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Abstract A high body mass index (BMI) is a major risk

factor for several chronic diseases, but the biology under-

lying these associations is not well-understood. Dyslipide-

mia, inflammation, and elevated levels of growth factors and

sex steroid hormones explain some of the increased disease

risk, but other metabolic factors not yet identified may also

play a role. In order to discover novel metabolic biomarkers

of BMI, we used non-targeted metabolomics to assay 317

metabolites in blood samples from 947 participants and

examined the cross-sectional associations between metabo-

lite levels and BMI. Participants were from three studies in

the United States and China. Height, weight, and potential

confounders were ascertained by questionnaire (US studies)

or direct measurement (Chinese study). Metabolite levels

were measured using liquid-phase chromatography and gas

chromatography coupled with mass spectrometry. We

evaluated study-specific associations using linear regression,

adjusted for age, gender, and smoking, and we estimated

combined associations using random effects meta-analysis.

The meta-analysis revealed 37 metabolites significantly

associated with BMI, including 19 lipids, 12 amino acids,

and 6 others, at the Bonferroni significance threshold

(P \ 0.00016). Eighteen of these associations had not been

previously reported, including histidine, an amino acid

neurotransmitter, and butyrylcarnitine, a lipid marker of

whole-body fatty acid oxidation. Heterogeneity by study was

minimal (all Pheterogeneity [ 0.05). In total, 110 metabolites

were associated with BMI at the P \ 0.05 level. These

findings establish a baseline for the BMI metabolome, and

suggest new targets for researchers attempting to clarify

mechanistic links between BMI and disease risk.

Keywords BMI � Adiposity � Metabolomics �
Epidemiology � Obesity

1 Introduction

Substantial evidence indicates that a high body weight—as

measured by body mass index (BMI)—is a major risk

factor for several chronic diseases, including cardiovascu-

lar disease and cancer (Poirier et al. 2006; Chan et al. 1994;

Renehan et al. 2008). The biological mechanisms linking a

high BMI to these diseases are not well-understood,
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however (Poirier et al. 2006; National Cancer Institute

2013). Elevated levels of cholesterol, triglycerides,

inflammation, growth factors (e.g. insulin) and sex steroid

hormones explain some of the increased disease risk rela-

ted to a high BMI, but undiscovered metabolic factors may

also play a major role (Poirier et al. 2006; Roberts et al.

2010; Chan et al. 1994; Renehan et al. 2008).

New, high-throughput metabolic profiling technologies,

such as metabolomics, could facilitate discovery of BMI-

related metabolic factors that are important for disease risk.

Investigators have recently used metabolic profiling to

identify amino acids associated with an elevated BMI

(Newgard et al. 2009; Cheng et al. 2012; Gaudet et al.

2012) and levels of these amino acids were later found to

predict future diabetes risk (Wang et al. 2011; Floegel et al.

2012). Overall, however, few studies have examined the

metabolic correlates of BMI and they were small (fewer

than 150 participants) (Newgard et al. 2009) or assessed

fewer than 60 metabolites (Cheng et al. 2012; Gaudet et al.

2012). Many prior studies have, of course, used targeted

assays to examine metabolite-BMI associations. But,

because these studies examined one or only a few meta-

bolic factors, they could not address whether their findings

were simply due to confounding by other BMI associated

metabolic factors.

A broader examination of the metabolic correlates of

BMI—one that includes both a large sample size and

hundreds of metabolites—may identify novel biomarkers

related to BMI that could be examined as candidate disease

markers in future etiologic studies. To this end, we mea-

sured 317 metabolites in blood samples from 947 partici-

pants from three study populations from the United States

and China, and examined their relation to BMI.

