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Abstract Missing values in mass spectrometry meta-

bolomic datasets occur widely and can originate from a

number of sources, including for both technical and bio-

logical reasons. Currently, little is known about these data,

i.e. about their distributions across datasets, the need (or

not) to consider them in the data processing pipeline, and

most importantly, the optimal way of assigning them val-

ues prior to univariate or multivariate data analysis. Here,

we address all of these issues using direct infusion Fourier

transform ion cyclotron resonance mass spectrometry data.

We have shown that missing data are widespread,

accounting for ca. 20% of data and affecting up to 80% of

all variables, and that they do not occur randomly but

rather as a function of signal intensity and mass-to-charge

ratio. We have demonstrated that missing data estimation

algorithms have a major effect on the outcome of data

analysis when comparing the differences between biolog-

ical sample groups, including by t test, ANOVA and

principal component analysis. Furthermore, results varied

significantly across the eight algorithms that we assessed

for their ability to impute known, but labelled as missing,

entries. Based on all of our findings we identified the

k-nearest neighbour imputation method (KNN) as the

optimal missing value estimation approach for our direct

infusion mass spectrometry datasets. However, we believe

the wider significance of this study is that it highlights the

importance of missing metabolite levels in the data pro-

cessing pipeline and offers an approach to identify optimal

ways of treating missing data in metabolomics

experiments.

Keywords FT-ICR � Metabolic profiling � Missing data �
Missing entries � Signal processing

1 Introduction

Many questions addressed using metabolomic approaches

are similar to those being asked in transcriptomic and/or

proteomic investigations, e.g. which metabolites, genes

and/or proteins differ significantly between biological

groups under considerations such as healthy versus dis-

eased, or control versus drug-treated samples (Defamie

2008). Moreover, for many ‘omics experiments the final

data formats (after instrument specific processing) are

alike, with a rectangular matrix containing gene expression

values or metabolite relative abundances, and organised

with each variable measured in a unique column and each

sample analysed in a unique row. This consistency of data

format has facilitated the use of the same or similar uni-

variate and multivariate statistical methods (including

computational data analysis or pattern recognition meth-

ods) in metabolomics as are used in other ‘omics approa-

ches (Goodacre et al. 2004). However, while in other

‘omics fields there has and continues to be considerable

interest in understanding and developing appropriate

techniques to handle missing data (prior to statistical

analysis), it has received minimal attention in
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metabolomics. Missing values (also referred to as missing

data or missing entries) may arise in metabolomics

experiments for a number of reasons. In the case of direct

infusion Fourier transform ion cyclotron resonance (DI FT-

ICR) mass spectrometry (MS) based metabolomics, they

could have a biological and/or technical origin. A metab-

olite abundance value for a specific sample may not be

available when several samples are analysed and then all

the measurements are compiled into a data matrix for

further comparison or analysis. For some samples a specific

peak may not be present for genuine biological reasons,

e.g. due to heterogeneity between samples, or in other

cases its abundance is below the detection limit of the mass

spectrometer, or alternatively it was not measured properly

owing to a technical problem such as a temporary reduction

in electrospray performance due to particulate material in

the spray nozzle (Payne et al. 2009).

Metabolomics researches often face such problems

with missing data. These problems can be (and have

been) addressed by (a) simply disregarding all the vari-

ables for which missing data are present (Xia et al. 2009),

(b) using data analysis methods (including univariate and

multivariate) that have been shown to be able to handle

some proportion of missing data (Kenny et al. 2010;

Blanchet et al. 2011), or (c) estimating missing data with

various imputation algorithms (Kenny et al. 2010; Xia

et al. 2009). Focusing on the part of the data for which all

the measurements are present could be an optimal solu-

tion when only a small proportion of variables are

affected by missing data, however, this is typically not the

case in most metabolomics experiments. Some statistical

software packages allow univariate statistical testing (e.g.

t test or ANOVA in R or Matlab) on samples with

missing data by simply disregarding the missing entries,

and some multivariate exploratory or predictive approa-

ches have been developed to handle some amount of

missing data [e.g. missing data Principal Component

Analysis or Partial Least Squares Discriminant Analysis

(Walczak and Massart 2001; Andersson and Bro 1998)].

While this strategy may be appropriate when dealing with

large sample size studies that contain few missing data, it

may be problematic for metabolomics studies in which

the sample size is often limited and thus ignoring missing

data could diminish the power of the statistical tests.

Furthermore, it is not uncommon that missing data occurs

predominantly in one biological group (at least for the

case of DI FT-ICR MS metabolomics) and when com-

bined with a small sample size this can lead to an

insufficient number of metabolites measured for this

approach (e.g. at least two detected measurements per

biological group are needed to perform a t test in the R or

Matlab environments). Hence, imputing missing data

prior to data analysis represents a practical solution in

applied metabolomics since (i) it yields a simple, con-

sistent, rapid and automated data processing pipeline, (ii)

the resulting data matrix is compatible with a very wide

array of univariate or multivariate analyses, (iii) this

approach facilitates a comparison of univariate and mul-

tivariate statistical results for specific metabolites of

interest (e.g. biomarkers), and (iv) it provides a complete

profile of metabolite concentrations that can be used in a

consistent manner in other types of data analysis (e.g.

integration with other ‘omics datasets). The importance of

appropriate handling of missing data has been recognised

in the analysis of DNA microarray (Troyanskaya et al.

2001) and gel-based proteomics data (Albrecht et al.

2010; Pedreschi et al. 2008). For example, studies have

been reported on how missing values affect statistical

parameter estimations (Troyanskaya et al. 2001), how

they influence the results of univariate (Scheel et al. 2005;

de Brevern et al. 2004) and multivariate data analysis

(Pedreschi et al. 2008), what is the optimal method of

their imputation (Jornsten et al. 2005; Kim et al. 2004;

Scheel et al. 2005; Tuikkala et al. 2008), and how to

develop robust data analysis algorithms for datasets with

significant amounts of missing entries (Kim et al. 2007).

