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Abstract The identification of large series of metabolites

detectable by mass spectrometry (MS) in crude extracts is a

challenging task. In order to test and apply the so-called

multistage mass spectrometry (MSn) spectral tree approach

as tool in metabolite identification in complex sample

extracts, we firstly performed liquid chromatography (LC)

with online electrospray ionization (ESI)–MSn, using crude

extracts from both tomato fruit and Arabidopsis leaf.

Secondly, the extracts were automatically fractionated by a

NanoMate LC-fraction collector/injection robot (Advion)

and selected LC-fractions were subsequently analyzed

using nanospray-direct infusion to generate offline in-depth

MSn spectral trees at high mass resolution. Characteriza-

tion and subsequent annotation of metabolites was

achieved by detailed analysis of the MSn spectral trees,

thereby focusing on two major plant secondary metabolite

classes: phenolics and glucosinolates. Following this

approach, we were able to discriminate all selected flavo-

noid glycosides, based on their unique MSn fragmentation

patterns in either negative or positive ionization mode. As a

proof of principle, we report here 127 annotated metabo-

lites in the tomato and Arabidopsis extracts, including 21

novel metabolites. Our results indicate that online LC–MSn

fragmentation in combination with databases of in-depth

spectral trees generated offline can provide a fast and

reliable characterization and annotation of metabolites

present in complex crude extracts such as those from

plants.

Keywords Annotation � Fragmentation � LC–MS �
Metabolomics � Metabolite identification � Structural

elucidation

1 Introduction

The characterization, annotation and structural elucidation

of metabolites in crude extracts are of great importance in

MS based metabolomics (Bedair and Sumner 2008; Dunn

2008; Kind and Fiehn 2007; Moco et al. 2007a; Werner

et al. 2008). The enormous chemical diversity and the vast

amount of structurally related and isomeric compounds

make the precise identification of metabolites a difficult

task. Crude extracts from plants are particularly known to

contain a wide array of metabolites, specifically those

involved in secondary metabolism, like phenylpropanoids,

glucosinolates, alkaloids, terpenoids, and the economically
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important compound class of flavonoids. Comprehensive,

untargeted LC–MS profiling of such plant extracts,

including those from well studied species like tomato

(Lycopersicum esculentum) and Arabidopsis thaliana,

typically results in compounds lists in which more than

half of the detected metabolites are still completely

unknown (MSI metabolite identification level 4) or at

most only partially characterized (MSI metabolite identi-

fication level 3 (Böttcher et al. 2008; Iijima et al. 2008;

Moco et al. 2006; Sumner et al. 2007). Tomato fruit peel

has been subjected to metabolomics studies frequently

(Gómez-Romero et al. 2010; Moco et al. 2006; Moco

et al. 2007b; Vallverdú-Queralt et al. 2010). Likewise,

leaves from A. thaliana plants have been frequently

investigated using LC–MS (Böttcher et al. 2008; Matsuda

et al. 2009; Roepenack-Lahaye et al. 2004; Tohge et al.

2007). Nevertheless, far from all metabolites have unam-

biguously been elucidated and thus completely annotated

even in these important model species (Slimestad and

Verheul 2009). In recent studies, the role of LC–MS and

especially the need for MS fragmentation in the metabo-

lite identification process is highlighted (Kind and Fiehn

2010; Rasche et al. 2011). For example, MS2 fragmenta-

tion with a time-of-flight (TOF)–MS and an Ion Trap MS

revealed 21 novel compounds in fruits of tomato (Gómez-

Romero et al. 2010). Another study using a Triple Quad

(MS2) and an Orbitrap system (up to MS3) yielded three

new compounds in tomato (Vallverdú-Queralt et al. 2010).

In addition, Ion Trap MS fragmentation up to MS4 was

used to detect 13 novel tomato seed compounds (Ferreres

et al. 2010). Moreover, recently a method was described

(Francisco et al. 2009), based on Ion Trap MS fragmen-

tation up to MS3, which enabled the simultaneous detec-

tion of [30 phenolic compounds and 12 glucosinolates in

Brassica rapa in a quantitative manner. These examples

underline the power of MS fragmentation in metabolite

annotation. Since its introduction, the Ion Trap–Orbitrap

platform has found many applications in MS based met-

abolomics (Makarov et al. 2006; Makarov and Scigelova

2010) and proteomics (Scigelova and Makarov 2006),

using the MSn fragmentation abilities of the Ion Trap in

combination with the accurate mass provided by the

Orbitrap FT–MS. The obtained accurate mass enables

rapid assignment of elemental formulas to detected pep-

tides or metabolites and their fragments present in bio-

logical extracts.

On-the-fly fragmentation experiments during LC–MS

are hampered by either a limited fragmentation depth,

usually MS2 and at maximum MS3, or a nominal mass

resolution of MSn fragments, the latter complicating

elemental formula calculation of the parent molecule and

its fragments. As a result, many metabolites detected in

LC–MS profiles are only partially annotated and isomeric

compounds are rarely differentiated, leading to a vast

number of tentatively identified metabolites present in

literature. Detailed metabolite comparison of complex

extracts and biological interpretation of differential pro-

files, however, is only possible with a more precise

annotation of metabolites. We recently described a

method for highly reproducible and in-depth accurate

mass MSn fragmentation (Hooft et al. 2011) of metabo-

lites resulting in so-called spectral trees (Sheldon et al.

2009). By using nanospray infusion into a LTQ/Orbitrap

hybrid mass spectrometer, we could discriminate 119 out

of 121 tested polyphenolic compounds including differ-

ent series of isomers (Hooft et al. 2011). We concluded

that the MSn spectra can be used for the differentiation

and identification of metabolite structures, as they can

provide not only unique fragments, but also specific

differences in the relative intensities of the fragment

ions.