2 Subjects and methods

2.1 Study participants and data collection

Our study included participants from three study popula-

tions: The Prostate, Lung, Colorectal, and Ovarian (PLCO)

Cancer Screening Trial, the Navy Colon Adenoma Study

(Navy), and the Shanghai Physical Activity Study

(Shanghai). The PLCO study was a multicenter trial that

recruited participants between 1993 and 2001 and ran-

domly assigned them to cancer screening or no screening

(Prorok et al. 2000). Eligible participants were 55–74 years

of age, with no prior diagnosis of prostate, lung, colorectal,

or ovarian cancer. Participants in our analysis had been

specifically selected from PLCO for a nested case–control

study of colorectal cancer. In this study, there were 254

cases and 255 matched controls who completed a self-

administered demographics and health habits questionnaire

at baseline, reported their height and weight, and donated a

baseline blood sample. Individuals were excluded if they

had a rare cancer during follow-up, had self-reported

Crohn’s disease, ulcerative colitis, familial polyposis,

Gardner’s syndrome, or colorectal polyps as determined

from the baseline questionnaire. All colorectal cancer cases

in this nested case–control study were diagnosed at least

6 months after baseline, with the average diagnosis

occurring 8 years after baseline. Controls were matched to

cases on age, sex, year of randomization, and season of

blood draw, and were alive and cancer free at the time that

the matched case was diagnosed. Of these participants,

height and weight data were available for 254 cases and

251 controls.

The Navy study was a case–control study of colorectal

adenomas conducted at the National Naval Medical Center

(Bethesda, MD) (Sinha et al. 1999). To be eligible, par-

ticipants had to reside within 60 miles of the study center,

be 18–74 years of age, and have no history of Crohn’s

disease, ulcerative colitis, or cancer (except non-melanoma

skin cancer). Cases were patients diagnosed with colorectal

adenoma by sigmoidoscopy (18 %) or colonoscopy (82 %)

between April 1994 and September 1996. Controls were

patients confirmed to be polyp-free during sigmoidoscopic

screening and they were frequency matched to cases by age

(±5 years) and gender. Study participants returned to the

clinic to donate blood and, approximately 3 months later,

completed a questionnaire inquiring about demographics,

health habits, and height and weight during an in-person

interview at a home visit. Participation rates were 84 % for

cases and 74 % for controls. From the 244 adenoma cases

diagnosed within this study, we identified 131 cases with

no previous history of rectal bleeding or adenoma, com-

plete questionnaire data, and serum samples available.

Cases were matched to an equal number of controls on age,

sex, and smoking status. Of these participants, 129 cases

and 129 controls had reported their height and weight.

The Shanghai study includes men and women selected at

random from the Shanghai Women’s Health Study (Zheng

et al. 2005) and the Shanghai Men’s Health Study (Jurj et al.

2007) for multiple measurements of physical activity by

accelerometer over a study year. These two parent studies

are population based prospective cohort studies from 8

communities of Shanghai, China, with recruitment occur-

ring between 1997 and 2006. To be eligible, women had to

be 40–70 years of age and men had to be 40–75 years of age

at baseline. Our analysis included 106 women and 78 men

enrolled in the first wave of the Shanghai physical activity

study who donated blood at the end of the study year and had

valid accelerometry measurements.

All participants provided informed consent. Institutional

review boards at the NCI and each participating screening

center (PLCO) or institute (Navy—National Naval Medical
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Center; Shanghai—Shanghai Cancer Institute and Van-

derbilt University) approved the studies.

2.2 BMI assessment

In the PLCO and Navy studies, participants were asked to

report their current height and weight by questionnaire at

baseline; these data were then used to calculate BMIs. In

the Shanghai study, height and weight were measured

twice during an in person interview according to a standard

protocol by trained interviewers who were retired medical

professionals.

2.3 Blood samples and batching

Blood samples from PLCO were collected from non-fasted

participants at the individual screening centers. A serum

tube (red top with no additive) was allowed to clot at room

temperature for one hour, centrifuged to obtain serum

(1,2009g for 15 min), aliquoted into cryovials, and frozen

at -70 �C within two hours of blood draw. Once per

month, serum samples were shipped from screening centers

on dry ice to a central biorepository in Frederick, Mary-

land, and stored at -70 �C.

