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Abstract The analysis of volatile organic compounds

(VOC) as biomarkers of cancer is both promising and

challenging. In this pilot study, we used an untargeted

approach to compare volatile metabolomic signatures of

melanoma and matched control non-neoplastic skin from

the same patient. VOC from fresh (non-fixed) biopsied

tissue were collected using the headspace solid phase micro

extraction method (HS SPME) and analyzed by gas chro-

matography and mass spectrometry (GCMS). We applied

the XCMS analysis platform and MetaboAnalyst software

to reveal many differentially expressed metabolic features.

Our analysis revealed increased levels of lauric acid

(C12:0) and palmitic acid (C16:0) in melanoma. The

identity of these compounds was confirmed by comparison

with chemical standards. Increased levels of these fatty

acids are likely to be a consequence of up-regulated de

novo lipid synthesis, a known characteristic of cancer.

Increased oxidative stress is likely to cause an additional

increase in lauric acid. Implementation of this study design

on larger number of cases will be necessary for the future

metabolomics biomarker discovery applications.

Keywords Volatile organic compounds � Skin cancer �
Metabolites � GCMS � Palmitic acid

1 Introduction

Cancer, as the leading cause of death worldwide, is projected

to increase from 7.9 to 11.5 million, for a period from 2007 to

2030 (Thun et al. 2010). Early detection of cancer greatly

increases the chances of successful treatment. If detected

early (when confined to the primary site) the melanoma

5 year survival rate is about 98.2 % (Howlader et al. 2012).

Unfortunately, the majority of melanoma cases are not

detected in this early time window. Given its origin as a

pigmented lesion on the skin, melanoma presents a unique

opportunity for early detection. However detecting early

melanoma in sun-damaged skin is not always an easy task, as

the lesions may be masked by ephelides (freckles), seborr-

heic keratosis, pigmented actinic keratoses, lentigines or

nevi (Moller et al. 2009). There have been several anecdotal

reports of canine detection of melanoma (Williams and

Pembroke 1989; Church and Williams 2001). Many studies

have demonstrated the extreme olfactory ability of dogs to

detect and distinguish cancer from non-cancer (Willis et al.

2004; McCulloch et al. 2006; Horvath et al. 2008; Sonoda

et al. 2012). These observations suggest that the headspace

over melanoma contains volatile molecules. The idea to use
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volatile organic compounds (VOC) or metabolites to aid in

early detection of skin diseases and melanoma is not new

(D’Amico et al. 2008; Gallagher et al. 2008; Abaffy et al.

2010). It has been demonstrated that metabolic changes due

to a cancer process are reflected in the secretion products

from exocrine glands and of volatiles released by the skin.

Skin volatile compounds and their modifications caused by

environmental factors have been studied using sorbtive tape

extraction and in vivo sampling methods (Sisalli et al. 2006;

Bicchi et al. 2007; Sgorbini et al. 2010).

In many different cancers, breath analysis was used to

determine which volatile compounds-metabolites can serve

as potential biomarkers. Phillips et al. studied volatile

metabolites in lung and breast cancer patients (Phillips

1997; Phillips et al. 1999, 2003, 2010). Chen et al. (2007)

used HS SPME GCMS method to extract volatile organic

metabolites from breaths of lung cancer patients. In addi-

tion many other cancers have been investigated using

chemical analysis of exhaled breath (ovarian, colon, pros-

tate, liver and stomach cancers) (Peng et al. 2010; Meloni

et al. 1999; Ligor et al. 2007; Sonoda et al. 2012). Using an

animal model approach, Matsumura et al. showed that

urine volatile metabolic signature could distinguish tumor-

bearing mice from control animals (Matsumura et al.

2010). In addition, it has been demonstrated that the urine

volatile metabolomic profile from leukemia, colorectal

cancer and lymphoma can differentiate cancer patients

from healthy individuals (Silva et al. 2011). Thus, VOC/

metabolite analysis of skin as well as breath and urine can

be a novel diagnostic approach to detect cancer.