In metabolomics, none of the above questions has yet

been thoroughly addressed. This is particularly surpris-

ingly given that mass spectrometry based metabolomic

analyses (e.g., DI FT-ICR MS) typically generate datasets

with considerable amounts of missing data (Southam

et al. 2007; Taylor et al. 2009). Furthermore, it has been

suggested that missing values do not affect the data

analysis outcome, but that their treatment (i.e. deletion or

estimation) is carried out only for computational conve-

nience (Steuer et al. 2007). Current methods for handling

missing data in metabolomics involve simple methods

such as replacing a missing value by the mean or median

of the available measurements for that variable, replacing

with some small arbitrary number, or k-nearest neighbour

imputation [Steuer et al. 2007; GeneSpring MS software

(Alignment Technologies)]. A quite different approach,

reported by Sangster et al. (2007), estimates missing

values by returning to the raw spectral data and inte-

grating the areas of the missing peaks which are below

the applied signal-to-noise ratio (SNR) threshold, but in

close proximity to the peaks’ known m/z value.

Here, we analyse missing data in the context of DI FT-

ICR MS based metabolomics measurements, but with the

findings of our analyses potentially transferable and of

importance for other metabolomics studies. We investigate

not only the nature of the missing data but also their effects

on data analysis, both univariate and multivariate. Specif-

ically we addressed the following questions: what are the

potential origins of missing data in metabolomic datasets?

Do they appear at random, or as a function of peak
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intensity and/or m/z value? Do they affect the outcome of

commonly used univariate and multivariate data analyses?

And if so, what is the optimal method of replacing their

values as part of a consistent and automated data pro-

cessing pipeline that will provide the metabolomics

researcher with a complete data matrix that is compatible

with many univariate and multivariate statistical analyses

or other data mining algorithms? With more than a dozen

imputation methods available and published (not limited to

‘omics studies), we focus our investigations around the

eight commonly used and reported methods in applied

‘omics studies that are readily implementable (by other

researchers) in the R computing environment, ultimately

providing a (potentially expandable) benchmark for the

questions above. Finally, to maximise the generality of our

findings, we have investigated three widely differing bio-

logical datasets (including cellular, tissue and whole

organism extracts from in vitro and in vivo experimenta-

tion) that were measured in positive and/or negative ion

mode FT-ICR MS.

2 Materials and methods

2.1 Mass spectrometry datasets

The three FT-ICR MS datasets used here comprise of (1)

CCL—cancer cell line, specifically an acute myeloid leu-

kaemia cell line (K562) cultured and treated under hypoxic

conditions, comprising of six control samples, six samples

exposed to indomethacin (non-steroidal anti-inflammatory

drug) and six samples treated with medroxyprogesterone

acetate (component of hormonal contraceptives), all mea-

sured in positive (CCLp) and negative ion mode (CCLn);

(2) DM—Daphnia magna (a freshwater invertebrate)

exposed for 24 h to 1.5 mg/l of 2,4-dinitrophenol, a cel-

lular metabolic toxicant which obstructs oxidative phos-

phorylation, comprising of 10 control and 10 exposed

samples measured in negative ion mode only (Taylor et al.

2010); (3) HL—human liver biopsies taken throughout

orthotopic liver transplantation, comprising seven biopsies

taken soon after organ retrieval and seven further biopsies

taken post-reperfusion of blood circulation in the recipient

patient, measured in positive ion mode only (Hrydziuszko

et al. 2010). All cell, tissue or whole organism samples

were extracted using a methanol/chloroform/water method

(Wu et al. 2008), and the polar metabolites were analysed

using a hybrid 7-T direct infusion nanoelectrospray FT-

ICR mass spectrometer (Thermo Fisher Scientific LTQ FT)

over the range m/z 70–500. All CCL and DM samples were

analysed in triplicate, and the HL samples in duplicate;

these represent technical replicates of each sample for use

in the subsequent noise filtering algorithm. Spectra were

processed as described previously (Taylor et al. 2009),

including a 3-step filtering algorithm to eliminate noise

peaks (Payne et al. 2009). Specifically, the first filtering

step comprised of a hard SNR threshold, below which

peaks were rejected (2.5 for CCL datasets and 3.5 for DM

and HL datasets). In the second step, only peaks present in

two out of three technical replicates (for CCL and DM

datasets) and two out of two replicates (HL dataset) were

retained, and the intensities averaged to create a single

spectrum per biological sample. In the third step, only

peaks present in at least 50% of the samples were retained

(specifically across all samples for each of the DM and HL

datasets, and across samples within each biological group

for the CCL datasets; Table 1). Probabilistic quotient

normalisation was then performed on all of the datasets

(prior to univariate and multivariate analyses) (Dieterle

et al. 2006) followed by the generalised log transformation

(prior to multivariate analysis only, in order to stabilise the

variance across the peaks and avoid the highest abundance

peaks dominating in the multivariate analyses) (Parsons

et al. 2007). Individual peak intensities were confirmed to

follow normal distributions as tested with the Shapiro–

Wilk normality test (for [99% of the peaks that have no

missing data and that have been measured in at least three

samples; this is in agreement with our previous unpub-

lished observations for other (including larger sample size)

metabolomics datasets obtained via DI FT-ICR MS). At

this stage of analysis, each dataset contained m peaks and

n samples with multiple missing values (Table 1). The

median of the coefficients of variation of the peak inten-

sities, reflecting biological diversity within each dataset

(Parsons et al. 2009), was 17.21, 20.24, 25.59 and 60.99%

for CCLn, CCLp, DM and HL, respectively (excluding

peaks with missing data) confirming, as expected, that the

metabolic heterogeneity increased from cell line extracts to

laboratory cultured organisms to clinical samples.