The aim of the present study was to test the applica-

bility of accurate mass MSn spectral trees as a tool in the

identification and structural elucidation of metabolites

detected during LC–MS profiling of complex sample

matrices, such as crude plant extracts. As proof of

principle, we focused on phenolic compounds, in order to

enable comparison of fragmentation spectra between

standards (Hooft et al. 2011) and metabolites present in

crude extracts. Since extracts of most plant species

contain a variety of secondary metabolites that usually

exist in different isomeric forms, such as conjugated

flavonoids, the correct annotation of these isobaric sec-

ondary metabolites represents a technological challenge.

Here, we tested the ability of LC–MSn spectral trees to

identify and discriminate flavonoid species in tomato and

Arabidopsis, two plant species most frequently used in

metabolomics studies. We firstly performed a detailed

MSn analysis of phenolic compounds in tomato fruit, and

then used Arabidopsis leaf as an example to quickly

characterize and annotate a number of phenolic com-

pounds as well as glucosinolates. Firstly, the combination

of the MSn fragmentation ability of the Ion Trap MS and

the high mass accuracy of the Orbitrap FT–MS was used

to generate (partial) spectral tree data online during

LC–MS analysis in an unbiased manner. Secondly, by

using a NanoMate fraction collector/injection robot cou-

pled between the LC column and the ionization source, we

also generated offline data-directed in-depth MSn spectra

of selected chromatographic peaks. Following these online

and offline MSn approaches, we set up a generic procedure

that can comprehensively retrieve structural information

of a large range of metabolites present in crude plant

extracts in an informative and robust manner.

692 J. J. J. van der Hooft et al.

123



2 Materials and methods

2.1 Chemicals and plant material

2.1.1 Chemicals

Acetonitrile (HPLC grade) was obtained from Biosolve

(Valkenswaard, The Netherlands), methanol (HPLC grade)

from Merck–Schuchardt (Hohenbrunn, Germany), and

formic acid (99–100) from VWR international S.A.S.

(Briare, France). Ultrapure water was made in purification

units present in-house.

2.1.2 Plant harvesting and metabolite extraction

Tomato and Arabidopsis material were grown in the

greenhouse and directly after harvesting, the plant material

was frozen, ground, and stored at -80�C. The frozen

powder was then used to perform metabolite extractions, or

firstly freeze–dried to obtain extra concentrated extracts.

The extraction protocol was as described earlier (De Vos

et al. 2007) with slight modifications (Supplemental Text

S1 in the Supporting Information).

2.2 Analytical methods

2.2.1 Online fragmentation using HPLC–PDA–ESI–MSn

The set up consisted of an Accela HPLC tower connected to

a LTQ/Orbitrap hybrid mass spectrometer (Thermo Fisher

Scientific). The LC conditions used were as described ear-

lier (Moco et al. 2006) (details in Supplemental Text S1;

Supporting Information). Eluting compounds were trapped

within an LTQ Ion Trap followed by automated MSn frag-

mentation. Subsequently, either the nominal or the accurate

mass of the generated molecular fragments were recorded,

using the Ion Trap MS or the Orbitrap FT–MS, respectively.

MS settings and spectral tree topologies are given in Sup-

plemental Text S1 (Supporting Information).

2.2.2 NanoMate LC-fractionation of plant extracts

The HPLC–PDA–ESI–MSn system was adapted with a

chip-based nano-electrospray ionization source/fraction-

ation robot (NanoMate Triversa, Advion BioSciences)

coupled between the PDA and the inlet of the Ion Trap/

Orbitrap hybrid instrument. Sample injection volume was

50 ll. The gradient and flow conditions were the same as

described above, with an additional 30 ll/min 100% iso-

propanol added into the LC flow via a T-junction between

the PDA and the NanoMate. The eluens flow was split by the

NanoMate, at 219.5 ll/min to the fraction collector and

0.5 ll/min to the nano-electrospray source. LC-fractions

were collected every 5 s (i.e., 18 ll) into a 384 wells plate

(Twin tec, Eppendorf), cooled at 10�C. After collection, 4 ll

of isopropanol was added to each well, in order to improve

spray stability, and the plate was sealed. Details are given in

Supplemental Text S1 (Supporting Information).

2.2.3 Offline MSn spectral tree generation

The general analysis procedure and spectral tree topology

have been described recently (Hooft et al. 2011). Shortly,

the Ion Trap was programmed to fragment a selected mass

up to MS5 level in a data dependent manner, thereby

automatically selecting the three? most intense ions in the

MSn spectra for further fragmentation, after which the

Orbitrap recorded the accurate mass of fragments gener-

ated. In the present study, the NanoMate robot was pro-

grammed to take up 8 ll solvent from collected LC

fractions, followed by direct infusion and nano-spraying

into the MS (for details see Supplemental Text S1 in the

Supporting Information).

2.3 MSn data processing

Settings for automatic elemental formula calculation of

accurate mass peaks obtained by Orbitrap experiments

were: maximum mass accuracy deviation 10 ppm, charge

state one, maximum number of possible C, H, O, N, P, and

S atoms were 80, 100, 50, 4, 2, and 4, respectively. The

nitrogen rule was not applied, in order to include possible

radical ions (Hooft et al. 2011).