Recent study tested the hypothesis that malignant mel-

anoma tissue forms a unique volatile signature that is dif-

ferent than skin and nevi (non-neoplastic and benign

lesional tissue) and demonstrated proof of principle that

malignant melanoma tissue has a volatile profile distinct

from healthy, non-neoplastic skin and nevi (Abaffy et al.

2010). In that study, mass spectra from a given sample

were compared to the NIST reference library and the

metabolites were identified if they had C60 % similarity.

The major limitation of that study was the control tissue,

which could not be matched for sex, age, environmental

and other potential confounding factors. The aim of this

preliminary study was to directly compare volatile meta-

bolic profiles of melanoma (M) and non-neoplastic (non-

melanoma, NM) skin using matched control, healthy,

adjacent skin from the same patient, isolated and analyzed

on the same day. We applied an untargeted approach, as

this represents an efficient tool for early detection of dis-

ease (Ackermann et al. 2006; Sreekumar et al. 2009). We

focused on validation of this novel approach, including

spectra processing and statistical analysis. Due to the small

sample size, this pilot study does not seek to identify

biomarkers of melanoma. However, we did annotate

several metabolic ‘‘features’’ that were significantly dif-

ferent between malignant melanoma and skin. Significant

metabolites present in the melanoma were identified as

fatty acids and confirmed with standards. Their presence

may indicate increased cellular oxidative stress (C12:0)

and increased cellular proliferation (C16:0 and C12:0)

(Lindahl 1992; Rahman et al. 2002; DeBerardinis et al.

2008; Marchitti et al. 2008).

2 Materials and methods

2.1 Sample preparation and volatile collection

We obtained ethics approval from the Institutional Review

Board (IRB). Biopsy samples were collected from subjects

recruited in accordance with the approved IRB protocol

(No. 2006117) after a written consent form was signed.

Samples were subjected to HS SPME volatile collection

and GCMS analysis as described previously (Abaffy et al.

2010, 2011). A total of ten patients were recruited: five

with melanoma lesions (Table 1) and five with non-mela-

noma (benign lesions) (Table 2). Two tissue biopsies were

performed on each patient with a 2 mm punch biopsy

device, one from the lesion (melanoma or non-melanoma

lesion) and the other from adjacent healthy skin from the

same patient. The biopsy sample was placed in a vial

(Agilent, No. 5182-0715, 1.5 mL with 0.3 mL polyspring

insert, National Scientific, C4010-630, insert diameter

3 mm) and capped with a Teflon coated silicon septum,

which sealed the air within the insert from the vial and the

external environment. Tissue sample was placed at the

bottom of the insert leaving approximately 15 mm of space

above the tissue. The sample was kept on ice for a maxi-

mum of 2 h after biopsy and before the HS SPME volatile

collection. Upon insertion of the SPME fiber, volatile

compounds partition to the gaseous phase as well as to the

SPME fiber coating. The extractive portion of the SPME

fiber was 10 mm in length. It was completely exposed to

the headspace above the tissue during the extraction period

without directly contacting the sample. Under these cir-

cumstances, volatile compounds prefer to accumulate in

the headspace, resulting in substantial loss of sensitivity

when the headspace volume is too large. In order to min-

imize the headspace and to achieve higher sensitivity of

headspace extraction, we placed a 0.3 mL insert into the

vial. We collected volatile compounds using HS SPME

device with 0.65 lm PDMS-DVB fiber for 1 h at room

temperature. The manual HS SPME holder was inserted

into injector of the GC (splitless mode) and volatiles from

fiber desorbed (at 220 �C for 1 min). The SPME fiber was

conditioned at 250 �C under a purified stream of helium
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prior to first use according to manufacturer’s instructions.