2.2 Occurrence and distribution patterns of missing

data

The properties of the missing values in the FT-ICR MS

datasets were examined using two methods. First, the dis-

tribution of the missing values across each dataset was

determined to be ‘missing completely at random’ (MCAR)

or not. This employed Little’s test of MCAR for multi-

variate data with missing values (Little 1998). Second,

their occurrence patterns were assessed using Pearson’s

correlation between missing data properties and the dataset

features, specifically the amount of missing data versus

both the abundances and m/z values of the non-missing

data peaks.
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2.3 Impact of missing data imputation on statistical

analyses

We then compared eight common and/or readily available

missing data imputation (or estimation) methods in terms

of their impact on univariate and multivariate data analysis

as well as in terms of their performance for handling

missing values (experimental design summarised in

Fig. 1). This was performed on all three FT-ICR MS

datasets, as described below. Specifically, the eight esti-

mation methods comprised: (1) S—substitution of missing

values with a small predefined value (e.g. 0.01) (as used in

GeneSpring MS software; Alignment Technologies); (2)

HM—substitution with half of the minimum value found in

the non-missing data (Xia et al. 2009); (3) M—substitution

with the mean of the non-missing values across all samples

for that peak (Steuer et al. 2007); (4) MED—substitution

with the median of the non-missing values across all

samples (Steuer et al. 2007); (5) KNN—weighted k-nearest

neighbour algorithm in which k (here k = 5; different

k values did not significantly affect our analysis, data not

shown) metabolites most similar in terms of their intensity

profiles across all samples are identified based on the

Euclidean distance similarity measure to the metabolite

having a missing datum for a given sample; the missing

datum is then estimated as the weighted average of the

k metabolites for that sample with their contribution

weighted by their similarity (Steuer et al. 2007; Troyans-

kaya et al. 2001); (6) BPCA—Bayesian PCA missing value

estimation, a three stage algorithm based on principal

component regression, Bayesian estimation and the

expectation–maximisation repetitive algorithm; briefly

during the principal component regression the missing data

of a metabolite’s intensity profile are estimated from the

observed values using the PCA result, followed by a

Bayesian estimation in which residual error and the pro-

jection of metabolites on the principal components are

considered as normal independent variables with unknown

parameters which are inferred in the final expectation–

maximization algorithm step (Xia et al. 2009; Oba et al.

2003); (7) MI—multivariate imputation by chained equa-

tions (van Buuren and Groothuis-Oudsshoorn 2010); (8)

REP—modified version of Sangster’s method as used by us

previously, for which a missing value is substituted with

the average intensity of the nearest (in term of m/z value)

peaks from the raw measurements of the technical repli-

cates (Sangster et al. 2007). Methods S and HM substitute

the missing values with a relatively small value and act on

the assumption that missing data do not influence the

outcome of the subsequent data analysis due to a low

amount of missing data. Methods M and MED impute

missing data using a row mean or median and assume that

the metabolite’s intensity is similar across all the experi-

ments (i.e. samples). Furthermore, along with the S and

HM methods, M and MED do not use the information

contained in the structure of the data. KNN searches for the

k metabolites (or more specifically peaks in the mass

spectra) that have similar measured signal intensities across

the biological samples as compared to the peak for which

the missing entry is present. The missing value is then

replaced with the weighted average of the corresponding

non-missing values from the group of k peaks that were

identified as most similar. BPCA and MI methods use the

global structure of the dataset, in a way that all the

metabolites are taken into consideration to obtain the

imputed value. BPCA estimates the missing data in a three

stage process starting with principal component regression,

followed by Bayesian estimation and finishing with an

expectation–maximisation like repetitive algorithm; this

approach has been shown to outperform KNN for gene

expression data (cDNA microarrays) when the number of

samples was large ([30) and the missing data occurred

randomly (Oba et al. 2003; Albrecht et al. 2010). MI,

multivariate imputation by chained equations (available in

the R environment in a MICE library) is a method of

multiple imputation in which each variable is estimated

using a regression model conditional on all the other

variables iteratively looping through all the variables with

missing data; here we used the predictive mean matching

implementation (Little and Rubin 2002), similar to the

Table 1 List of the DI FT-ICR MS based metabolomic datasets analysed together with some of their basic properties

Dataset Brief description Median of coefficient

of variation [%]

No. of

samples

No. of

groups

No. of

peaks

Missing

values [%]

Peaks with

missing

values [%]

CCLn Human cancer cell line K562, negative

ion mode

17.21 18 3 6770 22.01 51.67

CCLp Human cancer cell line K562, positive

ion mode

20.24 18 3 4426 28.53 64.96

DM Daphnia magna exposed for 24 h

to dinitrophenol, negative ion mode

25.59 20 2 4196 14.63 55.22

HL Human liver tissue prior and post

liver transplantation, positive ion mode

60.99 14 2 1805 23.66 78.73
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regression method. Method REP attempts to utilise peak

abundance information captured in the technical replicates

that lies beneath the SNR threshold by estimating missing

data via the average of the closest (in terms of m/z) peaks in

each of the three (two for HL dataset) technical replicates.

After imputing the missing values for the three FT-ICR

MS datasets, using all eight methods, statistical tests were

employed to determine the metabolic differences between

the sample classes (e.g. between the control and two drug-

treated groups in the CCL study). This allowed us to

examine the impact of each imputation method on finding

significantly changed peaks via univariate testing [t-test or

ANOVA between groups with Benjamini and Hochberg

correction for multiple testing (Benjamini and Hochberg

1995)] as well as via multivariate principal component

analysis (PCA) scores and loadings values. This approach

was chosen as it is routinely used in metabolomics to

provide an initial unsupervised explorative analysis and

because it is appropriate for the sizes of the datasets

investigated here (containing thousands of peaks and only

up to ten samples per biological group); supervised meth-

ods such as partial least squares discriminate analysis would

likely lead to overfitting in the modelling (Broadhurst and

Kell 2006; Westerhuis et al. 2008). The eight missing value

estimation methods were further compared in terms of the

outcome of both univariate and multivariate analysis via

hierarchical clustering, in which the Euclidean distance

was calculated for the groups of peaks significantly chan-

ged between biological groups for the univariate analysis

and for the top 5% of peaks contributing to the separation

along the first and the second principal components (PC1

and PC2) based on their loading values. Since for the latter

the order (i.e. ranking based on loading values) of these

peaks holds important information about the PCA results,

we developed a measure referred to as Rt that compares the

number of shared peaks between any two imputation

methods as well as their rank order; i.e. in addition to

calculating the amount of overlap in the top 5% of peaks

Fig. 1 Flow chart summarising

the analyses of missing values

(MV) performed in this study
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between two imputation methods, we assign a higher ‘simi-

larity’ value for methods for which the top peaks are in the same

order (see electronic supplementary material, ‘Impact of

missing data imputation on multivariate data analysis’).