Blood samples from Navy were collected from partici-

pants who were not required to fast. Time since last meal data

was collected concurrently with the blood and approximately

58 people (22 %) had fasted, as defined as six or more hours

since consuming any food or drink other than water. A serum

tube (tiger-top serum separator tube) was allowed to clot at

room temperature for 30 min, sent on ice to Biotech

Research (Rockville, MD), centrifuged to obtain serum, and

frozen at -80 �C within two hours of blood draw.

Blood samples from Shanghai were collected from par-

ticipants asked to fast. Time since last meal data was col-

lected and 151 of 184 (84 %) had fasted prior to blood draw.

An EDTA plasma vacutainer tube was sent from partici-

pants’ homes on ice to the Shanghai Cancer Institute. The

tube was centrifuged and frozen at -70 �C within two hours

of blood draw. After a large number of samples had been

collected, tubes were sent on dry ice to a central bioreposi-

tory in Frederick, Maryland, and stored at -70 �C.

For each study, samples were grouped into batches of

30, corresponding to the number of samples run per day.

For each sample, the batch and position within a batch

were randomly assigned except that, for the PLCO and

Navy studies, cases and their matched controls were placed

next to each other in the same batch.

2.4 Metabolite assessment

Metabolites were measured by Metabolon Inc. whose

platform and process have been described previously

(Evans et al. 2009). They used a single non-targeted

extraction with methanol followed by protein precipitation

to recover a diverse set of metabolites. Samples were then

analyzed using ultra high performance liquid-phase

chromatography and gas chromatography coupled with

tandem mass spectrometry and mass spectrometry. The

three studies were run in sequence on the same equip-

ment. The mass spectra peaks were compared to a

chemical reference library generated from 2,500 standards

to identify individual metabolites. There were 317

metabolites of known identity measured at detectable

levels in all three studies and these constitute the focus of

our current investigation. The metabolites were grouped

into 8 chemical classes (amino acids, carbohydrates,

cofactors and vitamins, energy metabolites, lipids, nucle-

otide metabolites, peptides, and xenobiotics) based upon

the classifications of the Kyoto Encyclopedia of Genes

and Genomes (Ogata et al. 1999). Amino acids here

include standard amino acids (the 20 amino acids that are

protein precursors and are directly encoded by the uni-

versal genetic code) as well as non-standard amino acids

(amino acids that are not incorporated into proteins or

encoded by the universal genetic code).

We have previously reported on the level of reliability

for the metabolomics platform used in this analysis

(Sampson et al. 2013). The reliability was high, with

technical intraclass correlation coefficients greater than 0.8

for more than 50 % of the metabolites. We also calculated

intra-assay coefficients of variation, averaged over all

individuals, for each of the 317 metabolites in PLCO,

Shanghai, and Navy. Each batch of 30 samples included

blinded quality control samples—2 samples per batch for

the PLCO and Shanghai studies, and 3 samples per batch

for the Navy study. The median coefficients of variation

over the 317 metabolites were 0.10 (IQR: 0.04, 0.21) for

PLCO, 0.21 (IQR: 0.14, 0.33) for Navy, and 0.14 (IQR:

0.09, 0.21) for Shanghai.

2.5 Statistical analysis

To account for variability by run day, we standardized the

non-missing (i.e. detectable) values as a proportion of the

median value observed that day. Thus, the median value for

each metabolite for each run day was set to 1, and

metabolite values twice that of the median for that day

were set to 2, and so on. Within each study, we then

transformed metabolite values to their natural logarithm to

normalize distributions and centered them (mean = 0,

standard deviation = 1). For each metabolite, we assumed

that any missing values were values below the limit of

detection and imputed the minimum of the non-missing

values. Over the 317 metabolites, the median level of

‘‘missingness’’ before imputation was 1 %.
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We examined study-specific associations between