Blank fiber was directly injected each day before the

analysis. Only two samples (melanoma or non-melanoma

and control healthy skin) were analyzed per day. We

analyzed 20 tissues (five melanoma ?5 matching skin and

five non-melanoma ?5 matching skin), and ten air sam-

ples. Analysis of air samples (volatile collection from the

empty vial) was done in the same way as melanoma and

skin samples.

2.2 GCMS analysis

GSMS analysis was performed using an HP 6890 gas

chromatograph and Agilent 5973 quadrupole mass spec-

trometer operating in the electron impact (EI) mode. The

filament off time was 0.1 min. This was used to reduce the

signal from gases N2 and CO2 that are injected via the

SPME fiber. Before each analysis set the instrument was

tuned via the autotune function of the instrument. Our

Table 1 Demographics, diagnosis and histology analysis (H&E staining) of 5 matched melanoma cases

Case M-1 Case M-2 Case M-3 Case M-4 Case M-5

Sex M M M M F

Race White White Hispanic dark skin White Hispanic dark

skin

Age 49 73 35 75 38

Initial diagnosis Nodular melanoma Nodular nevoid

melanoma

Acral lentigenous

melanoma

Recurrent malignant

melanoma

Melanoma

Localization Right forearm Right temple Right foot Scalp Back

Tissue/lesion Intact Previously shaved Intact Previously shaved Intact

Breslow

thickness

0.98 mm 0.75 mm 2.2 mm 0.67 mm 5 mm

Clark level,

TNM stage

II, T1N1M0 IV, T1N0M0 V, T3aN2M0 T1bN0M0 V, T4bN1M0

Biopsy sites

Diagnosis from

our punch

biopsy sample

Malignant melanoma Melanoma in situ Acral lentigenous

melanoma

Melanoma in situ Melanoma

Histology-

melanoma

Histology-

adjacent, non-

neoplastic

skin

The site of punch biopsy of melanoma (indicated with ) and of adjacent skin are indicated with white circle. Unfortunately, we did not obtain

the macroscopic picture for case M-5
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program was: 40 �C for 2 min followed by 6 �C/min ramp

to 270 �C and hold for 5 min. Helium carrier gas flow was

set at 0.7 mL/min. Agilent 5973 mass spectrometer was

used in the full scan mode at a mass range of 30–300 amu.

Column used: DB-5MS, model J&W 128-5522,

25 m 9 0.2 mm I.D. 9 0.33 lm film. EI ionization used

was 70 eV. DB-5MS is a phenyl arylene polymer equiva-

lent to a 5 %-phenyl-methylpolysiloxane (DB-5). Repro-

ducibility of the method was tested using lauric acid as a

standard. The reproducibility or precision was determined

as % of relative standard deviation (%RSD) and was 8.6 %

(n = 7).

2.3 Chemometric data analysis

After GCMS analysis, raw data were converted to netCDF

files using MASSTransit software (by Palisade-Scientific

Instrument Services, Ringoes, NJ, USA). GCMS spectra

Table 2 Demographic, diagnosis and histology analysis of five non-melanoma cases

Case NM-1 Case NM-2 Case NM-3 Case NM-4 Case NM-5

Sex M M M M F

Race White White White White White

Age 50 83 64 34 77

Initial diagnosis Melanoma Lentigo maligna

melanoma

Melanoma in situ Melanoma in situ Melanoma in situ

Localization Vertex of the scalp Left temple Left cheek Right posterior

auricular

Forehead

Tissue/lesion Previously shaved Intact Previously shaved Previously shaved Previously shaved

Breslow

thickness

0.82 mm 1.1 mm – – –

Clark level,

TNM stage

I, T1N1M0 V, T2aN0M0 I, TisN0M0 I, TisN0M0 I, TisN0M0

Biopsy sites

Diagnosis from

our punch

biopsy sample

No residual

melanoma

No residual melanoma No residual melanoma No residual melanoma No residual

melanoma

Histology-non-

melanoma

Histology-

adjacent, non-

neoplastic skin

The site of punch biopsy of non-melanoma (indicated with ) and of nearby skin are indicated with white circle. The macroscopic picture for

