apical end was attached a Swagelok� fitting whilst

the basal end was left open so that the sample could be

added inside after which the bag was sealed with tie-wraps.

The bag was filled with hydrocarbon-free air after the

sample was added, and then incubated for 30 min at 40 �C.

A volume of 500 ml headspace was then pumped across a

pre-packed 1:1 Carbotrap/Tenax thermal desorption (TD)

tube using a Flec pump (both Markes International Ltd.,

Llantrisant, UK).

2.3 GC–MS measurements

An internal standard solution comprising 50 ng d8-toluene

(Supelco Cat No. 48593) in methanol was added to each

TD tube according to the manufacturer’s instructions.

Headspace samples were analysed by automated thermal

desorption gas chromatography mass spectrometry (ATD–

GC–MS and multivariate classification for diagnosing GI diseases 1115
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GC–MS). A Perkin Elmer system was used for analysis,

combining a TurboMass MS 4.1, Autosystem XL GC and

Automatic Thermal Desorption system ATD 400 (Perkin

Elmer, Wellesley, MA, USA). The carrier gas was CP

grade helium (BOC gases, Guildford, UK) passed through

a combined trap for removal of hydrocarbons, oxygen and

water vapour. A wall-coated Zebron ZB624 chromato-

graphic column was used (Phenomenex, Torrance, CA,

USA), with dimensions 30 m 9 0.4 mm 9 0.25 mm

(internal diameter), the liquid phase comprising a 0.25 lm

layer of 6 % cyanopropylphenyl and 94 %

methylpolysiloxane.

TD tubes were initially purged for 2 min in order to

remove air and water vapour and then desorbed for 5 min

at 300 �C. The ATD valve temperature was set to 180 �C

and TD tubes were desorbed onto the secondary cold trap

which was initially maintained at 30 �C. Once desorption

was complete, the secondary trap was heated to 320 �C

using the fastest available heating rate and then maintained

for 5 min whilst the effluent was transferred to the GC via a

transfer line heated to 210 �C. The GC oven was main-

tained at 50 �C for 4 min after injection and then raised at a

rate of 10 �C per minute until reaching 220 �C and then

held for 9 min. The eluted products were transferred by a

heated line held at 240 �C to the mass spectrometer where

the compounds were subjected to electron ionisation. Full

scan mode was selected with mass/charge ratios from 33 to

350 m/z with a scan time of 0.3 and 0.1 s inter-scan delay

to produce a total ion count (TIC) chromatogram.

2.4 Data analysis

Data analysis was performed in Matlab (v2008a, Math-

works Inc., USA) employing functions contained within

the PLS Toolbox (v3.5, Eigenvector Research Inc., USA).

2.4.1 Data pre-processing

The intensity value of the deuterated toluene ion (m/z 98) peak

was obtained and all other intensity values in the GC–MS

matrix were normalised against this value. The normalised

values were summed across the columns in order to obtain the

TIC for that sample. This was repeated for every sample until a

data matrix was constructed whose order was the number of

samples (rows) by the retention time (columns).

Exploratory data analysis via PCA (Wold et al. 1987)

was performed in order to visually identify any specific

trends. Hotelling’s T2 (Hotelling 1931), an extension of

Student’s t test, was used to identify outlying samples.

Removal of such samples is a prerequisite of the correla-

tion optimised warping (COW) algorithm (Tomasi et al.

2004) that was used to align the chromatographic peaks.

The COW algorithm was chosen as it is able to

automatically deduce the optimal parameters required for

aligning the retention time peaks.

2.4.2 Multivariate classification

The multivariate statistical method of PLS-DA (Barker and

Rayens 2003) was used to perform the pattern recognition

necessary to separate samples into different disease states

according to their GC–MS TICs. The basic workflow

underlying the PLS-DA approach is that a set of data from

samples of known disease state is used to train a PLS-DA

model [the model essentially being a set of linear equations

contained within the underlying SIMPLS algorithm (de Jong

1993)] to recognise the characteristic profiles of the different

disease states. This model is then used to predict the disease

state of a further set of samples for which the disease state is

withheld. By comparing the predictions with the clinical

diagnosis of those samples it is possible to determine the

diagnostic performance of the pattern recognition model.

Key performance indicators include sensitivity, specificity,

the overall accuracy quoted as percentage of samples cor-

rectly classified (%CC)—determined by calculating the ratio

of the number of samples correctly classified against the total

number of samples analysed—and the area under the

received operator characteristics curve (AUROC) (Rahman

and Schmeisser 1990; Zweig and Campbell 1993).

2.4.3 Robust performance metrics

To ensure that our results provided a true representation of

the diagnostic performance of the GC–MS approach, we

applied PLS-DA within a workflow (see Fig. 1) that provides

a robust determination of diagnostic performance and an

indication of the statistical significance of this performance.