In addition, to assess the impact on the final biochemical

interpretation of the data, we have compared the eight

methods in terms of detecting significantly ‘active’ KEGG

(Kyoto Encyclopedia of Genes and Genomes) human path-

ways (Kanehisa et al. 2008). Here we defined a significantly

‘active’ pathway as follows: for significantly changed peaks

between groups (univariate analysis) or the top 5% of peaks

contributing towards separation along PC1 or PC2, we

assigned one (or more) putative metabolite names (Sumner

et al. 2007) to each m/z value, based upon accurate mass

measurements and the KEGG database, taking into account

commonly detected ion forms ([M - e]?, [M ? H]?,

[M ? Na]?, [M ? 39K]?, [M ? 2Na - H]?, [M ? 239

K - H]? for positive ion mode and [M ? e]-, [M - H]-,

[M ? 35Cl]-, [M ? 37Cl]-, [M ? HAc - H]- (HAc, ace-

tic acid) for negative ion mode). Following that, for each

putatively identified metabolite, we listed all KEGG path-

ways for which it is involved. The probability that a peak

i belongs to a pathway j was calculated via conditional

probability Pi(pathwayj|peaki) which equals to the number of

putative metabolite assignments of peaki that are involved in

pathwayj divided by the number of putative assignments for

peaki. We marked pathways as significantly ‘active’ if for at

least one of the peaks they were observed with a probability

greater than or equal to 0.75.

2.4 Performance of missing data estimation algorithms

To assess the performance of the missing data imputation

algorithms, we used ‘complete’ CCLn, CCLp, DM and HL

datasets that were created by excluding all peaks that

contained missing values. Next, we deliberately introduced

missing values, either completely at random (MCAR) or

not at random (MNAR) (Little and Rubin 2002), generating

datasets with missing data entries but for which we knew

the real (original) values. These missing data were again

imputed using each of the eight methods described above

(for REP we estimated the values of the deliberately

introduced missing entries using the information from the

triplicate technical measurements, explained below). The

imputed missing values (for all eight methods) were

compared to the original deliberately excluded values in

terms of normalised root mean square errors (NRMSE)

(Troyanskaya et al. 2001) and also the outcome of uni-

variate and multivariate (PCA) data analysis. The whole

procedure (both for MCAR and MNAR) was repeated 100

times. Furthermore, the amount of missing data generated

was ca. 20% for each ‘complete’ dataset, similar to the

amount of real missing data in the original datasets. For

MNAR, missing values were introduced to mirror the

missing data properties that we discovered in the original

datasets, mainly to capture their relationship with the signal

intensity and m/z ratio (discussed further below).

3 Results and discussion

3.1 Occurrence and distribution patterns of missing

data in DI FT-ICR MS metabolomics

A typical DI FT-ICR MS based metabolomics dataset

measured and processed as described above contains ca.

20% of missing data (Table 1), which equates to up to 80%

of peaks having at least one missing value across the

analysed samples. Little’s MCAR test revealed that this

missing data does not occur completely at random

(p = 0.029, 0.032, 0.021 and 0.045 for CCLn, CCLp, DM

and HL datasets respectively), i.e. they do not follow a

random distribution. If Y denotes a rectangular dataset

(e.g., with each peak’s abundance in a unique column and

each sample in a unique row) containing missing data,

Y can be split into two subsets Yo (observed values) and Ym

(missing data). A dummy matrix D could then indicate the

location of the missing values in Y, such that dij = 1 if yij is

missing and dij = 0 if yij is present. Following Rubin’s

established categories for the mechanisms of missing data

(Rubin 1976) for MCAR (missing completely at random;

intuitively perceived as random), by definition, there is no

relationship A between D and either Ym or Yo, meaning

that a pattern (occurrence) of missing data is not dependent

on the values that are missing (e.g. all low intensity values

in the dataset are missing) nor on the observed data (e.g.

missing data occur for those metabolites with measured

low intensity). For non-randomness, missing values may

occur as MAR (missing at random, with a relationship A
between D and Yo; counter-intuitive since it denotes one

type of non-randomness) or MNAR (missing not at ran-

dom, with a relationship A between D and Ym and possibly

Yo; describing the other type of non-randomness) (Rubin

1976; Little and Rubin 2002). For both the random and

non-random scenarios, missing data may arise due to

technical errors, biological factors, or a mixture of the two.

The relationship A between D and Ym is theoretical and

therefore cannot be assessed due to the lack of information

about the missing data. However, the analysis of the rela-

tionship between D and Yo showed that missing data in FT-

ICR mass spectra are a function of both the abundances of

observed peaks as well as their m/z values. For the former,

the lower the (mean) peak abundance the greater the

amount of missing data that the peak contains (Pearson

correlation coefficient of -0.80, -0.85, -0.89 and -0.90

for the CCLn, CCLp, DM and HL datasets respectively;
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Fig. 2). For the latter, the analysis of the technical repli-

cates showed that the probability of observing noisy peaks

(i.e. missing in one or more of the technical replicates) is

high for low m/z value signals, decreasing in probability for

mid-range m/z values, and increasing again for high m/z

signals (Fig. 2). This trend was quite apparent for both

CCL and the DM datasets, with a small exception (i.e. no

increase for the high m/z peaks) for the most biologically

variable HL dataset. This effect was of unknown origin.

We have confirmed that these relationships are not due to

our data processing, i.e. the three stage noise filtering

algorithm. Further investigation of the potential

source(s) of this relationship is beyond the scope of our

study, possibly arising from a technical peculiarity of the

FT-ICR MS instrumentation.