Using the Xcalibur software, spectrum lists, including

accurate m/z values, elemental formulas and relative

intensities, were generated from the raw data files and

exported into Excel. For online obtained spectral trees, the

relative intensities detected in each individual scan were

taken. For offline obtained spectral trees, the relative

intensities of repetitive MSn spectra derived from the same

(fragment) ion were averaged and plotted with a 95%

confidence interval (i.e., two times standard deviation up

and down). If the fragmented ion was still the base peak,

i.e., the most intense peak within the spectrum, this mass

peak was excluded. A threshold intensity of 3%, as com-

pared to the base peak, was used for selecting masses in

each fragmentation spectrum, like described before (Hooft

et al. 2011). Elemental formulas of fragments were

checked for correctness of the ring and double bond (RDB)

factor, as well as for any violations with the parental for-

mula. For the comparison of FT–MS with Ion Trap MS

read-outs of fragmentation data, the accurate masses were

converted into nominal masses.

MSn fragmentation patterns were considered identical

when two criteria were met: I) all observed fragments (at

the set threshold of [3% relative intensity) were present in
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both spectra; in case of offline MSn all fragments should

also be present in at least 2/3 of the repetitive scans, and II)

the difference in relative intensities of all fragments present

in the spectra was less than 20% (arithmetic difference); for

instance, if the relative intensity of a specific fragment was

40% in spectrum one and 70% in spectrum two, these two

spectra were considered different.

2.4 NMR identification of selected compounds

In order to verify compound annotations resulting from

MSn experiments, compounds were manually collected by

LC peak-fractionation of the crude plant extracts. The

fractions were dried and redissolved in MeOD, followed by

1D–1H and 2D–COSY and 2D–TOCSY and 2D–HSQC

NMR measurements on a 600 MHz NMR spectrometer

(Bruker) (Moco et al. 2007a).

3 Results

Metabolites in crude plant extracts were separated using

reversed-phase C18 analytical chromatography, followed

by untargeted online LC–MSn in negative electrospray

ionization mode. Parts of the chromatograms were subse-

quently subjected to LC-fractionation using the NanoMate

robot (Fig. 1). Selected flavonoid glycosides, caffeoylqui-

nic acids and, in case of Arabidopsis, glucosinolates

(Fig. 2), were fragmented offline in both negative and

positive ionization mode, and the resulting spectral data

was listed (Supplemental Table S1 in the Supporting

Information). The on the fly LC–MSn fragmentation of

metabolites is referred to as online LC–MSn, whereas the

MSn fragmentation of LC-fractionated metabolites, using

the NanoMate fractionation–injection robot, is referred to

as offline MSn fragmentation. The mass accuracy obtained

during both online LC–MSn and offline MSn analyses was

always within 3 ppm, at all compound concentrations and

MSn levels, and for full scan (MS1) always within 1.5 ppm,

in agreement with our previous results (Hooft et al. 2011).

3.1 Robustness and reproducibility of online

and offline MSn spectra

In order to determine the similarity between high mass

resolution MSn fragmentation patterns of metabolites and

their fragments, the obtained MSn spectra were compared

according to two criteria. These criteria were determined

based on a large set of data acquired in our previous study

using standard compounds (Hooft et al. 2011) and data

obtained within the present study (see Sect. 2.3).

Multiple online LC–MSn spectra from the same compound

can be obtained by continuously generating spectra from its

eluting chromatographic peak. This online spectra generation

implies that metabolite spectra are obtained at different

parent ion concentrations. Rutin (quercetin-3-O-rutinoside), a

commonly occurring flavonoid–glycoside in plants, was

taken as an example to test the reproducibility of online LC–

MSn spectra. During chromatography of tomato fruit, four

repetitive LC–MS3 spectra of the quercetin fragment of rutin

were obtained (Fig. 3a). While the parent ion intensities

ranged from 2E6 to 4E7, the differences in relative intensities

of all fragment ions present in the MS3 spectra were always

within 20% difference and in most cases differing less than

5%. The robustness of the online LC–MSn approach

was further tested by comparing MS3 spectra of the chro-

matographic peak of quercetin-3-O-(200-apiofuranosyl-600-
rhamnosylglucoside), present in tomato fruit peel, obtained in

duplo and with a 6 month time interval (Fig. 3b). Even

though the absolute intensities of the fragment ions varied

slightly, the resulting four MS3 spectra were all identical

according to the two criteria. Subsequently, the spectra of

rutin obtained by the online approach were compared with

those of the offline MSn approach, as well as with those of its

authentic standard measured by offline direct infusion (Hooft

et al. 2011) (Fig. 3c). The fragmentation spectra were all

identical. These results illustrate the robustness and repro-

ducibility of the online high mass resolution LC–MSn

approach when using the normalized fragmentation spectra

for comparisons.

3.2 Online LC–MSn and offline MSn spectral trees

of crude plant extracts

Since the online high mass resolution LC–MSn approach

proved to be robust, the method was tested for its appli-

cability in the characterization and annotation of metabo-

lites in crude plant extracts, using extracts from leaves of a

mix of Arabidopsis ecotypes and from red tomato fruit

peel. The Arabidopsis extract contained both phenolic

compounds and glucosinolates, which were subjected to

MSn fragmentation. In the tomato extract, we were able to

detect and fragment a range of different flavonoid glyco-

sides, mainly based on the aglycones quercetin, naringenin

or chalconaringenin, and kaempferol. The fragmentation of

these aglycone fragments was identical to the MSn spectral

data from their respective reference compounds (Hooft

et al. 2011). The resulting fragments of the analyzed

metabolites from tomato and Arabidopsis are provided in

Supplemental Table S1 (Supporting Information).

The online LC–MSn approach resulted in 270 MS2 scan

events in the Orbitrap for a specific m/z value. As they are

multiple series of isomers present in the extract, which results

for some m/z values in multiple scan events, the number of

unique MS2 scans is estimated to be around 450. In MS3, the

number of scan events per unique m/z is 490, leading to an
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estimated total scan number of 600. The LC–MSn approach

resulted in high-density robust fragmentation data of the

crude extracts, which is underlined by the amount of accurate

MSn spectra, and thus (partial) spectral trees, acquired.