This workflow uses a two-stage bootstrapping process. The

first stage deduces the optimum classification model after a

randomised split of the samples, and the second stage eval-

uates the performance of the optimum model. The process is

repeated 150 times in order to attain an average performance

of all models created from different data splits. This ensures

that model performance is not overestimated. This is also

performed in conjunction with scaling (mean-centring, auto-

scaling, range-scaling and normalisation) (Hagan et al. 1996;

van den Berg et al. 2006) and a heuristic approach to boot-

strapping that uses leave-one-out cross-validation (LOO-

CV) as an optimisation step. This therefore maximises the

relevance of the performance metrics to a large clinical

population. The statistical significance of the resulting

model’s diagnostic performance is determined by perform-

ing permutation testing (Westerhuis et al. 2008; Brereton

2009), which involves randomising the class assignations

300 times, and for each assignation, performing the two-
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stage bootstrapping process already described. This results in

a second set of results, with its own distribution. The two

distributions are analysed to reveal the amount of overlap

and the statistical significance of the mean average perfor-

mance for the real and permuted datasets calculated using the

two-sample two-tailed z-test (Campbell and Machin 1999)

(where a = 0.05, equivalent to a 95 % confidence level).

3 Results and discussion

3.1 Case against control

Principal components analysis did not reveal any distinct

separation between cases and controls. It was however able

to assist in identifying a total of seven outlying samples

which were subsequently removed prior to peak alignment.

Table 1 summarises the PLS-DA classification perfor-

mance for each respective case (disease) against the healthy

control in all four sample matrices. These results strongly

suggest that discrimination between CD and healthy controls

in faecal samples is possible having attained an overall %CC

of 85 % and correspondingly high sensitivity and specificity.

Importantly, the permutation testing showed this result to be

highly significant, with a z-test p value of \1 9 10-6.

Colonoscopy, generally considered the gold standard, is

variably reported to be 79–95 % accurate (Langhorst et al.

2007) suggesting that the GC–MS method is comparable to

this traditional approach. The table shows statistically sig-

nificant results for some other combinations of disease and

sample matrix but the %CC and sensitivity in these cases is

generally too low to be of diagnostic relevance.

3.2 Case against all

In clinical practice, a patient presenting at a gastroenter-

ology clinic could be suffering from one of a range of

diseases so the ability to distinguish between a single dis-

ease (e.g. CD) and healthy controls is overly simplistic.

The ability to be able to successfully diagnose each disease

from a population in which other diseases exist is therefore

of paramount importance. The data analysis was therefore

repeated, with the aim of determining one case (e.g. CD)

against the other cases (e.g. IBS and UC) in addition to the

healthy controls.

As in Sect. 3.1, PCA did not reveal any distinct class

separations but it did assist in identifying four outlying

samples that were subsequently removed prior to peak

alignment. Table 2 summarises the optimum results

attained for the classification of each respective case (dis-

ease) against all other cases (including the healthy controls)

in all four sample matrices. These results show that the

only case which can be reliably diagnosed in the presence

of other cases was CD in faecal samples, achieving a %CC

of 79 % and high sensitivity and specificity scores. Fig-

ure 2 shows the results of permutation analysis used to

determine the statistical significance of this performance.

The mean average %CC for the permuted data can be seen

to be 62 %. The position of the mean can be attributed to

there being more negatively assigned samples (i.e. appar-

ently healthy controls, IBS and UC) than positively-

assigned samples (i.e. CD). The best mean %CC observed

for the real data was 79 %, which the z-test shows to be

significantly different to the 62 % mean %CC of the per-

muted samples, with a p value of \1.0 9 10-6.

There are other statistically significant results in

Table 2. However, compared to the standout results for CD

diagnosis from faeces, the %CC is at least 7 % lower in

Fig. 1 Diagrammatic summary of workflow undertaken in the study. A

combination of bootstrap resampling and permutation testing was used to

maximise the robustness of diagnostic performance metrics and provide

an indication of the statistical significance of the results obtained

GC–MS and multivariate classification for diagnosing GI diseases 1117

123



these other cases and sensitivities are all below 50 %.

These performance metrics are far below what would be

needed for clinical practice. To help understand what is

limiting diagnostic performance, Table 3 shows how

samples of each type were classified by the various diag-

nostic models. As might be expected from the previously

reported results, faecal samples from CD sufferers were the

only sample type for which the majority of samples were

correctly classified (68 %, corresponding to the sensitivity

in Table 2). However, even for the faecal analysis, 9 % of

IBS patients, 14 % of UC patients and 10 % of controls

were also diagnosed as having CD. The confusion between

CD and UC is perhaps unsurprising given that they are both

IBDs, and diagnosis is often difficult.