metabolite levels and BMI as a continuous variable using

linear regression, adjusted for age, gender, and smoking

status (never, former, current). PLCO models were addi-

tionally adjusted for study center and case status and Navy

models were also adjusted for case status. We then used

DerSimonian and Laird random effects models to conduct

a combined meta-analysis of the three studies (DerSimo-

nian and Laird 1986). Effect sizes for each study and in the

meta-analysis indicate the increase in BMI units per one

standard deviation increase in the metabolite level (on the

log scale). Pearson correlations, adjusted for the same

covariates, were also estimated in each study. For meta-

analysis of study-specific Pearson correlations, we used

Fisher’s r to Z transformation and estimated the standard

error as the square root of the sampling variance (Field

2001). Meta-analysis results were then back-transformed

for presentation. The threshold for statistical significance

was Bonferroni adjusted for 317 statistical tests, i.e.

alpha = 0.05/317 = 0.000158.

We assessed consistency of the statistically significant

associations across studies using the Q statistic (Takkouche

et al. 1999) and by examining consistency of study-specific

effect estimates, particularly whether they were all within

the bounds of the meta-analysis 95 % confidence interval.

To assess replication of findings, we examined whether

P-values were consistently low—less than 0.05—across all

3 studies and whether effects were in the same direction.

To assess whether associations were independent, we

evaluated the pairwise correlations between all metabolites

significantly associated with BMI. Metabolites with pair-

wise correlations greater than 0.5 were considered to be

highly correlated and to have possible redundancy. In

supplementary analyses, we also used forward stepwise

regression to identify metabolites independently associated

with BMI. Metabolites were entered or removed from the

model based on the meta-analysis P-value, with the

threshold for entry and/or exit into the model set at

P = 0.05. This model helps to identify a parsimonious set

of BMI-related metabolites that could be carried forward to

targeted analyses.

In a sensitivity analysis, we examined whether there was

heterogeneity in metabolite-BMI associations according to

fasting status in the Navy and Shanghai studies. We also

examined correlations between fasting status and BMI to

determine whether there is potential confounding by fast-

ing status. In another sensitivity analysis, we excluded

participants who developed colorectal cancer during fol-

low-up (PLCO) and prevalent adenoma cases (Navy), reran

models, and compared results to the main analysis.

All analyses were performed with SAS software version

9.1.3 (SAS Institute, Cary, NC) and the R statistical lan-

guage version 2.14.0.

3 Results

The participant characteristics of our three study popula-

tions are shown in Table 1. Overall, participants from

PLCO were older than those of the other two studies, while

participants from the Navy study were more likely to be

male, and participants from the Shanghai study had lower

BMIs and the men were more likely to currently smoke

than men from other studies.

We identified 37 metabolites associated with BMI at the

Bonferroni adjusted significance level (Table 2). The dis-

tribution of the BMI associated metabolites according to

chemical class was as follows: 19 amino acids, three car-

bohydrates, two peptides, 12 lipids, one xenobiotic, but no

cofactors and vitamins, energy metabolites, or nucleotide

metabolites. The specific metabolites and their effect sizes

and P-values are shown in Table 3 and Fig. 1. The largest

effect size and the most significant result—P = 2.51 9

Table 1 Baseline characteristics of study participants

Baseline

characteristics

PLCOa Navyb Shanghaic

N = 505

(%)

N = 258

(%)

N = 184

(%)

Biospecimen Serum Serum Plasma

Fasting status Non-fasting Non-fasting Fastingd

Age (years)

\60 19.5 59.9 52.7

60–64 31.6 17.2 14.7

65–69 30.4 13.0 14.7

70? 18.5 9.9 17.9

Gender

Women 43.8 22.9 57.6

Men 56.2 77.1 42.4

Smoking

Women

Current 7.2 8.6 4.7

Former 39.8 36.2 0

Never 52.9 55.2 95.3

Men

Current 10.2 7.0 53.8

Former 52.8 46.0 0

Never 37.0 47.0 46.2

BMI (kg/m2)