The crude extracts were fractionated during HPLC

separation into 5 s fractions using the NanoMate robot, and

offline high resolution MSn spectral trees were subse-

quently generated for selected metabolites (Supplemental

Fig. 1 Part of a tomato fruit

LC–Orbitrap FT–MS

chromatogram in negative

ionization mode. Black bars
indicate the chromatographic

sections fractionated each 5 s by

the NanoMate, thereby filling up

a 384 wells plate. q1–q4 and k1-

k4 refer to four different

quercetin- and four different

kaempferol–glycosides,

respectively. Online MS2 and

MS3 spectra of q2 and q4 and the

structure of q2 (upper part) and

online MS2 and MS3 spectra of

k1 and k2 and the structure of k2

(lower part), are shown. The

most likely fragmentation

events causing the major

fragments are indicated by

dashed grey lines in the

structures marked with

corresponding letters
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Table S1 in the Supporting Information). Although most of

the measured metabolite intensities (1E5–5E6 counts/s)

were lower than those used for the reference compounds

[1E7–1E8 counts/s, (Hooft et al. 2011)], detailed frag-

mentation spectra ranging from MS3 up to MS5, depending

on compound concentration and ionization efficiency of

fragments, could be obtained for almost all flavonoids. In

contrast, on-line accurate mass LC–MS fragmentation

resulted in spectral trees of MS3 at most, mainly due to

time limitations during peak elution. Nevertheless, this

online MSn fragmentation also generated relevant data of

spectral similarities between compounds. For example, of

four quercetin (q1–q4) and four kaempferol (k1–k4) con-

jugates detected in tomato peel (Fig. 1), their three most

complex glycosides (q1, q3, q4, and k1, k3, k4) produced

MS3 spectra that were similar to the MS2 spectra of their

lesser conjugated analogues (q2 and k2, respectively,

structures shown in Fig. 1). This result shows the ability of

MSn to elucidate common substructures within related

complex metabolites.

3.3 Effects of dynamic exclusion and mass resolution

in online LC–MSn

During online LC–MSn several parameters for optimizing

the amount of metabolites fragmented or the fragmentation

depth can be adapted in the Xcalibur acquisition software.

The dynamic exclusion mode was used to automatically

create a 20 s exclusion list of m/z values to be fragmented,

in order to enable trapping of co-eluting lower abundant

masses for MSn fragmentation. The use of this dynamic

exclusion time markedly enlarged the coverage of tomato

and Arabidopsis metabolites that were fragmented online,

especially in the case of major metabolites co-eluting with

lower abundant metabolites (Supplemental Table S2 in the

Supporting Information). The short exclusion window of

20 s allows repeated trapping and fragmenting of the same

mass during LC–MS analysis, which is especially useful in

the case of complex extracts containing closely eluting

isomers.

Due to its significantly higher scanning rate, the nominal

mass resolution Ion Trap MS generated more fragmenta-

tion events within the same run than the Orbitrap FT–MS.

This can be illustrated by the number of MS2 scan events of

unique m/z values of 480, leading to an estimated amount

of total MS2 events of 650, while for MS3 and MS4 these

numbers are 900 (1,050) and 460 (550), respectively. The

number of MS2 and MS3 spectra obtained with the Ion Trap

is significantly higher than obtained with the Orbitrap,

while a significant amount of MS4 spectra could be

obtained as well.

To compare the Ion Trap and the Orbitrap read-outs for

reproducibility of the MSn spectral trees, we generated

offline the fragmentation patterns of five different

Fig. 2 Glucosinolate basic

structure and core structures of

several flavonoids and

phenylpropanoids as well as

their most common substituents

are shown. The R’s indicate the

most common sites for

conjugations in plants
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hexosides of naringenin and chalconaringenin (Supple-

mental Fig. 1A–D in the Supporting Information). The

absolute intensities of the parent ions and their fragments

were generally about ten times higher for the Orbitrap than

for the Ion Trap (at a filling time of 100 ms), thus showing

a higher sensitivity of the Orbitrap. In general, this led to a

better signal-to-noise ratio for the Orbitrap data. Both the

MS2 and the MS3 spectra were not identical between the

two analyzers, as two minor fragments were only detected

in the Orbitrap spectra. Nevertheless, the variations in

relative intensities of the fragments detected by both ana-

lyzers were well within the criterion of 20%. Therefore, we

conclude that spectral trees generated by the Orbitrap and

the Ion Trap match well.

3.4 Offline MSn fragmentation in negative and positive

ionization modes

The fractionation of the chromatographic peaks by the

NanoMate robot collected sufficient amount of metabolite

to perform in-depth offline MSn fragmentation, in both

ionization modes. In fact, the 22 ll fractions enabled over

90 min of nano-spraying. As an example, the offline

spectral tree generation in both ionization modes of an

Arabidopsis quercetin–diglycoside peak is shown in Fig. 4.

The MS1 spectrum in negative mode was rather clean,

while in positive mode another mass peak was detected

within 1 Da of the target mass, i.e., within the mass

selection window of the Ion Trap. In negative mode, the

MS2 and MS3 spectra showed the typical losses of one

hexose and one deoxyhexose. The ionization was less

efficient in positive mode than in negative mode and

fragments of the co-fragmented mass peak were visible

only in the positive MS2 spectra. Nevertheless, the positive

mode MS3 spectra confirmed the presence of quercetin and

the two sugar moieties. Upon comparison of the fragmen-

tation spectra to reference data of differentially substituted

quercetin glycosides (Hooft et al. 2011), most structural

information was retrieved using negative mode spectra.