Two relationships were discovered above, i.e. D being

correlated significantly with non-missing value peak

abundances (Yo) and also with m/z values. These rela-

tionships highlight important information about the

occurrence and distribution of missing data that needs to

be considered prior to their treatment. The large percent-

age of peaks containing missing data implies that simply

removing them would dramatically reduce the size of the

dataset (by ca. 80%). Furthermore the abundance rela-

tionship indicates that removing peaks with missing data,

or inadequate estimation of missing entries, could result in

a substantial bias since only peaks with the highest

abundances would be kept, hindering subsequent

biomarker discovery. We have demonstrated this latter

effect while investigating the influence of the third step of

the noise filtering algorithm (retaining only those peaks

present in s% or more of the samples, and equivalent to

discarding peaks with missing data) on the distribution of

missing data across biological groups. Figure A1 (elec-

tronic supplementary material) shows the effects on the

missing data distributions for s C 0%, s C 25%, s C 50%

and s C 75% for the DM and HL datasets. The most

interesting result was obtained for the HL dataset, for

which there was a significant difference in the number of

missing values between the cold-phase and post-reperfu-

sion groups when all peaks were retained (s C 0%), but

this difference became non-significant for settings of

s C 25% and above. From our biochemical knowledge of

the processes occurring during liver transplantation, we

hypothesise that this is a case where peaks with missing

data that genuinely carried important biological informa-

tion were mistakenly removed (assumed to represent noise

peaks), as it has been shown that during the cold phase

liver metabolism ceases and it restarts upon reperfusion

with an increased production of bile acids and urea

(Hrydziuszko et al. 2010). Overall, our assessment of the

missing data within DI FT-ICR MS datasets reveals that

missing values do not occur completely at random but

instead as a function of (at least) peak abundance and m/z

value, and that peaks with missing values potentially carry

importance biological information.

Fig. 2 Probability of the occurrence of noisy peaks as a function of

m/z ratio for a CCLn, b CCLp, c DM and d HL datasets. Each sample

in the CCL and DM datasets was measured as three technical

replicates, and therefore noisy peaks are defined as occurring in one or

two out of three measurements only. HL samples were measured as

duplicates, with noisy peaks defined as occurring in one out of two

measurements only. Percentage of missing data versus mean peak

abundances (binned in 100 intervals with a sample filter C50%) for

e CCLn, f CCLp, g DM and h HL datasets. The top 5% of peak

abundances have been removed for plotting purposes
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3.2 Impact of missing data imputation on univariate

data analysis

The potential impacts of the eight missing data estimation

techniques on the ability to discover significant differences

in peak abundances between biological groups were eval-

uated using univariate statistical tests (either t tests or

ANOVAs). Different imputation methods ultimately yiel-

ded quite diverse data analysis outcomes. Specifically, the

number of peaks identified as significantly different

between groups varied considerably between the eight

estimation methods, from 2.65 to 14.70%, from 0.58 to

10.20%, from 7.44 to 14.20%, and from 1.72 to 14.24% for

the CCLn, CCLp, DM and HL datasets, respectively

(electronic supplementary material Table A1). As expec-

ted, based on the underlying mechanisms of the missing

data estimation algorithms, some methods performed

comparably, e.g. S and HM, and M and MED (electronic

supplementary material Fig. A2, Table A2), while others

were strongly dependent on the structure of the dataset, e.g.

for the CCL datasets, BPCA and REP performed similar to

M and MED, while for the DM and HL datasets, REP

resembled S and HM.

Further investigation of the peaks detected as signifi-

cantly different between biological groups showed that

substantial proportions of these peaks were comprised of

those which initially had missing data. Specifically, for the

CCLn, CCLp, DM and HL datasets, the minimum per-

centage occurrence of this type of significant peak (from

across all eight estimation methods) was 24.73% (for the

BPCA method), 15.38% (BPCA), 23.72% (M) and 32.26%

(MED), respectively (electronic supplementary material

Table A1). The maximum percentages of significant peaks

(which originally had missing values) were surprisingly

high, at 72.62% (KNN), 83.66% (HM), 49.66% (HM) and

85.99% (S) for the same four datasets, respectively. In the

worst case scenario of inadequate imputation of missing

data entries, these minimum and maximum percentages

provide an estimate of the false positive error rate associ-

ated with the arguably critical identification of significantly

changing peaks. This error rate would most likely be in the

upper range of percentages for methods such as S and HM

if the missing data were to represent high abundance

metabolites, and also for M and MED if the opposite were

true with missing entries representing low abundance

metabolites. This is further visualised in Figures A3 and A4

(electronic supplementary material) that show the distri-

bution of the number of missing data (prior to imputation)

that occur specifically within the significantly changing

peaks only.

Having analysed the percentages of significantly

changing peaks between biological groups that initially had

missing data, we then investigated which of the samples

originally had these missing values. Interestingly, the

results showed that missing entries tend to be located in

one of the biological groups, rather than being spread

equally across all the groups (electronic supplementary

material Table A3). This is a further important observation

that helps to verify our earlier hypothesis that missing data

may in fact represent true differences between biological

groups, and therefore their accurate imputation is of con-

siderable importance. Also, as above, it demonstrates a

potential danger when using substitution (S and HM) or

simple imputation (M and MED) methods. For the case of

low peak abundances, it does not mean that a small arbi-

trarily chosen value would represent the missing data

accurately; also, for high peak abundances, it should not be

assumed that the mean or median of the non-missing values

would represent an optimally imputed value. Rather, it is

quite possible that when an inappropriate missing value

estimation method is used we may not only lose the

knowledge of which peaks are significant or not, but we

may introduce further bias by identifying non-significant

peaks as significantly different between groups.

Our results therefore allude to the potential bias in the

biochemical interpretation of metabolomics data, if miss-

ing values are estimated incorrectly. To verify this we have

compared what we refer to as ‘active’ human pathways

observed following the estimation of missing data, across

all eight algorithms. These again resulted in quite diverse

outcomes of ‘active’ pathways with only 20.0, 14.4 and

0.0% (for CCLn, CCLp and HL datasets, respectively) of

pathways observed across all of the missing data algo-

rithms (Table 2; electronic supplementary material Tables

A4–A5); note that this approach was not applied to the

non-human DM dataset. The highest number of ‘active’

pathways was detected for the S, HM and KNN methods,

while the lowest for M, MED and BPCA. Prior biochemical

knowledge can also aid the interpretation of these findings.