Case NM-5 is missing, because initial diagnosis was done in the primary care office
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processing were carried out using freely available XCMS

software (online version 1.21.01, The Scripps Center for

Metabolomics, La Jolla, CA, USA) (Smith et al. 2006)

using the default parameters for GC Single Quadruple

[general: GC/single quad MS (matched Filter), GC-EI,

single quadruple MS, retention time (RT) format: minutes,

polarity: positive, feature detection: matched Filter, step:

0.25, FWHM: 3, RT correction: method: peak groups, non-

linear/linear alignment: loess, extra: 1, missing: 1 Align-

ment: mzwid: 0.25, minfrac: 0.5, bw: 10). GCMS spectra

processing included: filtering and identifying peaks,

matching peaks across samples, peak RT alignment and

arranging peaks into peak intensity table for further sta-

tistical analysis]. Thus, all chromatograms were simulta-

neously analyzed with identical settings. The processed

data were uploaded into freely available MetaboAnalyst

software for statistical analysis (www.metaboanalyst.ca)

(Xia et al. 2009; Xia and Wishart 2011). The total ion count

(TIC) for each chromatogram varied between the samples,

as seen in Supplementary Table ST1. The source of this

variation is likely to be biological, (different skin type and

localization on the body). In addition, some of the variation

may come from differences in the instrumental conditions.

Although analytical conditions were controlled, samples

were collected and analyzed over several months and thus

slight changes in the SPME fiber properties over time may

have contributed to the variation seen in TIC. On the other

hand, the change in TIC in each pair sample (melanoma vs.

skin and non-melanoma vs. skin) was negligible and we

used pairwise analysis throughout our manuscript to

investigate differences between these two groups. The

intensity signal of each metabolic feature is expressed in

relative terms, as a percentage of TIC/intensity signals of

the feature in each sample. For the untargeted approach, the

entire chromatogram (all m/z values) is equally important.

In a complex sample like skin, accurate compound iden-

tification is challenging. Some peaks may contain mixtures

of metabolites that are co-eluting, so the individual MS

scans of their peaks are not pure spectra of either metab-

olite, thus making it difficult to achieve high spectral

matching with the reference library. Some chromato-

graphic peaks with lower abundance are difficult to dis-

tinguish from the noise. To overcome these problems we

used a chemometric approach, meaning that the chemical

compounds were not annotated before the statistical anal-

ysis, only their mass spectra (mass to charge ratio,

m/z value) and the RT of the chromatographic peak (RT)

were recorded as a metabolic ‘‘feature’’. Since individual

chemical compounds give rise to more than one fragment

ion upon ionization, these ion-features, generated by

XCMS, were grouped together using the CAMERA algo-

rithm (Smith et al. 2006; Kuhl et al. 2012). Annotation of a

given mass spectrum was assigned only after a metabolic

‘‘feature’’ showed a statistically significant differential

profile using Student t-tests and fold change analysis. The

Chemical Analysis Working Group of the Metabolomics

Standards Initiative (MSI, http://msi-workgroupssource

forge.net) (Sumner et al. 2007) has defined four different

levels of metabolites identification confidence. The identity

of lauric and palmitic acid was confirmed with level 1

confidence with Sigma Aldrich W261408 and P0500

standards, respectively. In addition, retention indices were

used in combination with mass spectral analysis (similarity

search) to help with annotation of four additional volatiles.

For these purposes a Restek standard (Restek, Bellefonte,

PA, USA) containing 50 lg/mL of n-alkane mix (Cat. No.

31633) was run using the same instrument parameters and

experimental conditions as for melanoma samples. RTs of

each hydrocarbon standard eluted was recorded and the RI

calculated as described in (Lucero et al. 2009).