Based on the differences in the two negative mode MS3

spectra displayed in Fig. 4, showing the pronounced radical

ion at m/z 300 for the hexose loss, suggesting 3–O conju-

gation, and the m/z 301 ion for the deoxyhexose loss,

suggesting 7–O conjugation, we propose that this metab-

olite is a quercetin-3-O-hexose-7-O-deoxyhexose, most

likely quercetin-3-O-glucoside-7-O-rhamnoside (see Fig. 4

for structure). Also in tomato, the fragmentation in both

ionization modes was key to discriminate between some

Fig. 3 Reproducibility of MSn spectra generated from tomato

compounds. a Four successive online MS3 spectra of the quercetin

fragment, derived within the chromatographic peak of rutin, gener-

ated at retention time 26.64 min (start of peak, dark grey), 26.75 min

(top of peak; light grey), 26.87 min (grey) and 26.99 min (end of

peak, darkest grey); b online MS3 spectra of quercetin-3-O-

(20 0-apiofuranosyl-60 0-rhamnosylglucoside) obtained at month 0 (dark
grey and light grey; two repetitive LC–MSn runs) and month 6 (grey
and darkest grey; two repetitive LC–MSn runs); c MS2 spectra of rutin

obtained during offline MSn of collected LC–MS peak (dark grey,

n = 2), online during LC–MSn (light grey), and of the authentic

standard (grey, n = 3). The error bars represent two times the

standard deviation

b
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Fig. 4 Part of LC–Orbitrap

FT–MS chromatogram of

Arabidopsis leaves, obtained in

negative ionization mode. The

chromatographic part used for

fraction collection by the

NanoMate robot for subsequent

offline fragmentation is

indicated by the black bar.

Offline generated spectra in

MS1, MS2, and MS3 in both

negative mode (upper spectra)

and positive mode (lower
spectra) of the same quercetin–

diglycoside peak, eluting at

23.7 min, are presented. The

putative structure based on the

MSn spectra is displayed in the

chromatogram. In the structure,

the 3–O and 7–O positions are

marked. The fragmentation

events causing the major

fragments are indicated by

dashed grey lines in the

structure marked with

corresponding letters in both

negative and positive mode

fragmentation spectra
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isomers (e.g., Supplemental Figs. 5 and 6), thus illustrating

the added value of performing offline MSn fragmentation.

3.5 MSn spectra enable discrimination of isomers

During full scan LC–Orbitrap FT–MS profiling of tomato

fruit, we detected several series of compounds with similar

elemental formulas, i.e., isomers, typically within 1.5 ppm

mass difference. We subsequently tested the ability of

offline MSn fragmentation to differentiate between these

isomers. An example of how the spectral data was analyzed

and used for metabolite annotation is provided with Sup-

plemental Fig. 7. Seven C21H22O10 isomers were detected

in the crude tomato extract and their MS2 spectra (Sup-

plemental Fig. 1E) all share the common fragment

C15H11O5, indicating a loss of C6H10O5 (hexose). Sub-

sequent fragmentation of the C15H11O5 fragments resulted

in identical MS3 spectra, in both negative (Supplemental

Fig. 2) and positive ionization mode (Supplemental

Fig. 3), and based on the similarity with C15H12O5 stan-

dards (Hooft et al. 2011) led to the annotation of these

isomers as seven different naringenin/chalconaringenin

(NG/CNG)–glycosides.

Following this robust MSn approach, we were able to

discriminate all seven selected isomers of phenylpropa-

noids (Supplemental Fig. 4) and flavonoids (Supplemental

Figs. 5–7) in the crude tomato extract.

3.6 LC–MSn enables large-scale annotation

of metabolites

In order to test the power of MSn spectral trees in the

characterization and annotation of metabolites present in

crude and complex sample extracts, as detected by LC–MS

based metabolomics approaches, we performed detailed

analysis of MSn data generated from tomato fruit, focusing

on phenolic compounds, and used an extract of Arabidopsis

leaves to validate the MSn approach as generic tool. Sup-

plemental Table S1 (Supporting Information) lists MSn

data, generated either online or offline, from 99 selected

metabolites in tomato and 28 metabolites in Arabidopsis. Of

16 metabolites detected in the tomato extract, the spectral

data matched to fully annotated metabolites reported in

tomato literature (Iijima et al. 2008), while for 47 com-

pounds only limited information has yet been provided,

usually an elemental formula and retention time (Gómez-

Romero et al. 2010; Iijima et al. 2008; Moco et al. 2006),

thus leaving many possible structures (MSI metabolite

identification levels 3 and 4). The power of our LC–MSn

approach is illustrated by the clear reduction of MSI level 4

identifications and the co-occurring shift towards level 2 and

3 identifications, as is shown for these 47 compounds in

Supplemental Fig. 8. The other 36 compounds have not

been reported before in tomato fruit and 21 thereof are even

new in nature. A metabolite was considered novel if it was

not present in any online metabolite repository (e.g., Sci-

finder, Dictionary of Natural Products, Kazusa, see also

Supplemantary Table S3). Based on their MSn spectra, these

novel metabolites could already partially be annotated as

conjugates, mainly glycosides, of caffeoylquinic acids and

flavonoids, leading to MSI metabolite identification levels

of 2 or 3. In addition, while the elemental formulas of four

out of the five detected C30H28O13 isomers have been

described before in tomato (Iijima et al. 2008), MSn enabled

us to discriminate between all of them and to annotate these

isomeric series as being NG/CNG (C15H12O5) derivatives,

revealing an C15H16O8 substitution (m/z 324.0845). More-

over, seven novel hexose-substituted isomers of these

C30H28O13 NG/CNG derivates with the elemental formula

C36H38O16 could be identified. Thus, our LC–MSn approach

appeared a valuable tool to get better insight into the

molecular structures of yet completely unknown or only

partially annotated metabolites.