Table 1 PLS-DA classification performance for different sample matrices after normalization against the deuterated toluene peak on importing

the data for disease case versus apparently healthy controls

Sample

matrix

Case Scale Overall classified

(i.e. %CC)

Specificity

(%)

Sensitivity

(%)

AUROCa p value from

z-test (a = 0.05)

SSDb

Blood CD MC 53 49 59 0.60 0.2147 No

IBS MC 53 67 32 0.40 0.3327 No

UC MC 54 63 41 0.46 0.1582 No

Breath CD Norm 53 51 55 0.54 0.0438 Yes

IBS Norm 58 72 41 0.44 \1.0 9 10-6 Yes

UC MC 61 86 11 0.28 0.0006 Yes

Faecal CD Norm 85 78 93 0.97 <1.0 3 1026 Yes

IBS MC 61 71 51 0.63 \1.0 9 10-6 Yes

UC RS2 58 69 43 0.54 \1.0 9 10-6 Yes

Urine CD Norm 53 69 27 0.31 0.7410 No

IBS RS1 64 80 38 0.53 \1.0 9 10-6 Yes

UC Norm 56 79 18 0.27 0.6384 No

The significance of the result for each combination of sample matrix and disease is determined from the permutation testing results using a z-test.

The complete set of results for accuracies, specificities and sensitivities attained for each case for each of the scaling methods in each of the

sample matrices are available in the Supplementary Material (section SM1). Bold highlights best result attained

None no scaling, AS auto-scaling, MC mean-centring, RS1 range-scaling (0–1), RS2 range-scaling (-1 to 1), Norm normalised
a Area under the receiver operating characteristic (AUROC) curve
b SSD denotes whether the z-test was statistically significantly different (the difference in means between the two distributions)

Table 2 PLS-DA classification performance for different sample matrices after normalization against the deuterated toluene peak on importing

the data for disease case versus all cases (including apparently healthy controls)

Sample

matrix

Case Scale Overall Classified

(i.e. %CC)

Sensitivity

(%)

Specificity

(%)

AUROCa p value from

z-test (a = 0.05)

SSDb

Blood CD RS1 68 49 75 0.52 \1.0 9 10-6 Yes

IBS MC 69 25 87 0.50 \1.0 9 10-6 Yes

UC Auto 69 34 79 0.57 0.0011 Yes

Breath CD Auto 64 24 83 0.57 0.0005 Yes

IBS Norm 64 22 80 0.50 0.1932 No

UC None 77 10 90 0.51 0.00002 Yes

Faecal CD RS2 79 68 83 0.65 <1.0 3 1026 Yes

IBS RS1 59 22 72 0.44 0.1615 No

UC Norm 68 32 78 0.52 0.00006 Yes

Urine CD None 72 48 81 0.59 \1.0 9 10-6 Yes

IBS Norm 67 29 79 0.48 0.0007 Yes

UC Norm 68 11 87 0.26 0.0659 No

The significance of the result for each combination of sample matrix and disease is determined from the permutation testing results using a z-test.

The complete set of results for accuracies, specificities and sensitivities attained for each case for each of the scaling methods in each of the

sample matrices are available in the Supplementary Material (section SM2). Bold highlights best result attained

Key as for Table 1
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4 Concluding remarks

A wide ranging study was carried out to determine whether

a combination of GC–MS and PLS-DA has potential for

the diagnosis of three gastrointestinal diseases (IBS, CD

and UC) from easily accessible biological samples (blood,

breath, urine and faeces). Using thorough statistical eval-

uation techniques it was found that the GC–MS approach

can be used to diagnose CD from faecal samples. The

proportion of samples correctly classified when seeking to

identify CD patients from among a population representa-

tive of those presenting at a gastroenterology clinic was

79 % for CD (68 % sensitivity; 83 % specificity), which is

on a par with the current gold standard approach of

colonoscopy.

The fact that the diagnostic performance achieved for

CD from faeces is so much better than that achieved for the

other combinations of diseases and sample matrices further

serves to highlight the significance of this finding. Based on

these results it is recommended that any future work in this

field concentrates on the analysis of faecal samples.

Obvious improvements recommended for future studies

would be the collection of a larger dataset from a larger

patient cohort originating from multiple clinics, and the use

of more advanced multivariate classification methods such

as support vector machines. Both these measures would be

expected to boost diagnostic performance.