\20 2.6 1.9 13.6

20–24.9 30.2 32.1 47.8

25.0–29.9 42.7 46.9 35.3

30.0? 24.5 19.1 3.3

a The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial
b The Navy Colon Adenoma Study
c The Shanghai Physical Activity Study
d 84 % adhered to fasting protocol

262 S. C. Moore et al.

123



10-13—were observed for glutamate. For glutamate, each 1

standard deviation increase was associated with an increase

of 1.39 units of BMI. For a person who is 1.7 meters in height,

this would be an increase of 4.1 kg in body weight. At

P \ 0.05 level, there were 110 metabolites associated with

BMI overall. Complete results for all 317 metabolites are

shown in Table I of the online data supplement.

The associations had minimal heterogeneity by

study. All tests for heterogeneity were non-significant

(Pheterogeneity [ 0.05). Effect sizes were in the same direc-

tion and of similar magnitude between studies. Out of 37

metabolites, only two (3-hydroxyisobutyrate and palmitoyl

sphingomyelin) had study-specific estimates that differed

substantially, i.e. by more than 50 %, from the meta-

analysis estimate. Of the 37 metabolites, 25 had a

P-value \0.05 for the metabolite-BMI association in all

three studies (by chance alone, no metabolites would be

expected to replicate at this level).

Of the 37 metabolites associated with BMI, there were 18

that have never, to our knowledge, been previously linked

with BMI in the literature. Seven of these 18 metabolites

were highly correlated (r C 0.5) with the known BMI-

associated metabolites of valine, tyrosine, phenylalanine,

leucine, or isoleucine (Fig. 2). These seven metabolites were

3-4-hydroxyphenyl-lactate, gamma-glutamyltyrosine, 3-methyl-

2-oxobutyrate, gamma-glutamylisoleucine, 3-methyl-2-oxoval-

erate, 4-methyl-2-oxopentanoate, and 3-hydroxyisobutyrate.

Adjusting for the known BMI-related metabolites in sensitivity

analyses eliminated the associations for these seven metabolites,

suggesting that they provide potentially redundant information.

The 11 remaining metabolites with novel BMI associa-

tions were not strongly correlated with known BMI-related

metabolites and thus likely provide new information

(Fig. 2). Three of these were intercorrelated lipids

(1-oleoylglycerophosphocholine, 1-eicosadienoylglycer-

ophosphocholine, 2-linoleoylglycerophosphocholine). The

remaining 8 metabolites (butyrylcarnitine, 2-hydroxybuty-

rate, 7-alpha-hydroxy-3-oxo-4-cholestenoate, alpha-hy-

droxyisovalerate, benzoate, n-acetlyglycine, palmitoyl

sphingomyelin, and histidine) were not strongly correlated

with one another.

In addition to the novel associations, there were 19

additional metabolite-BMI associations that had been pre-

viously reported upon, including branched chain amino

acids like valine, aromatic amino acids like tyrosine,

markers of glucose control like mannose and 1-5-anhy-

droglucitol, and markers of lipid metabolism like glycerol

and lathosterol.

Over the entire set of 317 metabolites, no associations

were heterogeneous by study after Bonferroni correction (the

lowest P-values were P = 0.0004 for serotonin 5-HT,

P = 0.0017 for dimethylarginine-SDMA-ADMA, and

P = 0.0034 for adrenate-22-4n6). There were also no asso-

ciations with statistically significant heterogeneity by age or

gender after Bonferroni correction, though some results for

gender were of borderline significance. We included gender-

specific results in Tables II and III of the online data sup-

plement. The lowest p-values for heterogeneity by gender

were P = 0.0002 for threitol, P = 0.0005 for histidine, and

P = 0.0005 for benzoate.

In the stepwise regression model, 19 metabolites were

associated with BMI at the P \ 0.05 level (Table IV of the

online data supplement). In this model, the associations are

mutually adjusted and thus results are statistically inde-

pendent from one another.