In order to verify the (putative) metabolite annotations

based on the structural information as concluded from the

MSn spectral data, four different polyphenols detected in

Arabidopsis were purified and their structures were unam-

biguously established by NMR experiments. The compound

predicted as being quercetin-3-O-glucoside-7-O-rhamno-

side, based on its MSn spectral tree data (see above and

Fig. 4) was thus confirmed by NMR. The postulated struc-

ture of kaempferol-3-O-glucoside-7-O-rhamnoside, show-

ing similar fragmentation behavior as its quercetin analogue

in both ionization modes, was also confirmed by NMR. The

negative mode MS2 fragmentation patterns of two higher

complex kaempferol–glycosides corresponded to a deoxy-

hexose conjugation at the 7–O position, in view of both the

absence of any radical fragment ions and the preferred

fragmentation in negative ionization mode. The fragmen-

tation of the resulting diglycoside moiety revealed clear

differences in the number of observed fragments, corre-

sponding to 1–2 and 1–6 linkages in their diglycoside

moieties, respectively, based on their similarity to reference

compounds (Hooft et al. 2011). The NMR measurements

indeed identified these two metabolites as kaempferol-3-O-

(2-rhamnosylglucoside)-7-O-rhamnoside and kaempferol-

3-O-(6-glucosylglucoside)-7-O-rhamnoside. Thus, these

four examples show that the structural prediction of

metabolites based on MSn patterns was confirmed by

unambiguous structural elucidation using NMR.

4 Discussion

LC–MS based metabolomics approaches are widely used

for profiling of complex biological extracts such as from

LC–MSn as robust annotation tool 699

123



plants (Dunn 2008; Werner et al. 2008). However, the

identification of detected metabolites or marker compounds

is still a bottleneck and although accurate mass LC–MS

platforms are highly useful in rapid elemental formula

determination, facilitating the metabolite annotation and

identification process, the need for additional structural

information from MSn experiments is evident from the

numerous hits in different online databases for specific

elemental formulas [Supplemental Table S3 and (Kind and

Fiehn 2010)]. Here, we applied a robust, accurate mass

based MSn spectral tree approach for the characterization

and annotation of metabolites detected by LC–MS analysis

of crude plant extracts, by using a LTQ/Orbitrap hybrid

mass spectrometer, enabling both partial tree generation by

online MSn and in-depth tree generation offline using the

NanoMate fractionation/injection-robot. While the time

available for online MSn of compounds is restrained by

their chromatographic peak widths, offline MSn after LC–

MS fractionation does not depend on chromatographic

conditions. In addition, the offline MSn approach with the

chip-based nano-spray source consumes only a few nano-

liters per minute and thus in-depth fragmentation experi-

ments can be performed in both ionization modes and

specific reagents can be added to enhance ionization or

fragmentation, if needed. The MSn approach enabled us to

recognize common substructures shared between metabo-

lites and to describe their fragmentation patterns in more

detail as compared to other (accurate mass) MS/MS plat-

forms (Iijima et al. 2008; Kind and Fiehn 2010; Moco et al.

2006). Within one sample run, the online LC–MSn

approach produced high-density structural information data

of many metabolites present in the crude plant extracts.

Both online and offline MSn fragmentation of metabo-

lites resulted in robust MSn patterns and reproducible

spectral trees derived thereof (Fig. 3). Moreover, the partial

spectral trees of metabolites obtained by online LC–MSn

matched well with both their offline in-depth spectral trees

and with those obtained from reference compounds

(Fig. 3c). These results indicate that the MSn fragmentation

is independent of the solvent and LC conditions applied. In

addition, the spectral trees were also stable both upon

changes in either compound concentration, as observed

from sequential spectra of a chromatographic peak

(Fig. 3a) and from dilution series of standards, and MSn

spectra obtained at different normalized collision energies

of the Ion Trap (Hooft et al. 2011), and over prolonged

time between spectral tree generations [Fig. 3b and (Hooft

et al. 2011)]. Therefore, the structural information that can

be extracted from MSn patterns, i.e., both the presence of

unique mass fragments and the relative intensities of

fragment ions, including radical fragments (Hooft et al.

2011), can be used for the determination of compound

structure and substructures, by matching the spectral trees

of unknown metabolites with that of reference compounds.

Moreover, structural relations between unknown com-

pounds, including series of isomers, can be deduced from

their spectral similarities at a specific MSn level (e.g.,

Fig. 1 and Suppl. Table S1 in the Supporting Information).

4.1 Factors influencing online LC–MSn fragmentation

During online LC–MSn several factors and parameters

influence the coverage of fragmented metabolites and the

spectral tree size. Firstly, during online LC–MSn, the frag-

mentation depth of metabolites is restricted by the chro-

matographic peak width, which is mostly influenced by the

chromatographic conditions applied and the metabolite

abundance. The depth of online spectral trees also depends

on the fragmentation efficiency and the ionization efficiency

of the metabolite and its fragments. Secondly, the use

of dynamic exclusion is key in unbiased online MSn

approaches (Supplemental Table S2 in the Supplemental

Information), as high abundant parent ions and their

accompanying mass features, like isotopes, in-source frag-

ments, doubly charged species and other adducts, can

otherwise prevent the fragmentation of a lower abundant

co-eluting compound. Lastly, as the scan times are slightly

variable for the Orbitrap platform, due to the changing

metabolite abundances in combination with the use of the

automatic gain controller (AGC), online MSn fragmentation

is not always guaranteed for low abundant metabolites. The

faster scanning rate of the Ion Trap, as compared to the

Orbitrap, enables fragmentation of more metabolites as well

as deeper MSn spectra (Supplemental Table S2 in the Sup-

plemental Information). The spectra obtained by the Ion

Trap and the Orbitrap, including relative intensities of the

fragments, were identical, except for two minor fragments

observed in the Orbitrap (Supplemental Fig. 1A–D).