The authors stress that this test is not a replacement for

colonoscopy. Its role would be to speed up the diagnosis of

IBD which currently may be greatly delayed particularly in

cases of CD (Schoepfer et al. 2013). The gold standard will

always be colonoscopy as this enables minute examination

of the intestinal mucosa together with biopsy and polyp

removal. The faecal screening may prove a very valuable

test for detecting IBD in patients with symptoms but a

colonoscopy would still subsequently be necessary to

confirm the diagnosis and thus our testing would be offered

as an initial simple straightforward screening technique

with no risk to the patient (there is a 1 % risk of perforation

and 1 % risk of haemorrhage with colonoscopy).

Acknowledgements We gratefully acknowledge the Wellcome

Trust for funding the work (Project 080238/Z/06/Z).

References

Abraham, C., & Cho, J. H. (2009). Inflammatory bowel disease. New

England Journal of Medicine, 361(21), 2066–2078.

Angriman, I., Scarpa, M., et al. (2007). Enzymes in feces: Useful

markers of chronic inflammatory bowel disease. Clinica Chimica

Acta, 381(1), 63–68.

Barker, M., & Rayens, W. (2003). Partial least squares for discrim-

ination. Journal of Chemometrics, 17(3), 166–173.

Brereton, R. G. (2003). Chemometrics: Data analysis for the

laboratory and chemical plant. Chichester: Wiley.

Brereton, R. G. (2009). Chemometrics for pattern recognition.

Chichester: Wiley.

Campbell, M. J., & Machin, D. (1999). Medical statistics: A common

sense approach. Chichester: Wiley.

de Jong, S. (1993). SIMPLS: An alternative approach to partial least

squares regression. Chemometrics and Intelligent Laboratory

Systems, 18(3), 251–263.

Fig. 2 Distribution of the overall percentage of samples classified for

a light grey bars from prediction of CD versus all other cases from

faecal samples (150 evaluation loops, mean average 79 %), b dark

grey bars after randomised assignation (300 times, mean average

62 %)

Table 3 Illustration of the ability of the model developed for each

disease and sample matrix to classify the samples

Sample

matrix

Percentage of samples positively classified by each

classifier

Case CD model

(%)

IBS model

(%)

UC model

(%)

Faecal CD 68 18 18

IBS 9 22 15

UC 14 15 32

CTRL 10 18 13

Urine CD 48 12 9

IBS 13 29 11

UC 13 13 11

CTRL 14 15 8

Breath CD 24 13 9

IBS 9 22 7

UC 10 15 10

CTRL 10 13 8

Blood CD 49 9 16

IBS 13 25 14

UC 13 9 34

CTRL 19 6 15

Bold values indicate same case comparison, e.g. case IBS versus IBS

model (%)

GC–MS and multivariate classification for diagnosing GI diseases 1119

123



Farrell, R. J., Banerjee, S., et al. (2001). Recent advances in

inflammatory bowel disease. Critical Reviews in Clinical

Laboratory Sciences, 38(1), 33–108.

Fefferman, D. S., & Farrell, R. J. (2005). Endoscopy in inflammatory

bowel disease: Indications, surveillance and use in clinical

practice. Clinical Gastroenterology and Hepatology, 3, 11–24.

Hagan, M. T., Demuth, H. B., et al. (1996). Neural network design.

Boston: International Thompson Publishing.

Hotelling, H. (1931). The generalization of student’s ratio. Annals of

Mathematics and Statistics, 2(3), 360–378.

Kussmann, M., Raymond, F., et al. (2006). OMICS-driven biomarker

discovery in nutrition and health. Journal of Biotechnology,

124(4), 758–787.

Langhorst, J., Kühle, C. A., et al. (2007). MR colonography without

bowel purgation for the assessment of inflammatory bowel

diseases: Diagnostic accuracy and patient acceptance. Inflam-

matory Bowel Diseases, 13(8), 1001–1008.

Lavine, B., & Workman, J. J. (2004). Chemometrics. Analytical

Chemistry, 76(12), 3365–3372.

Lechner, M., Colvin, H. P., et al. (2005). Headspace screening of fluid

obtained from the gut during colonoscopy and breath analysis by

proton transfer reaction–mass spectrometry: A novel approach in

the diagnosis of gastro-intestinal diseases. International Journal

of Mass Spectrometry, 243(2), 151–154.

Makidono, C., Mizuno, M., et al. (2004). Increased serum concen-

trations and surface expression on peripheral white blood cells of

decay-accelerating factor (cd55) in patients with active ulcera-

tive colitis. Journal of Laboratory and Clinical Medicine,

143(3), 152–158.

Manes, G., Imbesi, V., et al. (2009). Use of colonoscopy in the

management of patients with Crohn’s disease: Appropriateness

and diagnostic yield. Digestive and Liver Disease, 41(9),

653–658.

Mendoza, J. L., & Abreu, M. T. (2009). Biological markers in

inflammatory bowel disease: Practical consideration for clini-
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