3 Results

Our study design is presented in Fig. 1 and a detailed

description of each step is given in ‘‘Materials and meth-

ods’’ section. Here, we describe the comparison of volatile

metabolomic signatures from three groups: air versus skin

samples, melanoma versus matching skin (Table 1) and

non-melanoma versus matching skin (Table 2).

3.1 Comparison of skin and air samples

We analyzed ten air against ten skin samples (five from

melanoma cases and five from non-melanoma cases). Vol-

atile collection in these samples was not matched, meaning

samples from these two groups were not collected at the same

time. Chromatographic data were processed as described in

‘‘Materials and methods’’ section. The results from XCMS

analysis, a mirror plot, summarizing most significant up-

regulated features-ions whose intensities were altered

between skin and air samples using thresholds of p B 0.01

and fold change C1.5 is presented in Fig. 2a. A total of 77

metabolic features were identified. The table of absolute

intensity peaks from XCMS was transformed to the relative

intensities table in each particular sample and imported into

MetaboAnalyst for the statistical analysis (matrix of 20

samples and 400 features). Data were normalized using the

autoscaling option. Three hundred and nine features with

C1.5 fold change in relative expression value were identified

when air and skin group was compared. There were 158

features identified as significant by paired t-tests with p value

B0.05. Data were clearly separated in two groups using

unsupervised Principal Component Analysis (PCA) analysis

(Supplementary Fig. 1). In addition, we performed a partial

least squares-discriminant analysis (PLS-DA). Figure 2b
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shows the representative points of the air and skin samples

mapped in space spanned by the first two components in the

PLS-DA. There is a clear separation between air (grey cir-

cles) and skin (black circles) group. The PLS-DA plot

suggests that 23.2 % of the variance is the difference

between air and biopsy tissue. It does appear that the dif-

ference between air and biopsy tissue does not capture the

majority of the variance in the data. However, all of the

Fig. 1 Study design. a Tissue sampling. b Collection of volatile

compounds using head space solid phase micro-extraction method

(HS SPME). c Gas chromatography–mass spectrometry analysis

(GCMS). d Data processing includes alignments of all chromato-

grams, baseline correction, filtering and statistical analysis. e Metab-

olite annotation. f Histology analysis, pathology status confirmation

Fig. 2 XCMS analysis. a Mirror plot. Mirror plot showing up-

regulated metabolic features-ions (green circles) altered between skin

and air samples. Note, that there are no down-regulated features. The

size of each circle corresponds to the (log) fold change of the feature

(the average difference in relative intensity of the peak between

sample groups). Thus, larger circles correspond to peaks with greater

fold change. Also, intensity of the color is used to represent p value

with brighter circles having lower p-values, i.e. higher significant

difference (Tautenhahn et al. 2012). b PLS DA score plot. A clear

separation between the air (grey circles) and the skin (black circles)

group (% of variance for each principal component is presented too)

(Color figure online)
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remaining variance is not necessarily independent of this

difference. For example, we have only shown the two PLS

components which best achieve a compromise between two

aims, namely, describing or capturing the explanatory vari-

ables and predicting the response or tissue class. There may

be other PLS components that explain the variance which

separates the air and biopsy data sets, but may be less pre-

dictively useful. Also, PLS-DA likely does not capture all of

the variability between air and biopsy tissue. It is a technique

which tries to find the best lower dimensional projections of

the data based on certain assumptions about the data (nor-

mality, linearity). It is likely that such complex data does not

meet these assumptions, so PLS-DA is likely to only capture

a portion of the overall variability.