Unmistakably, high mass resolution is important for rapid

determination of the elemental formula of detected ions and

fragments. For example, the discrimination of C13H13O9 (m/

z 313.0560) and C17H13O6 (m/z 313.0712) fragment ions

observed for the NG/CNG–hexosides and dihexosides

underlines the benefit of using accurate mass (Supplemental

Figs. 1E and 7 in the Supporting Information). However,

once high mass resolution Orbitrap–MSn spectra of the same

compound are already available for comparison, the nomi-

nal mass Ion Trap–MSn spectra can subsequently be used to

rapidly annotate these metabolites in crude extracts, making

use of the fast scanning rate of the Ion Trap.

4.2 Metabolite discrimination and annotation using

MSn fragmentation

Polyphenols (Vukics and Guttman 2010; Wolfender et al.

2000) and glucosinolates (Millán et al. 2009; Rochfort
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et al. 2008) have frequently been fragmented using Ion

Trap-mediated MSn fragmentation. However, the

robustness of the resulting fragmentation patterns, and

thus the reproducibility of the MSn spectral trees, has not

been taken into account in these previous studies (Hooft

et al. 2011), thereby hampering exact matching of frag-

mentation spectra. Moreover, most MSn fragmentation

experiments have previously been carried out at nominal

mass resolution. Nevertheless, MSn experiments have

surely increased our knowledge about typical ion frag-

mentation paths in both polyphenols (Olsen et al. 2009;

Rochfort et al. 2006; Vukics and Guttman 2010) and

glucosinolates (Rochfort et al. 2008), thereby defining

metabolite fragmentation rules and facilitating metabolite

annotation.

By definition, isomeric compounds have the same ele-

mental formula, and thus accurate mass, and crude (plant)

extracts may contain different isomer series. However, by

using MSn we showed that isomers from different plant

compound classes, including phenylpropanoids and flavo-

noids, could be discriminated. This discriminative power

was frequently different between negative and positive

ionization modes, underlining the importance of generating

spectral trees in both ionization modes [Supplemental

Figs. 1–7 and c.f. (Clifford et al. 2005)]. As all Arabidopsis

and tomato flavonoid isomers studied, except the tomato

chalconaringenin/naringenin couple, could be differenti-

ated based on their MSn spectral trees generated in either

negative or positive ionization mode, thereby creating a

unique fingerprint, we conclude that the proposed accurate

mass LC–MSn approach is of great help in discriminating

and annotating isomeric metabolites within and between

crude extracts.

The application of the MSn spectral tree approach in

LC–MS analysis of complex plant extracts allowed the

characterization and annotation of several series of bio-

synthetically related metabolites in tomato and Arabidop-

sis, of which some were new or yet only partially annotated

(Supplemental Table S1 in the Supporting Information).

For tomato fruit, we describe 36 new compounds of which

21 were unknown so far. For example, a C3H6O3S substi-

tution of selected flavonoids was observed three times

(Supp. Table 1). So far, sulphur containing substitutions on

flavonoids other than C3H7O2NS (most likely cysteine)

have not been reported in tomato. A possible candidate for

the C3H6O3S substitution is methylthio-acetic acid. These

results illustrate that LC–MSn approaches can provide

structural information about both novel and earlier

observed, but not yet (fully) annotated (mainly MSI iden-

tification levels 3 and 4), metabolites in crude extracts,

enabling specification of the basic structures in conjugated

metabolites, as well as of substitutions and substructures

that metabolites share.

The robustness of the off-line MSn fragmentation pat-

terns and their similarity with patterns from the online

fragmentation of selected metabolites suggest that ESI

based fragmentation rules from literature can be directly

applied to metabolites present in crude extracts (Olsen

et al. 2009; Rochfort et al. 2006). For instance, our frag-

mentation of the intact glucosinolates in Arabidopsis gave

similar results compared to earlier Ion Trap fragmentation

studies (Millán et al. 2009; Rochfort et al. 2008), indicating

the reproducibility of MSn spectra even on different Ion

Trap based mass spectrometry platforms. The examples of

substitutions on flavonoids (Figs. 1 and 4) demonstrate

that, in negative ionization mode, substitutions on the 7–O

position fragmented more easily and generated different

spectral trees as compared to 3–O substitutions (Hooft et al.

2011; Ma et al. 2001). The predicted structures of four

annotated metabolites, based on MSn, were subsequently

confirmed by NMR, indicating that MSn data can provide

fragmentation rules that can be used in metabolite anno-

tation in practice. In addition, previously identified

metabolites can be easily detected as substructures within

more complex compounds (Fig. 1). Although complex

rearrangements can occur during fragmentation in aromatic

molecules like polyphenols, we observed highly repro-

ducible MSn fragmentation spectra for this compound class

in both ionization modes, indicating the ability of using

MSn fragmentation patterns and spectral trees for library

matching. Furthermore, an increasing amount of spectral

trees generated from completely structurally elucidated

metabolites (i.e., MSI identification level 1) will lead to a

better insight into ESI-mediated fragmentation and may

provide generic fragmentation rules that can help in MSn

spectra interpretation and metabolite identification.