For example, for the HL dataset, arginine and proline

metabolism and taurine and hypotaurine metabolism are

known to play a substantial role in liver transplantation

(Silva 2006; Kincius et al. 2007). Both these pathways

were discovered to be ‘active’ following treatment of

missing values by the S, HM, KNN and REP methods,

while BPCA treatment did not lead to either being classed

as active. Overall, the results presented here provide sub-

stantial evidence that the choice of missing value estima-

tion method has a substantial effect on the outcome and

interpretation of univariate statistical analysis.

3.3 Impact of missing data imputation on multivariate

data analysis

Similar to the results from the univariate analyses, the eight

missing data estimation techniques also led to diverse
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outputs from the multivariate data analysis. Specifically,

this was assessed from the clustering (or not) of samples

from different biological groups on PCA scores plots

(Fig. 3; electronic supplementary material Figs. A5–A7).

The differences between the eight estimation techniques

were most evident for the most biologically homogeneous

dataset, the cell line extracts. For example, for CCLn there

were clear differences between the control, indomethacin

treated and medroxyprogesterone acetate treated groups

after estimating the missing entries with S, HM, KNN and

MI, a separation between the control and two drug treated

groups (but no separation between drug treatments) after

M, MED and REP, and no separation between any of the

groups after BPCA. The differential effects of the eight

estimation methods on the PCA results were further dem-

onstrated by the large spread of the variances captured by

Table 2 Summary of which KEGG human pathways are ‘active’ (i.e.

observed with 75% likelihood based on the significantly changing

peaks between cold phase and post reperfusion groups) in the human

liver (HL) dataset, after estimating the missing values with eight

different algorithms

KEGG pathway S HM M MED KNN BPCA MI REP

Purine metabolism X* X X – X X X X

ABC transporters X X X X X – X X

Neuroactive ligand-receptor interaction, Taurine and hypotaurine

metabolism

X X – X X – X X

Pyrimidine metabolism, arginine and proline metabolism X X X – X – – X

Nicotinate and nicotinamide metabolism, Tyrosine metabolism,

Drug metabolism—cytochrome P45

X X – – X – X X

Glycine, serine and threonine metabolism, Aminoacyl-tRNA biosynthesis,

Cysteine and methionine metabolism, Alanine, aspartate

and glutamate metabolism

X X – – – X – X

Galactose metabolism X X – – X – – X

Lysine degradation, Histidine metabolism, Beta-alanine metabolism,

Phenylalanine metabolism, Tryptophan metabolism

X X – – – – – X

* X indicates that a pathway is ‘active’ for this particular method

Fig. 3 Comparison of eight different missing value estimation methods based upon their effects on the PCA scores plots for the CCLn dataset.

Samples labelled as: control cancer cells (diamonds), indomethacin treated (squares) and medroxyprogesterone acetate treated (triangles)
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the first two principal components: the relative standard

deviations of the variances were 36.10 and 16.58% for PC1

and PC2 respectively for CCLn, 57.46 and 29.53% for

CCLp, 56.52 and 15.13% for DM, and 38.64 and 11.72%

for the HL dataset (electronic supplementary material

Table A6).

Comparison of the top 5% of peaks contributing towards

the separation along PC1 and along PC2 showed, as for the

univariate analyses, that some estimation methods per-

formed quite similarly (electronic supplementary material

Figs. A8–A9, Tables A7–A8). For example, the largest

overlap in significant peaks for the univariate data analysis

was between S and HM (97.51, 97.61, 99.83 and 97.28%

overlap for CCLn, CCLp, DM and HL, respectively) fol-

lowed by a slightly smaller overlap between M and MED

(95.33, 92.86, 95.38 and 68.29%), while for the top 5% of

peaks from the PCAs the similarities (expressed as Rt; see

footnote in electronic supplementary material Table A7)

were largest between M and MED (97.08, 84.82, 96.19 and

86.67% for PC1, and 94.46, 88.39, 92.38 and 75.56% for

PC2) and followed by S and HM (76.68, 70.09, 82.38 and

61.11% for PC1 and 77.84, 64.29, 80.00 and 71.11% for

PC2). For the PCA results, the smallest overlap was

between the S and BPCA methods, whereas for the uni-

variate data analysis the smallest overlap was between

S and M or MED. An important observation from these

findings is that the differences in the statistical results

between the eight estimation methods were larger for the

PCA than for the univariate analyses, indicating that

the multivariate data analysis may be more sensitive to the

missing data estimation technique used.

This observation of the higher sensitivity of multivariate

analysis to missing data estimation was additionally veri-

fied by further examination of the top 5% of peaks con-

tributing towards the separation of biological groups along

the principal components (from each PCA). In general,

these subsets of m/z values contained a larger proportion of

peaks that initially contained missing data as well as a

larger proportion of missing entries than their univariate

equivalents (except for the BPCA method applied to the

CCLn, DM and HL datasets). For the S and HM methods,

virtually all the peaks in this top 5% subset contained at

least one missing value prior to their estimation (electronic

supplementary material Table A6, Figs. A10–A11, Tables

A9–A10). Furthermore, the considerable differences in the

results of the PCAs between the eight estimation methods

were further illustrated by substantial heterogeneity in the

observed ‘active’ human pathways. Specifically, there were

no common pathways following application of the eight

tested estimation methods for CCLn (for the top 5% of

peaks contributing to PC1 and to PC2), CCLp (for top 5%

of peaks contributing to PC2) and HL (for top 5% of peaks

contributing to PC1). Virtually none of the remaining

dataset and principal component combinations exhibited

overlap across all eight estimation methods, except for 2.11

and 3.85% of ‘active’ pathways for CCLp (PC1) and HL

(PC2), respectively (electronic supplementary material

Tables A11–A15). Overall, these analyses provide defini-

tive evidence that the choice of missing value estimation

method has a substantial effect on the results of the mul-

tivariate statistical analysis used here.