3.2 Comparison of melanoma cases versus matching

skin controls

First, we report the analysis of volatile metabolic profiles

from five confirmed melanoma patients using fresh skin

tissue biopsy from melanoma lesion and from uninvolved

adjacent skin from the same patient. Detailed demographic

data, diagnosis, localization, punch biopsy sites, final

pathology report and histology pictures are presented in

Table 1. Melanoma tissues from cases M-1, M-3 and M-5

were not subjected to shave biopsy prior to punch biopsy

for the current study (intact). Pre-surgical diagnoses in

these cases were obtained from other lesions on the skin

and confirmed histologically after volatile analysis. We

obtained paired melanoma and uninvolved adjacent skin

samples and analyzed them on the same day. We analyzed

results using relative intensity values. The relative intensity

signal was defined as the absolute signal intensity value

divided by the TIC from each sample and imported into

MetaboAnalyst software. This approach normalizes the

TIC from each collection to control for variations in col-

lection efficiency with the SPME fiber and the GC column.

Previous studies reporting GCMS analysis have listed a

huge number of features, but identification of only a small

number of compounds (Bottcher et al. 2008). Thus, an

additional step to categorize these features into smaller

feature groups (FG) was applied. Each FG contains fea-

tures that are likely related to the same compound based on

RT, peak shape and intensity correlations (Kuhl et al. 2012;

Tautenhahn et al. 2012). Our 487 features were thus clas-

sified into 105 FG. In MetaboAnalyst, data were normal-

ized using the autoscaling option. Six significant features,

assigned to six FG, were identified by t test assuming equal

variances and are listed in the Supplementary Fig. S2a.

Important features identified by fold change (C1.5X)

analysis were presented in Supplementary Fig. S2b.

3.3 Annotation of significant feature groups

Next, we wanted to annotate these six FG (FG: 23, 36, 54,

56, 60 and 79, Table 3). We manually analyzed peaks at

the given RT and compared these mass spectra with the

library hits from NIST database. In addition, retention

index was calculated, as described in ‘‘Materials and

methods’’ section, to help in annotation of mass spectra.

The annotations of the FG together with their retention

indices are listed in Table 3. The annotated compounds

found to be significantly increased in melanoma group

were 2-ethylhexyl-4-methoxycinnamate, 1-eicosene; lau-

ric; palmitic; and myristic acid. Only one compound, tol-

uene, was identified as decreased in melanoma relative to

Table 3 Annotation of significant features using retention index (RI) and spectral similarity search with NIST 08 v.2.0 library

Feature

group

Features RT

(min)

RT

(sec)

Calculated

RI

Estimated RI from

NIST 08 v.2.0 (iu)

NIST

match

factor

Name Change

23 M290T39 39.08 2,345 2,208 2,088 822 2-Ethylhexyl-4-

methoxy-

cinnamate

1

36 M56T37 37.23 2,234 2,112 1,997 846 1-Eicosene 1

54 M60T26, M73T26, M60T26 26.35 1,581 1,565 1,570 916 Dodecanoic or
lauric acid

1

56 M55T34, M57T34, M60T34,

M73T34, M256T34

33.50 2,010 1,964 1,968 864 Hexadecanoic or
palmitic acid

1

60 M91T6, M92T6 5.80 348 749 758* 899 Toluene –

79 M60T30 30.08 1,805 1,763 1,769 871 Tetradecanoic or

myristic acid

1

The last column indicates the direction of change in melanoma group

* RI value for toluene from NIST library, using a capillary, standard non-polar, DB-1 column

Bold entries indicate statistical significance (p \ 0.05)
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skin. Since the medication used by our melanoma patients

was not uniform Supplementary Table ST2) and because

these compounds were identified relative to the paired

healthy skin control biopsy from the same patient, we are

confident that none of the volatile compounds listed in the

Table 3 are secondary metabolites of medication. Of these

compounds, cinnamaldehydes are known to be present in

cosmetic products and also in our skin (Gallagher et al.

2008). At this point, it is difficult to be certain about its

origin in our melanoma samples.