In order to decrease the time for identifying metabolites

by assigning structural elements, dedicated software is

needed that efficiently extracts the relevant and discrimi-

native information from the fragmentation data and that

enables scientists to automatically match fragmentation

and structural aspects of molecules, e.g., comparable to the

NIST library (NIST/EPA/NIH Mass Spectral Library,

NIST 08) for electron impact GC–MS. This can eventually

lead to the untargeted systematic MSn analysis of 5 s

fractions of crude extracts within several days. At the

moment, there is no software available that can automati-

cally process, visualize and compare accurate mass based

MSn spectra in an unbiased manner. Although the spectral

tree concept as suggested by Sheldon et al. is quite similar

to ours, we used accurate mass instead of nominal mass

MSn data, focused on its reproducibility aspects and

applied it on a larger set of reference compounds (Hooft

et al. 2011; Sheldon et al. 2009) and tested and optimized

its applicability for annotating yet known and unknown

compounds in crude extracts (present study). In addition,
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while the MassFrontier software can visualize spectral

trees (Sheldon et al. 2009), it currently has substantial

drawbacks, like the inclusion of noise peaks due to the fact

that masses instead of elemental formulas are used (Hooft

et al. 2011). Therefore, new software tools are currently

being developed within the Netherlands Metabolomics

Centre, e.g. for peak picking and elemental formula

assignments making use of the high resolution MSn spec-

tral tree data, as well as spectral tree viewing and library

searching, which are key steps in automation of metabolite

identification based on MSn data. While the current

methodology was tested on an Ion Trap–Orbitrap mass

analyzer, the NanoMate robot may as well be coupled

to other types of mass analyzers such as (Q-)TOF and

FT–ICR machines, in order to generate fragmentation

spectra from large series of metabolites at different plat-

forms. This approach can provide relevant information

about fragmentation patterns and product ions that are

either in common or unique to the type of mass analyzer

used. Recently, it was shown that spectral trees computed

from MS/MS data obtained at different collision energies

can be in good agreement with MSn spectra (Rasche et al.

2011), suggesting that differently generated mass spectral

databases can be transferred in silico and combined for

automated searching of unknown metabolites. All these

developments indicate that suitable software for automated

processing of accurate mass MSn data will very likely

become available in the nearby future. Once this software

is available, MSn spectral trees can provide a rapid large-

scale identification tool, thereby decreasing the time nee-

ded for metabolite profiling. In our study, we present an

approach that generates, both in an online and offline

manner, the robust MSn patterns from metabolites in

complex crude extracts needed as input for this dedicated

MSn software tools and databases.

5 Conclusions

Both online LC–MSn and offline MSn generated spectral

trees and their fragmentation patterns, generated by the Ion

Trap–Orbitrap system, may be used as reproducible

metabolite fingerprints. As shown using complex extracts

from plants, the spectral tree approach can discriminate

closely related molecules like isomeric compounds, and

specify substructures that are in common between different

metabolites and their conjugates. In tomato, detailed

analysis of MSn fragmentation patterns of phenolic com-

pounds, led to the characterization and annotation of 21

phenolic compounds not reported before in literature or

available metabolite databases. In addition, with an

increasing amount of annotated metabolites that are com-

pletely structurally elucidated, more ESI–Ion Trap based

MSn fragmentation rules can be derived, thus further

facilitating metabolite identification by MS in the future.

We therefore believe that the MSn spectral tree method is a

very powerful tool in the annotation of metabolites in crude

extracts, as well as in structural elucidation of unknown

and partly unknown metabolites by comparing spectral

trees to each other and to reference data. Due to the

observed robustness, reproducibility and discriminative

power, MSn databases and an integrated automated work-

flow for rapid metabolite identification using MSn spectral

trees is foreseen in the nearby future.
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Vallverdú-Queralt, A., Jáuregui, O., Medina-Remón, A., Andrés-

Lacueva, C., & Lamuela-Raventós, R. M. (2010). Improved

characterization of tomato polyphenols using liquid chromato-

graphy/electrospray ionization linear ion trap quadrupole Orbi-

trap mass spectrometry and liquid chromatography/electrospray

ionization tandem mass spectrometry. Rapid Communications in
Mass Spectrometry, 24, 2986–2992.

Vukics, V., & Guttman, A. (2010). Structural characterization of

flavonoid glycosides by multi-stage mass spectrometry. Mass
Spectrometry Reviews, 29, 1–12.

Werner, E., Heilier, J. F., Ducruix, C., Ezan, E., Junot, C., & Tabet, J.

C. (2008). Mass spectrometry for the identification of the

discriminating signals from metabolomics: Current status and

future trends. Journal of Chromatography B, 871, 143–163.

Wolfender, J. L., Waridel, P., Ndjoko, K., Hobby, K. R., Major, H. J., &

Hostettmann, K. (2000). Evaluation of Q-TOF-MS/MS and

multiple stage IT–MSn for the dereplication of flavonoids and

related compounds in crude plant extracts. Analysis, 28, 895–906.

LC–MSn as robust annotation tool 703

123


	Spectral trees as a robust annotation tool in LC--MS based metabolomics
	Abstract
	Introduction
	Materials and methods
	Chemicals and plant material
	Chemicals
	Plant harvesting and metabolite extraction

	Analytical methods
	Online fragmentation using HPLC--PDA--ESI--MSn
	NanoMate LC-fractionation of plant extracts
	Offline MSn spectral tree generation

	MSn data processing
	NMR identification of selected compounds

	Results
	Robustness and reproducibility of online and offline MSn spectra
	Online LC--MSn and offline MSn spectral trees of crude plant extracts
	Effects of dynamic exclusion and mass resolution in online LC--MSn
	Offline MSn fragmentation in negative and positive ionization modes
	MSn spectra enable discrimination of isomers
	LC--MSn enables large-scale annotation of metabolites

	Discussion
	Factors influencing online LC--MSn fragmentation
	Metabolite discrimination and annotation using MSn fragmentation

	Conclusions
	Acknowledgments
	References