In analyses of heterogeneity by fasting status, there were

no interactions after Bonferroni correction. Forty five

metabolites met the nominal level of statistical significance

(P \ 0.05) but differences in effect size were modest, gen-

erally differing by 0.05–0.07 (or -0.05 to -0.07) for fasted

vs. non-fasted samples. Regarding the specific interactions

observed, none of the 37 metabolite-BMI associations were

weaker in fasting only samples; six were slightly stronger

(for the metabolites of gamma glutamyltyrosine, lathosterol,

andro steroid monosulfate 2, isovalerylcarnitine, leucine,

and carnitine). For metabolites not associated with BMI,

only a few could potentially have reached statistical signif-

icance in fasting only samples based on the interactions

observed (kynurenate, gamma glutamylvaline, gamma

glutmylleucine, urate, 10arachidonoylglycerophosinositol,

dihomo-linoleate, and serine). In addition, fasting status was

not associated with BMI in either the Navy study (Pearson

r = -0.09, P = 0.15) or the Shanghai study (Pearson

r = 0.06, P = 0.40), suggesting against major confounding

by fasting status.

Table 2 Number of metabolites detected by chemical class, and the

number with statistically significant associations with BMI

Chemical class Total number

of metabolites

Number (and %) of

metabolites associated

with BMI

(alpha = 0.05/317)

All 317 37 (12 %)

Amino acidsa 83 19 (23 %)

Carbohydrates 17 3 (18 %)

Peptides 11 2 (18 %)

Lipids 138 12 (9 %)

Xenobiotics 36 1 (3 %)

Cofactors and vitamins 16 0 (0 %)

Energy metabolites 7 0 (0 %)

Nucleotide metabolites 9 0 (0 %)

a The category of amino acids includes both standard amino acids,

i.e. the 20 amino acids that are directly encoded by the universal

genetic code and are precursors to proteins, as well as non-standard

amino acids, i.e. amino acids that are not incorporated into proteins or

not directly encoded for by the universal genetic code
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In analyses that excluded participants who later devel-

oped colorectal cancer (PLCO study) or had a prevalent

adenoma (Navy study), results remained materially the

same as in the main analysis (see Table V of the online data

supplement). For the 37 BMI-associated metabolites,

changes in effect size were almost uniformly less than

10 %. Also, we examined heterogeneity by colorectal

adenoma status (Navy study), and future colorectal cancer

status (PLCO study), but found no heterogeneity at the

Bonferroni corrected level.

4 Discussion

Through meta-analysis of metabolomics data from three

study populations, we identified 37 metabolites associated

with BMI at the Bonferroni corrected level of statistical

significance, including 19 lipids, 12 amino acids, and 6

other metabolites. The associations were strong, had highly

significant P-values, and replicated across the studies at the

P \ 0.05 level. Of the 37 metabolites, 18 metabolites, to

our knowledge, had never before been associated with

BMI. Of these 18 metabolites, 11 had no strong correla-

tions with known BMI-related metabolites, and thus are

considered to be ‘‘new’’ BMI-associated metabolites. We

also replicated previously observed associations for 19

metabolites. Overall, the strongest associations were

observed for amino acids.

Six of the 11 ‘‘new’’ BMI-associated metabolites were

lipids. Prior research suggests that fatty acid oxidation is

higher among those with insulin-resistance (Newgard 2012),

and our results suggest a similar result for high BMI. Buty-

rylcarnitine and 2-hydroxybutyrate (an amino acid), for

example, are both known markers of excessive fatty acid

oxidation (van Maldegem et al. 2006; Gall et al. 2010) and

both were positively associated with BMI. The other five

lipids (7-HOCA, 1-oleoylglycerophosphocholine, 1-eicosa-

dienoylglycerophosphocholine, 2-linoleoylglycerophosphocho-

line, and palmitoyl sphingomyelin) have not been well-

characterized with respect to health and could be interesting

targets for future research.