3.4 Comparison of five non-melanoma cases

versus matching skin controls

We also analyzed volatile profiles of five non-melanoma

cases, which had been initially diagnosed as melanoma

based on previous shave-biopsy histological analysis. After

diagnosis based on the original shave-biopsy, patients were

scheduled for surgical excision of the lesion. In these five

surgical excision biopsy samples the absence of residual

melanoma was confirmed histologically (Table 2). XCMS

analysis of the raw data was performed and there were no

dysregulated features detected between non-melanoma and

matching skin, using 1.2 fold change threshold and using

p value significant threshold of 0.09 and highly significant

threshold of 0.05. It is important to mention that the

inability to find differentially expressed features between

non-melanoma and adjacent control matched skin

(Table 2) is in agreement with histologic analysis which

did not find neoplastic changes (consistent with the absence

of melanoma).

4 Discussion

Our primary interest, due to a small sample size, was to

present the improved methodological control for the

potential confounding factors: non-neoplastic, adjacent

skin from the same patient. We believe that this is a sig-

nificant improvement in study design. Following stringent

criteria for compound identification based on proposed

minimum reporting standards for chemical analysis from

the MSI (Sumner et al. 2007), we annotated volatile

compounds based on their spectral similarity with library

match and retention index. Six FG with statistically sig-

nificant differences between histologically confirmed mel-

anoma and adjacent non-neoplastic skin obtained from the

same patient during a single surgical session were listed in

Table 3. The identities of lauric and palmitic acid were

confirmed at level 1 confidence using chemical standards

and according to the MSI criteria. Human Metabolome

Database search (www.hmdb.ca) lists palmitic acid

(HMDB00220) as one of the most common saturated fatty

acids found in animals and plants, with detectable con-

centrations in human serum, cerebrospinal fluid and urine.

Lauric acid (HMDB00638) was also found in human

serum, cerebrospinal fluid and urine. Our analysis indicates

significantly increased levels in melanoma relative to

adjacent uninvolved skin.

VOC released from skin form body odor and convey

important information about our metabolism (Bernier et al.

2000; Gallagher et al. 2008). It is well known that volatile

profile of human skin changes with age, nutritional status

and environmental factors. At older age, decreased hor-

monal levels result in decreased secretion from apocrine

and sebaceous glands and ultimately lead to change in

volatile profile and skin odor (Zouboulis et al. 2007; Chen

et al. 2007). In addition to the topographic and age related

variations in the lipid composition of human skin, varia-

tions in lipids and their secondary metabolites due to

cancerous process are also present (Abaffy et al. 2010).

Thus, our adjacent non-neoplastic skin is the best choice of

control.

What about nevi? A differential volatile profile in nevi

when compared to melanoma has been shown,, however

these samples were not matched (Abaffy et al. 2010).

Increased number of nevi and extent of freckling is an

important risk factor for melanoma (Tucker 2009). Results

from clinical and histological data indicate that about 25 %

of melanoma arise from or are associated with pre-existing

nevus (Marks et al. 1990; Tsao et al. 2003). Nevi are

considered a benign tumor of melanocytes that have

oncogene-induced senescent phenotype (non-proliferating

cells) (Michaloglou et al. 2005). This is a barrier to

malignant transformation. However, it has also been shown

that some markers of senescence are expressed in mela-

noma (Reed et al. 1995; Tran et al. 2012). Together, these

data call for caution when comparing melanoma and nevi,

and add an additional level of complexity if one was to

consider nevi as a proper control.

The question about the biochemical origin of these

metabolites arises from our results. It is known that during

early stages of melanoma progression, innate and adaptive

immune cells are recruited to the tumor site (e.g. macro-

phages). In addition, structural components of extracellular

matrix including collagens, elastins and soluble factors like

cytokines, chemokines and polypeptide growth factors are

released either from neoplastic or non-neoplastic cells. It is

known that tumor associated macrophages release matrix

metalloproteinase (MMP) and elastase and are thus

actively involved in breaking and remodeling of extracel-

lular matrix (Schmid and Varner 2010). Two possible not

mutually exclusive explanations related to the origin of

palmitic acid exist: (1) the necessity for the increased lipid

synthesis due to cell growth and proliferation in cancer and

(2) the endogenous presence of C16 in the skin is more
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prominent in melanoma skin lesion due to changes in

Stratum Corneum and melanoma cell microenvironment.