3.4 Performance of missing data estimation algorithms

Assessing the effects of missing data estimation methods

on the ‘complete’ datasets, which had missing values

deliberately introduced either at random (MCAR, missing

completely at random; mentioned here as a comparative

benchmark only and with results reported in the electronic

supplementary material) or in a way that mimics the

missing data distribution and properties of actual FT-ICR

MS metabolomics datasets (MNAR, missing not at ran-

dom), revealed further interesting findings. Before exam-

ining these results, it is worth noting that the ‘complete’

datasets may not be a perfect representation of the ‘origi-

nal’ datasets in terms of the metabolites’ intensities as a

larger proportion of the peaks that were removed to create

the ‘complete’ datasets were of relatively low intensity (i.e.

the actual missing data did not occur at random, but

occurred in part as a function of peak intensity). However,

once missing data were intentionally introduced to the

‘complete’ datasets to mimic their distribution in the ‘ori-

ginal’ data, the ‘complete’ datasets regain similar proper-

ties to the ‘original’ datasets; in fact this represents the best

possible approach to assess the performance of missing

values estimation algorithms even when missing data are a

function of intensity (Albrecht et al. 2010; Scheel et al.

2005) since the estimation methods are compared inter-

nally within the ‘complete’ matrix. Here, an obvious bias

could occur for method S, with a small predefined value

(0.01), while the seven other methods should capture the

relationship of the ‘original’ data. This limitation should,

however, be kept in mind and this component of the

comparison of imputation algorithms should be combined

with the findings from the missing data distributions and

their influence on the data analysis (see above) to select the

optimal missing data estimation method.

The performances of the eight methods were evaluated

in terms of normalised root mean square errors (NRMSE),

where the best approach results in the smallest NRMSE

between the known, deliberately deleted, ‘missing’ data

and the values that were subsequently estimated for them

(averaged across N = 100 runs). Five of the eight esti-

mation methods yielded similarly small average NRMSE

values, specifically methods MI, BPCA, KNN, MED and M,

while methods REP, S and HM performed poorly (Fig. 4;
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electronic supplementary material Fig. A12, Table A16).

This trend was observed both when the missing data was

introduced completely at random (MCAR) as well as for

the more realistic case of introduced values not at random

(MNAR). For the case of MCAR, is it expected that M and

MED yield good results since being a least squares esti-

mator method they give the best approximation when no

information on the missing data is available (when aver-

aged over many runs). This hints at the challenge of

deriving robust conclusions as to which imputation method

is optimal for a given nature and distribution of missing

values, discussed below.

Next the eight algorithms were assessed in terms of their

impact on univariate data analysis, evaluated using the area

under the receiver-operating characteristics (ROC) curve.

Specifically, for each run (repeated 100 times), data were

deliberately removed from the complete dataset (MCAR

and MNAR) and then these ‘missing values’ were

estimated via each of the eight methods, and significantly

changed peaks at various statistical significance levels were

identified and compared with the ones identified for the

original complete datasets (with no missing values) using

an ROC curve. The area under the ROC curve (AUC) was

averaged across 100 runs, with the best method (i.e. closest

to the complete dataset) having the highest AUC value (up

to 1). The highest performance methods were similar to the

best estimation algorithms from the NRMSE assessment,

i.e. the largest AUC was observed for the M, MED and

KNN methods, and the smallest for REP, S and HM

methods (Fig. 4; electronic supplementary material Fig.

A12, Table A17) with no differences being detected

between introducing missing data as MCAR or MNAR.

To provide a framework for the interpretation of the

multivariate data analysis, we first conducted a PCA on

each of the four ‘complete’ datasets, and then tested the

significance of any group separation by calculating p

Fig. 4 Analyses of four DI FT-ICR MS datasets after first introduc-

ing and then estimating missing data in the ‘complete’ datasets as

‘missing not at random’, to best represent actual MS data (average of

100 runs). Boxplots of NRMSE values for the a CCLn, b CCLp, c DM

and d HL datasets; boxplots of area under ROC curves (AUC) for

e CCLn, f CCLp, g DM and h HL datasets; and distribution of p values

(ANOVA or t-test on PC scores) for i CCLn (PC2 axis), j CCLp (PC2

axis), k DM (PC1 axis) and l HL (PC1 axis) datasets, where the

vertical lines indicate the p values for the complete datasets and

therefore represent the ideal result following missing value estimation
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values (t test or ANOVA) for the PC scores along both PC1

and PC2 (electronic supplementary material Fig. A13).

Similar to the ROC assessment, for missing data introduced

more realistically as MNAR, M, MED and KNN outper-

formed the five other estimation methods by revealing the

known significant separation between the biological groups

in PCA scores plots. Specifically a significant separation

along PC1 for the DM and HL datasets was revealed after

imputing missing entries with the majority of the eight

methods (except for method S for the DM dataset, and

S and REP for the HL dataset), but there were few false

positive errors along PC2 after M and MED imputation

(DM dataset) and BPCA and MI imputation (HL dataset).

Comparison to the MCAR shows that multivariate data

analysis is more prone to errors and miscalculations than

for the univariate data analysis. This is further supported by

the similarities of the top 5% of peaks contributing to the

separation of biological groups (along PC1 or PC2), for

which the similarity values are quite different between

MCAR and MNAR (electronic supplementary material

Figs. A14–A15, Table A20). Overall this supports our

earlier findings that multivariate data analysis is more

sensitive than univariate analysis to the occurrence of

missing values. Furthermore we have shown that the M,

MED and KNN estimation methods appear to outperform

the others, although see the discussion below.

3.5 Missing data estimation: is there an optimal

method?

Based upon the studies to date on missing data, described

here and conducted in other ‘omics fields, there are cur-

rently no grounds to prescribe any one estimation method

for dealing with missing entries in metabolomic datasets.