Lipids also figure prominently among the replicated

associations, comprising 6 of the 19 metabolites with a

previously observed BMI association. Of particular interest

were associations for glycerol and lathosterol because prior

studies had been small and replication was needed (Puha-

kainen et al. 1992; Paramsothy et al. 2011). Glycerol is a

three-carbon molecule that forms the backbone of all tri-

glycerides and blood levels of glycerol reflect the rate of

fatty acid breakdown (Puhakainen et al. 1992; Venables

et al. 2008). Lathosterol is a cholesterol precursor and

blood levels reflect the rate of cholesterol synthesis (Pi-

hlajamaki et al. 2004; Miettinen et al. 1990). Interestingly,T
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lathosterol was much more strongly associated with BMI

than was cholesterol, possibly indicating that lathosterol

reflects an aspect of cholesterol metabolism that is espe-

cially sensitive to an elevated BMI.

Four of the 11 ‘‘new’’ BMI-associated metabolites were

amino acids: 2-hydroxybutyrate (discussed above), alpha-

hydroxyisovalerate, n-acetylglycine, and histidine. Alpha-

hydroxyisovalerate has been implicated in several meta-

bolic disorders, including phenylketonuria. N-acetylglycine

is the acetylation product of glycine, but the significance of

this metabolite for health is otherwise unknown. Histidine

is a proteinogenic amino acid and a precursor of the neu-

rotransmitter histamine. Our study is the first to identify a

statistically significant association between histidine and

BMI although three prior studies did examine this associ-

ation (Cheng et al. 2012; Newgard et al. 2009; Felig et al.

1969).

Our analysis also replicated associations already estab-

lished between amino acids and BMI, including associations

for valine, isoleucine, leucine, tyrosine, phenylalanine, glu-

tamate, kynurenine, and glycine (Gaudet et al. 2012; New-

gard et al. 2009; Felig et al. 1969; Cheng et al. 2012).

Although a link between amino acids and BMI was first

noted four decades ago in a clinical study by Felig et al.

(1969), this link is being reexamined due to their recent

replication in metabolic profiling studies (Gaudet et al. 2012;

Newgard et al. 2009; Cheng et al. 2012; Floegel et al. 2012),

and the additional finding that these amino acids are asso-

ciated with future diabetes risk, even after controlling for

BMI (Wang et al. 2011; Floegel et al. 2012). Possibly, these

amino acids are biologically important for diabetes risk,

above and beyond their association with BMI.

Why amino acid levels are high among those with high

BMIs is not well-understood. One theory is that insulin-

Fig. 1 Effect sizes and 95 percent confidence intervals for combined

associations between metabolite levels and body mass index. Results

are based on a population of 947 participants (505 from PLCO, 258

from Navy, and 184 from Shanghai). Within each specific study, the

association between metabolite levels and BMI was modeled using

linear regression, adjusted for age, gender, current smoking status.

PLCO models were additionally adjusted for study center and case

status and Navy models were also adjusted for case status. The

combined model was done using random effects meta-analysis. Only

the metabolites that met the Bonferroni corrected threshold of

statistical significance in the combined models, i.e. alpha = 0.05/

317 = 0.000158, are shown here. The overall effect size (ES)—the

black square—indicates the change in units BMI (kg/m2) per one

standard deviation increase in metabolite level (log scale). The

horizontal line indicates the 95 percent confidence interval of the

estimate. The dotted line at zero overall ES is the line of no effect
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resistance (which tends to co-occur with a high BMI)

causes excess protein breakdown in skeletal muscle and

amino acid breakdown products are released into the blood

(Felig et al. 1969; Forlani et al. 1984; Tremblay et al.

2007). Alternatively, the high fat free mass among those

with high BMIs may be related to higher protein turnover,

which may, in turn, cause amino acid breakdown products

to be released into the blood. Finally, high amino acid

levels may themselves affect eating behavior through their

neuroactive properties. The amino acids associated with

BMI include two neurotransmitters (glutamate, and gly-

cine), three neurotransmitter precursors (histidine, tyrosine,

and phenylalanine), and kynurenine, which has neuroactive

properties. Several of these have been implicated in

appetite regulation (Haas et al. 2008; Wu et al. 2012;

Johnson and Kenny 2010). A limitation to this theory is

that, due to interference by the blood–brain barrier, it is not

certain that amino acid blood levels will correlate with

their level of utilization in the brain. For one amino acid

neurotransmitter—tyrosine—there is at least preliminary

evidence indicating a link between blood levels and brain

activity (Montgomery et al. 2003).