First, increased de novo fatty acid (FA) biosynthesis is a

very important metabolic alteration associated with cell

proliferation and cancer (DeBerardinis et al. 2008). Fatty

acid synthase over-expression in melanoma has been cor-

related with Breslow thickness and overall poor survival

(Innocenzi et al. 2003; Kapur et al. 2005; Byrum et al.

2011). It is highly likely that our increased pool of palmitic

acid serve as a building block for plasmalogenes synthesis

(Fig. 3). Plasmalogens are phospholipids with vinyl ether

linkage (Han and Gross 2005). As a general rule, the

amounts of the plasmalogens in the plasma membrane do

not exceed more than 1 %. However, if they amount

for [4 % of total phospholipids it correlates with neo-

plastic transformation (Mangold and Paltauf 1983; Smith

et al. 2008). High temperature GCMS have been used to

study skin surface lipids and predominant fatty acid iden-

tified were hexadecenoic or sapienic acid (C16:1) and

hexadecanoic or palmitic acid (C16:0) (Michael-Jubeli

et al. 2011). This poses a question as to whether or not a

disruption of Stratum Corneum integrity due to melanoma

results in increased palmitic acid volatile profile. If so, it

could represent an additional and/or alternative source of

increased palmitic acid pool.

Our analysis also reveals increased lauric acid in mel-

anoma. This medium-chain fatty acid can originate from

increased de novo fatty acids biosynthesis present in can-

cer, but it can also be a product of increased aldehyde

dehydrogenase activity (ALDH) reported to be present in

many cancers (Lindahl 1992). Elegant work by Boonya-

ratanakornkit et al. (2010) showed that melanoma initiating

cells expressing high ALDH activity develop xenograft

melanomas with high proliferative and self-renewal ability.

Increased lipid peroxidation can also be an indirect source

of aldehydes present in cancer cell. Aldehydes derived

from the lipid peroxidation are oxidized to carboxylic acids

by ALDH, and this is in most cases considered as a

detoxification process (Vasiliou et al. 2000). Thus, lauric

acid present in our melanoma group suggests that it may be

due to increased plasma membrane lipid peroxidation.

The only volatile compound found to be decreased in

the melanoma group is toluene. It is tempting to speculate

that it is an environmental contaminant and not an

endogenous metabolite; however, a few studies based on

much larger sample size have also identified toluene as a

discriminant compound identified as decreased in the

breath of lung cancer non-smoker patients (Rudnicka et al.

2012).

5 Conclusions

The use of volatile organic metabolites as biomarkers of

cancer is a new frontier in cancer research. Our analysis

revealed increased levels of lauric acid and palmitic acid in

melanoma. While these results are encouraging, a larger

effort will be required to fully validate these findings and

Fig. 3 Palmitic and lauric acid

as major volatiles implicated in

metabolic changes of melanoma

cell proliferation. SC stratum

corneum, K keratinocyte,

M melanoma cell, ACC acyl

CoA carboxylase, FASN fatty

acid synthase, ALDH aldehyde

dehydrogenase, PM plasma

membrane, black circle

melanosome
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assign these volatiles as biomarkers of melanoma.

Increased levels of these fatty acids are likely to be a

consequence of up-regulated de novo lipid synthesis and

increased oxidative stress. We believe that our approach of

collecting volatile organic metabolites in the headspace

above the cancer tissue has a future potential to become a

non-invasive in situ collection (without a biopsy). This will

enormously speed up biomarkers research discovery and

validation. Implementation of this study design on larger

number of cases will be necessary for the future meta-

bolomics biomarker discovery applications.
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