However, based upon our findings, it is clearly of consid-

erable importance to address the question of what is the

optimal treatment of missing data. For example, simply

deleting the variables that contain missing data or, as we

have shown, estimating those values with an arbitrarily

selected method will likely introduce a large bias to the

dataset and significantly affect further data analysis and

interpretation. The first step in selecting an appropriate

estimation method should be focused on characterising the

nature of the missing values within the given dataset.

Typically a metabolomics study will have measured thou-

sands of peaks and, as presented here, one should try to infer

the relationships between the missing data and the non-

missing data. In addition, one should try to establish whe-

ther missing data occur as a result of metabolite abundances

being below the detection limit of the analytical platform

(thought to be the primary case for our FT-ICR MS data-

sets) or instead if they represent non-detects (i.e. metabo-

lites not measured due to a failure of the analytical

platform.). With this information, as well as with the

assessment of whether and to what extent missing data

influence a particular data analysis method, an appropriate

missing data estimation technique can be chosen, as dis-

cussed below; this three stage approach is outlined in Fig. 1.

In the case of the three DI FT-ICR MS based meta-

bolomic datasets investigated here our initial findings

suggest that the preferred methods of estimating missing

values are KNN, M and MED. These three methods

achieved a good balance between enabling the statistical

analyses to reveal the expected metabolic differences

between biological groups (Fig. 3; electronic supplemen-

tary material Figs. A5–A7) and yet did not identify too

many potentially false positive biomarkers, i.e. the signif-

icantly changing peaks (univariate; electronic supplemen-

tary material Table A1) or those peaks contributing

towards separation in PCA space (multivariate; electronic

supplementary material Table A6) generally did not con-

tain the highest number of missing data when compared to

other estimation methods. The KNN, M and MED also

performed the best when assessed using the ‘complete’

datasets with deliberately introduced missing values that

were MNAR. These three methods yielded low NRMSE

values, high AUC values associated with the univariate

analyses, and impressively low p values associated with the

separation of samples in multivariate space (Fig. 4).

We then sought to further compare these three methods,

M, MED and KNN, to find the optimal approach. Although

KNN was slightly outperformed by M and MED for the

NRMSE and univariate analysis (using the ‘complete’

datasets with deliberately introduced missing values as

MNAR) we hypothesised that the M and MED methods may

introduce a larger bias into the datasets due to the way that

they estimate missing values; i.e. it is likely that by calcu-

lating the mean or median of the non-missing measured

values, estimated peak abundances would take on large

values, possibly with the majority of peaks being estimated

above the SNR threshold. We therefore evaluated the ori-

ginal datasets (from part B of Fig. 1) and confirmed that this

is indeed the case. Specifically, for both the M and MED

methods, almost all peaks (ca. 71–95%) were predicted to

have intensities above the threshold (for the CCLn, CCLp,

DM and HL datasets), as opposed to KNN for which there

was an almost equal split of estimated intensities below and

above the SNR threshold (ca. 38–66% of peaks above the

threshold; electronic supplementary material Table A21).

Considering the proven relationship in our FT-ICR MS

datasets between peak abundances and the number of

missing values, it is logical to expect that many, if not the

majority, of missing values should lie on or below the SNR

threshold. Therefore, based upon our analyses, we conclude

that the KNN method imputes the most realistic values in

these datasets and therefore is the preferred method over
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M and MED. This conclusion is strongly backed by existing

literature which states that imputing mean values is not

a good approach (Little and Rubin 2002; Buuren and

Groothuis-Oudsshoorn). Furthermore, both the M and MED

methods are disadvantaged by the fact that they can cause

an artificial reduction of variance. Overall, we therefore

consider KNN to be the optimal missing value imputation

method for the datasets examined here.

Generalising our findings and drawing upon previously

published relevant literature, we recommend some prag-

matic guidelines for the applied metabolomics researcher

to decide upon which missing data estimation algorithms to

use: (a) assess whether there is a need to impute missing

data (especially if univariate analysis are to be conducted)

as any imputation method will potentially bias the data

analysis; (b) avoid replacing missing data with small

arbitrarily chosen numbers (as in S, HM and REP methods)

since this greatly affects the data analysis; only consider

these methods when the number of missing data is low and

the majority of missing entries are known to result from

measurements below the limit of detection; (c) if the origin

of the missing data is largely unknown or the majority of

missing entries are non-detects rather than measurements

below the limit of detection, select an estimation algorithm

that is based on searching for local or global similarities

such as KNN (that has been shown to be optimal in this

study); (d) consider MED or M imputation only when the

missing data represent true non-detects as opposed to

measurements below the limit of detection; and (e) ideally

evaluate the chosen method against alternative algorithms

to avoid obviously biased missing data imputation. This

last point need not be limited to the eight imputation

approaches presented here, but could possibly include other

Multiple Imputation methods or the Expectation–Maximi-

sation algorithm as used in other fields (Schafer 1999;

Little and Rubin 2002). Finally, the development of novel

imputation methods remains an active field, for example

the LinCmb (Jornsten et al. 2005) algorithm for microarray

expression profiles that adapts to the structure of the data

by changing emphasis on the local and global imputation

methods, and hence the metabolomics researcher should be

aware of on-going progress in this field to help guide their

selection in the future.

4 Concluding remarks

We have shown that missing values play an important role

in DI FT-ICR MS based metabolomics data, and that their

estimation is very strongly reflected in the final data anal-

ysis outcome, for both univariate and multivariate approa-

ches. Therefore, we conclude that the optimal treatment of

missing data is a crucial step in the data processing pipeline

to which special attention should be paid. Even though this

study is based on three DI FT-ICR MS based metabolomic

datasets, our analyses and findings are more generally

applicable and of interest to all metabolomics studies. We

propose a three step process in order to determine an opti-

mal method for missing value estimation for a given dataset

and analytical platform (summarised in Fig. 1), that

includes: assessing the nature of the missing data, analysing

the impact of missing data treatments on the final data

analysis outcome, and analysing the performance of miss-

ing data algorithms on the ‘complete’ datasets if available.

Using this three step approach, we conclude that the optimal

missing data estimation technique for DI FT-ICR MS based

metabolomics is the KNN method.
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