The final ‘‘new’’ BMI-associated metabolite was ben-

zoate, a common preservative added to food and personal

care products. In exploratory analyses, benzoate levels

were modestly higher among women and highly correlated

(r [ 0.5) with levels of metabolites found in personal care

products, including 2-ethylhexanoate, heptanoate, and pe-

largonate. Possibly, the benzoate-BMI association is driven

by behavioral patterns related to personal care product use.

Alternately, there may be greater sequestration of these

metabolites among people of a higher BMI.

For carbohydrates, we replicated known associations

between BMI and mannose, lactate, and 1-5-anhydrogluc-

itol. Mannose is a C-2 epimer of glucose and blood man-

nose levels correlate highly with those of glucose (Sone

Fig. 2 Pairwise correlations in the PLCO dataset for the 37

metabolites associated with BMI. A white square represents a

pairwise correlation of less than 0.50, a grey square represents a

correlation 0.50–0.69, and a black square indicates a correlation of

0.70 or greater. The red dashed line separates metabolites that had

been previously reported to be associated with BMI (bottom and/or

right) vs. metabolites that had never before been reported to be

associated with BMI (Color figure online)
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et al. 2003; Pitkanen et al. 1999), but are less sensitive to

food intake and are more tightly linked with diabetes (Sone

et al. 2003). Lactate is a product of glycolysis when oxygen

supply is limited, a state that may occur more frequently

among those with high BMIs due to poorer circulation

(Trayhurn et al. 2008). 1-5-anhydroglucitol is an estab-

lished biomarker for short-term glucose control (McGill

et al. 2004).

A major strength of our study was the large number of

metabolites assayed, which allowed us to discover new

associations, and to confirm associations from small studies

in the literature that might otherwise have been neglected.

Additional strengths were its comparatively large sample

size, and the replication of associations across three eth-

nically diverse study populations. This means that our

findings are unlikely to be due to chance, and that they

should have a reasonably high level of generalizability in

different studies and ethnic groups.

There were several important limitations. Our study is

cross-sectional, which complicates efforts to determine the

causal nature of associations. BMI does not discriminate

between fat and lean mass, and does not measure body fat

distribution. However, BMI, body fat percent, and trunk fat

are typically highly correlated and, in at least one study

(Sun et al. 2010), they have been similarly associated with

obesity-related biomarkers and metabolic syndrome. BMI

also was determined using self-reported weight and height

in our largest two studies (PLCO and Navy) but correla-

tions between measured and self-reported weight and

height typically exceed 0.9 (Willett 2012) and so errors

were likely modest. The metabolite levels in our study

were based on blood samples from a single point in time

and, if metabolite levels vary over time, the associations

could be attenuated relative to the true associations

(Sampson et al. 2013). Our blood samples also differed

between studies in type (serum for PLCO and Navy,

plasma for Shanghai) and fasting status (non-fasting for

PLCO and Navy, primarily fasting for Shanghai) which

would add heterogeneity and could result in some false

negatives. On the other hand, the findings that we did

report are likely to be robust across a variety of sample

collection designs typical for epidemiologic studies.

Finally, our metabolomics analysis was limited to metab-

olites that could be detected by the platforms used and our

data were measured in terms of relative concentrations

rather than actual concentrations.

In summary, we used metabolomics to identify a large

and diverse set of metabolites associated with BMI. Our

results provide a critical baseline for the establishment of

the ‘‘metabolome’’ of BMI. They also suggest a large

number of candidate markers that can be explored by future

prospective studies as potential mediators of the associa-

tions between obesity and disease risk.
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